首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose:

Selective cyclooxygenase-2 (COX-2) inhibitors such as rofecoxib (Vioxx) and celecoxib (Celebrex) were developed as NSAIDs with reduced gastric side effects. Celecoxib has now been shown to affect cellular physiology via an unexpected, COX-independent, pathway – by inhibiting Kv2.1 and other ion channels. In this study, we investigated the mechanism of the action of celecoxib on Kv2.1 channels.

Experimental approach:

The mode of action of celecoxib on rat Kv2.1 channels was studied by whole-cell patch-clamping to record currents from channels expressed in HEK-293 cells.

Key results:

Celecoxib reduced current through Kv2.1 channels when applied from the extracellular side. At low concentrations (≤3 µM), celecoxib accelerated kinetics of activation, deactivation and inactivation. Recovery of rat Kv2.1 channels from inactivation could be characterized by two components, with celecoxib selectively accelerating the slow component of recovery at ≤10 µM. At >3 µM, celecoxib led to closed-channel block with relative slowing of activation. At 30 µM, it additionally induced open-channel block that manifested in use-dependent inhibition and slower recovery from inactivation.

Conclusions and implications:

Celecoxib reduced current through Kv2.1 channels by modifying gating and inducing closed- and open-channel block, with the three effects manifesting at different concentrations. These data will help to elucidate the mechanisms of action of this widely prescribed drug on ion channels and those underlying its neurological, cardiovascular and other effects.  相似文献   

2.

BACKGROUND AND PURPOSE

The endocannabinoid and corticotropin-releasing factor (CRF) systems have been implicated in several long-lasting behavioural effects of prior cocaine experience. The present experiments were designed to probe functional interactions between endocannabinoids and CRF by testing the role of cannabinoid CB1 receptors in cocaine-related behaviours induced or mediated by CRF.

EXPERIMENTAL APPROACH

In Experiment 1, rats trained to self-administer cocaine were pretreated with the CB1 receptor antagonist, AM251 (0, 10, 100 or 200 µg, i.c.v.), before tests for reinstatement in response to CRF (0, 0.5 µg, i.c.v.), intermittent footshock stress (0, 0.9 mA) or cocaine (0, 10 mg·kg−1, i.p.). In Experiment 2, rats pre-exposed to cocaine (15–30 mg·kg−1, i.p.) or saline for 7 days were pretreated with AM251 (0, 10 or 100 µg, i.c.v.) before tests for locomotion in response to CRF (0.5 µg, i.c.v.), cocaine (15 mg·kg−1, i.p.) or saline (i.c.v.).

KEY RESULTS

Pretreatment with AM251 selectively interfered with CRF-, but not footshock- or cocaine-induced reinstatement. AM251 blocked the expression of behavioural sensitization induced by challenge injections of both CRF and cocaine.

CONCLUSIONS AND IMPLICATIONS

These findings reveal a mediating role for CB1 receptor transmission in the effects of CRF on cocaine-related behaviours.  相似文献   

3.

BACKGROUND AND PURPOSE

Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells.

EXPERIMENTAL APPROACH

We examined the effects of µ-opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells.

KEY RESULTS

Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway.

CONCLUSIONS AND IMPLICATIONS

Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids.  相似文献   

4.

BACKGROUND AND PURPOSE

P2Y1 is a purine receptor that triggers platelet aggregation. Its inhibition was studied in patients with stable coronary artery disease (CAD) receiving standard anti-platelet therapy.

EXPERIMENTAL APPROACH

Blood samples from 10 patients on aspirin therapy (ASA, 80 mg·day−1) were withdrawn before and 24 h after the administration of 450 mg clopidogrel (ASA/C) and were anti-coagulated with citrate or hirudin/PPACK in the presence or absence of the P2Y1 inhibitor MRS2179 (M, 100 µM). Platelet responses to ADP (2.5 µM) and TRAP (2.5 µM), and collagen-induced thrombosis under flow conditions were analysed.

KEY RESULTS

Compared with ASA, ASA + M strongly inhibited ADP-induced peak platelet aggregation (88%), late aggregation (84%), P-selectin expression (85%) and αIIbβ3 activation (62%) (28%, 65%, 70% and 51% inhibition, respectively, for ASA/C vs. ASA). ASA + M also inhibited platelet/monocyte and platelet/neutrophil conjugate formation by 69% and 71% (57% and 59% for ASA/C vs. ASA). In TRAP-activated blood, ASA + M unexpectedly inhibited αIIbb3 activation by 30%. In blood perfused in collagen-coated glass capillaries (shear rate of 1500 s−1), ASA/C prevented thrombus growth beyond 5 min in relation to thrombus fragments embolization. ASA + M with or without clopidogrel completely prevented thrombus formation. Finally, ex vivo addition of MRS2179 and ASA to the blood of healthy donors markedly blocked thrombus formation on collagen in flow conditions, in contrast to ASA plus the P2Y12 inhibitor 2-MeSAMP.

CONCLUSIONS AND IMPLICATIONS

Through particularly efficient complementarities with ASA to inhibit platelet activation and thrombus formation, the inhibition of P2Y1 in the blood of patients with CAD appears to play a more important role than previously anticipated.  相似文献   

5.

BACKGROUND AND PURPOSE

While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1.

EXPERIMENTAL APPROACH

In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices.

KEY RESULTS

Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice.

CONCLUSIONS AND IMPLICATIONS

These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.  相似文献   

6.

BACKGROUND AND PURPOSE

Recently, a small molecule (Q94) was reported to selectively block PAR1/Gαq interaction and signalling. Here, we describe the pharmacological properties of Q94 and two analogues that share its benzimidazole scaffold (Q109, Q89). Q109 presents a modest variation from Q94 in the substituent group at the 2-position, while Q89 has quite different groups at the 1- and 2-positions.

EXPERIMENTAL APPROACH

Using human microvascular endothelial cells, we examined intracellular Ca2+ mobilization and inositol 1,4,5-trisphosphate accumulation as well as isoprenaline- or forskolin-stimulated cAMP production in response to thrombin.

KEY RESULTS

Q89 (10 µM) produced a leftward shift in the thrombin-mediated intracellular Ca2+ mobilization concentration–response curve while having no effect on the Emax. Both Q94 (10 µM) and Q109 (10 µM) reduced intracellular Ca2+ mobilization, leading to a decrease in Emax and an increase in EC50 values. Experiments utilizing receptor-specific activating peptides confirmed that Q94 and Q109 were selective for PAR1 as they did not alter the Ca2+ response mediated by a PAR2 activating peptide. Consistent with our Ca2+ results, micromolar concentrations of either Q94 or Q109 significantly reduced thrombin-induced inositol 1,4,5-trisphosphate production. Neither Q94 nor Q109 diminished the inhibitory effects of thrombin on cAMP production, indicating they inhibit signalling selectively through the Gq pathway. Our results also suggest the 1,2-disubstituted benzimidazole derivatives act as ‘allosteric agonists’ of PAR1.

CONCLUSIONS AND IMPLICATIONS

The Q94 and Q109 benzimidazole derivatives represent a novel scaffold for the development of new PAR1 inhibitors and provide a starting point to develop dual signalling pathway-selective positive/negative modulators of PAR1.  相似文献   

7.

BACKGROUND AND PURPOSE

After conversion to their active forms by the liver, ticlopidine and clopidogrel exert antiplatelet effects through irreversible inhibition of the P2Y12 receptor. Concentrations of nucleotides such as ADP, the physiological agonist at platelet P2Y1 and P2Y12 receptors, are regulated by vascular ectonucleotidases, mainly nucleoside triphosphate diphosphohydrolase (NTPDase)1 and ecto-5′-nucleotidase. Here we evaluate the effect of these pro-drugs on vascular ectonucleotidase activity and on the natural function of these enzymes in regulating platelet aggregation.

EXPERIMENTAL APPROACH

Nucleotidase assays were performed by HPLC and by Pi determination, using human umbilical vein endothelial cells (HUVEC) and protein extracts from transfected COS-7 cells as sources of enzymes. Platelet aggregation was assayed using human platelet-rich plasma.

KEY RESULTS

Each pro-drug inhibited endothelial ectonucleotidase activities and decreased their ability to block platelet aggregation in vitro. At their therapeutic concentrations, ticlopidine (60 µM) and clopidogrel (20 µM) inhibited ADP hydrolysis by HUVEC by about 80%, and AMP hydrolysis by one-third. Accordingly, these compounds showed a mixed-type inhibition of recombinant human NTPDase1 with an apparent Ki (Ki,app) of 10 µM (clopidogrel) and 14 µM (ticlopidine). Recombinant rat ecto-5′-nucleotidase, but not its human orthologue, was inhibited by ticlopidine with a Ki,app of 4.5 mM.

CONCLUSIONS AND IMPLICATIONS

These pro-drugs facilitated platelet aggregation via the inhibition of vascular NTPDase1 in vitro. Further studies should be performed to assess whether this effect also occurs in vivo, especially at the beginning of treatment, before sufficient levels of active metabolites are produced by the liver.  相似文献   

8.

BACKGROUND AND PURPOSE

Antagonists of angiotensin AT1 receptors elicit beneficial vascular effects in diabetes mellitus. We hypothesized that diabetes induces sustained availability of AT1 receptors, causing enhanced arterial constriction to angiotensin II.

EXPERIMENTAL APPROACH

To assess functional availability of AT1 receptors, constrictions to successive applications of angiotensin II were measured in isolated skeletal muscle resistance arteries (∼150 µm) of Zucker diabetic fatty (ZDF) rats and of their controls (+/Fa), exposed acutely to high glucose concentrations (HG, 25 mM, 1 h). AT1 receptors on cell membrane surface were measured by immunofluorescence.

KEY RESULTS

Angiotensin II-induced constrictions to first applications were greater in arteries of ZDF rats (maximum: 82 ± 3% original diameter) than in those from +/Fa rats (61 ± 5%). Constrictions to repeated angiotensin II administration were decreased in +/Fa arteries (20 ± 6%), but were maintained in ZDF arteries (67 ± 4%) and in +/Fa arteries vessels exposed to HG (65 ± 6%). In ZDF arteries and in HG-exposed +/Fa arteries, Rho-kinase activities were enhanced. The Rho-kinase inhibitor, Y27632 inhibited sustained constrictions to angiotensin II in ZDF arteries and in +/Fa arteries exposed to HG. Levels of surface AT1 receptors on cultured vascular smooth muscle cells (VSMCs) were decreased by angiotensin II but were maintained in VSMCs exposed to HG. In VSMCs exposed to HG and treated with Y27632, angiotensin II decreased surface AT1 receptors.

CONCLUSIONS AND IMPLICATIONS

In diabetes, elevated glucose concentrations activate Rho-kinase which inhibits internalization or facilitates recycling of AT1 receptors, leading to increased functional availability of AT1 receptors and sustained angiotensin II-induced arterial constriction.  相似文献   

9.

BACKGROUND AND PURPOSE

Previous studies have pointed to the plant flavonoids myricetin and quercetin as two structurally related stimulators of vascular Cav1.2 channel current (ICa1.2). Here we have tested the proposition that the flavonoid structure confers the ability to modulate Cav1.2 channels.

EXPERIMENTAL APPROACH

Twenty-four flavonoids were analysed for their effects on ICa1.2 in rat tail artery myocytes, using the whole-cell patch-clamp method.

KEY RESULTS

Most of the flavonoids stimulated or inhibited ICa1.2 in a concentration- and voltage-dependent manner with EC50 values ranging between 4.4 µM (kaempferol) and 16.0 µM (myricetin) for the stimulators and IC50 values between 13.4 µM (galangin) and 100 µM [(±)-naringenin] for the inhibitors. Key structural requirements for ICa1.2 stimulatory activity were the double bond between C2 and C3 and the hydroxylation pattern on the flavonoid scaffold, the latter also determining the molecular charge, as shown by molecular modelling techniques. Absence of OH groups in the B ring was key in ICa1.2 inhibition. The functional interaction between quercetin and either the stimulator myricetin or the antagonists resokaempferol, crysin, genistein, and 5,7,2′-trihydroxyflavone revealed that quercetin expressed the highest apparent affinity, in the low µM range, for Cav1.2 channels. Neither protein tyrosine kinase nor protein kinase Cα were involved in quercetin-induced stimulation of ICa1.2.

CONCLUSIONS AND IMPLICATIONS

Quercetin-like plant flavonoids were active on vascular Cav1.2 channels. Thus, the flavonoid scaffold may be a template for the design of novel modulators of vascular smooth muscle Cav1.2 channels, valuable for the treatment of hypertension and stroke.  相似文献   

10.

BACKGROUND AND PURPOSE

Recently, we identified etodolac as a possible ligand for the human intestinal proton-couple peptide transporter (hPEPT1). This raised the possibility that other non-steroidal anti-inflammatory drugs, and especially ibuprofen, could also interact with hPEPT1. Here, we have assessed the interactions of ibuprofen with hPEPT1.

EXPERIMENTAL APPROACH

The uptake of [14C]Gly-Sar, [3H]Ibuprofen and other radio-labelled compounds were investigated in Madin–Darby canine kidney cells (MDCK)/hPEPT1, MDCK/Mock, LLC-PK1 or Caco-2 cells. The transepithelial transport of ibuprofen and hPEPT1 substrates was investigated in Caco-2 cell monolayers.

KEY RESULTS

Ibuprofen concentration dependently inhibited hPEPT1-mediated uptake of Gly-Sar in MDCK/hPEPT1 cells (Kiapp= 0.4 mM) but uptake of ibuprofen in Caco-2 cells and MDCK/hPEPT1 cells was not inhibited by hPEPT1 substrates. The maximum uptake rate for Gly-Sar uptake was reduced from 522 pmol·min−1·cm−2 to 181 pmol·min−1·cm−2 and 78 pmol·min−1·cm−2 in the presence of 0.5 mM and 1 mM ibuprofen, respectively. The interaction between ibuprofen and hPEPT1 was thus non-competitive. In LLC-PK1 cells, ibuprofen (1 mM) did not influence the transporter-mediated uptake of glycine or α-methyl-D-glycopyranoside. In Caco-2 cell monolayers the absorptive transport of δ-aminolevulinic acid was reduced by 23% and 48% by ibuprofen (1 and 10 mM), respectively. Likewise the transport of Gly-Sar was reduced by 23% in the presence of ibuprofen (1 mM).

CONCLUSIONS AND IMPLICATIONS

Ibuprofen is a non-competitive inhibitor of hPEPT1. As ibuprofen reduced the transepithelial transport of δ-aminolevulinic acid, drug–drug interactions between ibuprofen and hPEPT1 drug substrates at their site of absorption are possible if administered together.  相似文献   

11.

AIM

To investigate the effect of quercetin on organic anion transporting polypeptide 1B1 (OATP1B1) activities in vitro and on the pharmacokinetics of pravastatin, a typical substrate for OATP1B1 in healthy Chinese-Han male subjects.

METHODS

Using human embryonic kidney 293 (HEK293) cells stably expressing OATP1B1, we observed the effect of quercetin on OATP1B1-mediated uptake of estrone-3-sulphate (E3S) and pravastatin. The influence of quercetin on the pharmacokinetics of pravastatin was measured in 16 healthy Chinese-Han male volunteers receiving a single dose of pravastatin (40 mg orally) after co-administration of placebo or 500 mg quercetin capsules (once daily orally for 14 days).

RESULTS

Quercetin competitively inhibited OATP1B1-mediated E3S uptake with a Ki value of 17.9 ± 4.6 µm and also inhibited OATP1B1-mediated pravastatin uptake in a concentration dependent manner (IC50, 15.9 ± 1.4 µm). In healthy Chinese-Han male subjects, quercetin increased the pravastatin area under the plasma concentration – time curve (AUC(0,10 h) and the peak plasma drug concentration (Cmax) to 24% (95% CI 15, 32%, P < 0.001) and 31% (95% CI 20, 42%, P < 0.001), respectively. After administration of quercetin, the elimination half-life (t1/2) of pravastatin was prolonged by 14% (95% CI 4, 24%, P = 0.027), with no change in the time to reach Cmax (tmax). Moreover, quercetin decreased the apparent clearance (CL/F) of pravastatin by 18% (95% CI 75, 89%, P < 0.001).

CONCLUSIONS

These findings suggest that quercetin inhibits the OATP1B1-mediated transport of E3S and pravastatin in vitro and also has a modest inhibitory influence on the pharmacokinetics of pravastatin in healthy Chinese-Han male volunteers. The effects of quercetin on other OATP1B1 substrate drugs deserve further investigation.  相似文献   

12.

BACKGROUND AND PURPOSE

Pre-synaptic neurotransmitter release is largely dependent on Ca2+ entry through P/Q-type (CaV2.1) voltage-gated Ca2+ channels (PQCCs) at most mammalian, central, fast synapses. Barbiturates are clinical depressants and inhibit pre-synaptic Ca2+ entry. PQCC barbiturate pharmacology is generally unclear, specifically in man. The pharmacology of the barbiturate pentobarbital (PB) in human recombinant α1A PQCCs has been characterized.

EXPERIMENTAL APPROACH

PB effects on macroscopic Ca2+(ICa) and Ba2+(IBa) currents were studied using whole-cell patch clamp recording in HEK-293 cells heterologously expressing (α1A)human2aα2δ-1)rabbit PQCCs.

KEY RESULTS

PB reversibly depressed peak current (Ipeak) and enhanced apparent inactivation (fractional current at 800 ms, r800) in a concentration-dependent fashion irrespective of charge carrier (50% inhibitory concentration: Ipeak, 656 µM; r800, 104 µM). Rate of mono-exponential IBa decay was linearly dependent on PB concentration. PB reduced channel availability by deepening non-steady-state inactivation curves without altering voltage dependence, slowed recovery from activity-induced unavailable states and produced use-dependent block. PB (100 µM) induced use-dependent block during physiological, high frequency pulse trains and overall depressed PQCC activity by two-fold.

CONCLUSION AND IMPLICATIONS

The results support a PB pharmacological mechanism involving a modulated receptor with preferential slow, bimolecular, open channel block (Kd = 15 µM). Clinical PB concentrations (<200 µM) inhibit PQCC during high frequency activation that reduces computed neurotransmitter release by 16-fold and is comparable to the magnitude of Ca2+-dependent facilitation, G-protein modulation and intrinsic inactivation that play critical roles in PQCC modulation underlying synaptic plasticity. The results are consistent with the hypothesis that PB inhibition of PQCCs contributes to central nervous system depression underlying anticonvulsant therapy and general anaesthesia.  相似文献   

13.

Background and purpose:

5-HT1B receptors may have a role in pulmonary hypertension. Their relationship with the activity of BKCa, a T-type voltage-operated calcium channel (VOCC) and cyclic nucleotide-mediated relaxation was examined.

Experimental approach:

Ring segments of bovine pulmonary arteries were mounted in organ baths in modified Krebs–Henseleit buffer (37oC) under a tension of 20 mN and gassed with 95% O2/5% CO2. Isometric recordings were made using Chart 5 software.

Key results:

Contractile responses to 5-HT (10 nM–300 µM) were inhibited similarly by the 5-HT1B receptor antagonist SB216641 (100 nM) and the T-type VOCC blockers mibefradil (10 µM) and NNC550396 (10 µM) with no additive effect between SB216641 and mibefradil. Inhibition by SB216641 was prevented by the potassium channel blocker, charybdotoxin (100 nM). 5-HT1B receptor activation and charybdotoxin produced a mibefradil-sensitive potentiation of responses to U46619. Bradykinin (0.1 nM–30 µM), sodium nitroprusside (0.01 nM–3 µM), zaprinast (1 nM–3 µM), isoprenaline (0.1 nM–10 µM) and rolipram (1 nM–3 µM) produced 50% relaxation of arteries constricted with 5-HT (1–3 µM) or U46619 (30–50 nM) in the presence of 5-HT1B receptor activation, but full relaxation of arteries constricted with U46619, the 5-HT2A receptor agonist 2,5 dimethoxy-4 iodoamphetamine (1 µM) or 5-HT in the presence of 5-HT1B receptor antagonism. Enhanced relaxation of 5-HT-constricted arteries by cGMP-dependent pathways, seen in the presence of the 5-HT1B receptor antagonist, was reversed by charybdotoxin whereas cAMP-dependent relaxation was only partly reversed by charybdotoxin.

Conclusions and implications:

5-HT1B receptors couple to inhibition of BKCa, thus increasing tissue sensitivity to contractile agonists by activating a T-type VOCC and impairing cGMP-mediated relaxation. Impaired cAMP-mediated relaxation was only partly mediated by inhibition of BKCa.  相似文献   

14.

BACKGROUND AND PURPOSE

Opioids and cannabinoids interact in drug addiction and relapse. We investigated the effect of the opioid receptor antagonist naloxone and/or the cannabinoid CB1 receptor antagonist rimonabant on cannabinoid-induced reinstatement of heroin seeking and on cannabinoid substitution in heroin-abstinent rats.

EXPERIMENTAL APPROACH

Rats were trained to self-administer heroin (30 µg·kg−1 per infusion) under a fixed-ratio 1 reinforcement schedule. After extinction of self-administration (SA) behaviour, we confirmed the effect of naloxone (0.1–1 mg·kg−1) and rimonabant (0.3–3 mg·kg−1) on the reinstatement of heroin seeking induced by priming with the CB1 receptor agonist WIN55,212-2 (WIN, 0.15–0.3 mg·kg−1). Then, in a parallel set of heroin-trained rats, we evaluated whether WIN (12.5 µg·kg−1 per infusion) SA substituted for heroin SA after different periods of extinction. In groups of rats in which substitution occurred, we studied the effect of both antagonists on cannabinoid intake.

KEY RESULTS

Cannabinoid-induced reinstatement of heroin seeking was significantly attenuated by naloxone (1 mg·kg−1) and rimonabant (3 mg·kg−1) and fully blocked by co-administration of sub-threshold doses of the two antagonists. Moreover, contrary to immediate (1 day) or delayed (90 days) drug substitution, rats readily self-administered WIN when access was given after 7, 14 or 21 days of extinction from heroin, and showed a response rate that was positively correlated with the extinction period. In these animals, cannabinoid intake was increased by naloxone (1 mg·kg−1) and decreased by rimonabant (3 mg·kg−1).

CONCLUSIONS AND IMPLICATIONS

Our findings extend previous research on the crosstalk between cannabinoid and opioid receptors in relapse mechanisms, which suggests a differential role in heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats.

LINKED ARTICLES

This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

15.

BACKGROUND AND PURPOSE

Human K2P3.1 (TASK1) channels represent potential targets for pharmacological management of atrial fibrillation. K2P channels control excitability by stabilizing membrane potential and by expediting repolarization. In the heart, inhibition of K2P currents by class III antiarrhythmic drugs results in action potential prolongation and suppression of electrical automaticity. Carvedilol exerts antiarrhythmic activity and suppresses atrial fibrillation following cardiac surgery or cardioversion. The objective of this study was to investigate acute effects of carvedilol on human K2P3.1 (hK2P3.1) channels.

EXPERIMENTAL APPROACH

Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hK2P3.1 currents from Xenopus oocytes, Chinese hamster ovary (CHO) cells and human pulmonary artery smooth muscle cells (hPASMC).

KEY RESULTS

Carvedilol concentration-dependently inhibited hK2P3.1 currents in Xenopus oocytes (IC50= 3.8 µM) and in mammalian CHO cells (IC50= 0.83 µM). In addition, carvedilol sensitivity of native IK2P3.1 was demonstrated in hPASMC. Channels were blocked in open and closed states in frequency-dependent fashion, resulting in resting membrane potential depolarization by 7.7 mV. Carvedilol shifted the current–voltage (I–V) relationship by −6.9 mV towards hyperpolarized potentials. Open rectification, characteristic of K2P currents, was not affected.

CONCLUSIONS AND IMPLICATIONS

The antiarrhythmic drug carvedilol targets hK2P3.1 background channels. We propose that cardiac hK2P3.1 current blockade may suppress electrical automaticity, prolong atrial refractoriness and contribute to the class III antiarrhythmic action in patients treated with the drug.  相似文献   

16.

BACKGROUND AND PURPOSE

Drug-induced torsades de pointes (TdP) often occurs during bradycardia due to reverse use-dependence. We tested the hypothesis that inhibition or enhancement of late sodium current (INa,L) could modulate the drug-induced reverse use-dependence in QT and Tp-e (an index of dispersion of repolarization), and therefore the liability for TdP.

EXPERIMENTAL APPROACH

Arterially perfused rabbit left ventricular wedge preparations were used. Action potentials from the endocardium were recorded simultaneously with a transmural ECG. The effects of Anemonia sulcata toxin (ATX-II) (an INa,L enhancer), d,l-sotalol, clarithromycin and ranolazine (an INa,L blocker) on rate-dependent changes in QT, Tp-e and proarrhythmic events were tested, either alone or in combination. Rate-dependent QT and Tp-e slopes and TdP score (a combined index of TdP liability) were calculated at control and during drug infusion.

KEY RESULTS

ATX-II (30 nM) and sotalol (300 µM) caused a marked increase in QT and Tp-e intervals, steeper QT-basic cycle length (BCL) and Tp-e-BCL slopes (i.e. reverse use-dependence), and TdP. Addition of ranolazine (15 µM) to ATX-II or sotalol significantly attenuated QT-BCL, Tp-e-BCL slopes and the increased TdP scores. In contrast, clarithromycin (100 µM) moderately prolonged QT and Tp-e without causing R-on-T extrasystole or TdP, but addition of ATX-II (1 nM) to clarithromycin markedly amplified the QT-BCL and Tp-e-BCL slopes and further increased TdP score.

CONCLUSION AND IMPLICATIONS

Modulation of INa,L altered drug-induced reverse use-dependence related to QT as well as Tp-e, indicating that inhibition of INa,L can markedly reduce the TdP liability of agents that prolong QT intervals.  相似文献   

17.

BACKGROUND AND PURPOSE

The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant.

EXPERIMENTAL APPROACH

µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. µ-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data.

KEY RESULTS

Synthetic µ-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC50= 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with µ-SIIIA, µ-SmIIIA and µ-PIIIA. µ-CnIIIC blocked NaV1.4 (IC50= 1.3 nM) and NaV1.2 channels in a long-lasting manner. Cardiac NaV1.5 and DRG-specific NaV1.8 channels were not blocked at 1 µM. µ-CnIIIC also blocked the α3β2 nAChR subtype (IC50= 450 nM) and, to a lesser extent, on the α7 and α4β2 subtypes. Structure determination of µ-CnIIIC revealed some similarities to α-conotoxins acting on nAChRs.

CONCLUSION AND IMPLICATIONS

µ-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels.  相似文献   

18.

BACKGROUND AND PURPOSE

Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB1 antagonists / inverse agonists. Concentrations of 0.5–10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABAA receptors but found a significant positive allosteric modulation instead.

EXPERIMENTAL APPROACH

Recombinant GABAA receptors were expressed in Xenopus oocytes. Receptors were exposed to AM251 or rimonabant in the absence and presence of GABA. Standard electrophysiological techniques were used to monitor the elicited ionic currents.

KEY RESULTS

AM251 dose-dependently potentiated responses to 0.5 µM GABA at the recombinant α1β2γ2 GABAA receptor with an EC50 below 1 µM and a maximal potentiation of about eightfold. The Hill coefficient indicated that more than one binding site for AM251 was located in this receptor. Rimonabant had a lower affinity, but a fourfold higher efficacy. AM251 potentiated also currents mediated by α1β2, αxβ2γ2 (x = 2,3,5,6), α1β3γ2 and α4β2δ GABAA receptors, but not those mediated by α1β1γ2. Interestingly, the CB1 receptor antagonists LY320135 and O-2050 did not significantly affect α1β2γ2 GABAA receptor-mediated currents at concentrations of 1 µM.

CONCLUSIONS AND IMPLICATIONS

This study identified rimonabant and AM251 as positive allosteric modulators of GABAA receptors. Thus, potential GABAergic effects of commonly used concentrations of these compounds should be considered in in vitro experiments, especially at extrasynaptic sites where GABA concentrations are low.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

19.

Aim:

To determine the effects of the centrally antihypertensive drug moxonidine injected into the rostral ventrolateral medulla (RVLM) on baroreflex function in spontaneously hypertensive rats (SHR).

Methods:

Baroreflex sensitivity control of renal sympathetic nerve activity (RSNA) and barosensitivity of the RVLM presympathetic neurons were determined following application of different doses of moxonidine within the RVLM.

Results:

Three doses (0.05, 0.5, and 5 nmol in 50 nL) of moxonidine injected bilaterally into the RVLM dose-dependently reduced the baseline blood pressure (BP) and RSNA in SHR. At the highest dose (5 nmol) of moxonidine injection, the maximum gain (1.24%±0.04%/mmHg) of baroreflex control of RSNA was significantly decreased. However, the lower doses (0.05 and 0.5 nmol) of moxonidine injection into the RVLM significantly enhanced the baroreflex gain (2.34%±0.08% and 2.01%±0.07%/mmHg). The moxonidine-induced enhancement in baroreflex function was completely prevented by the imidazoline receptor antagonist efaroxan but not by the α2-adrenoceptor antagonist yohimbine. A total of 48 presympathetic neurons were recorded extracellularly in the RVLM of SHR. Iontophoresis of applied moxonidine (30–60 nA) dose-dependently decreased the discharge of RVLM presympathetic neurons but also significantly increased the barosensitivity of RVLM presympathetic neurons.

Conclusion:

These data demonstrate that a low dose of moxonidine within the RVLM has a beneficial effect on improving the baroreflex function in SHR via an imidazoline receptor-dependent mechanism.  相似文献   

20.

BACKGROUND AND PURPOSE

Selective 5-hydroxytryptamine (5-HT, serotonin) reuptake inhibitors (SSRIs) are widely used antidepressants and their therapeutic effect requires several weeks of drug administration. The delayed onset of SSRI efficacy is due to the slow neuroadaptive changes of the 5-hydroxytryptaminergic (5-HTergic) system. In this study, we examined the acute and chronic effects of SSRIs on the 5-HTergic system using rat raphe slice cultures.

EXPERIMENTAL APPROACH

For organotypic raphe slice cultures, mesencephalic coronal sections containing dorsal and median raphe nuclei were prepared from neonatal Wistar rats and cultured for 14–16 days.

KEY RESULTS

Acute treatment with citalopram, paroxetine or fluoxetine (0.1–10 µM) in the slice cultures slightly increased extracellular 5-HT levels, while sustained exposure for 4 days augmented the elevation of 5-HT level in a time-dependent manner. Sustained exposure to citalopram had no effect on tissue contents of 5-HT and its metabolite, expression of tryptophan hydroxylase or the membrane expression of 5-HT transporters. The augmented 5-HT release was attenuated by Ca2+-free incubation medium or treatment with tetrodotoxin. Experiments with 5-HT1A/B receptor agonists and antagonists revealed that desensitization of 5-HT1 autoreceptors was not involved in the augmentation of 5-HT release. Finally, co-treatment with an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, but not an N-methyl-d-aspartate, receptor antagonist, suppressed this augmentation.

CONCLUSION AND IMPLICATIONS

These results suggest that sustained exposure to SSRIs induces the augmentation of exocytotic 5-HT release, which is caused, at least in part, by the activation of AMPA/kainate receptors in the raphe slice cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号