首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats   总被引:3,自引:0,他引:3  
Ma F  Xie H  Dong ZQ  Wang YQ  Wu GC 《Brain research》2005,1043(1-2):214-217
The present study was designed to investigate changes of opioid receptor like 1 receptor (ORL(1), NOP) mRNA expression in some pain-related brain nuclei of neuropathic pain rats using in situ hybridization technique. Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of ORL(1), plays an important role in neuropathic pain through its receptor. There are ORL(1) mRNA expression in the nucleus of raphe magnus (NRM), ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus (DRN) of rat mesencephalon. In the sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain model, a significant increase of ORL(1) mRNA expression was observed in these three regions on the 7th day after operation, and the changes lasted for 2 weeks. The result indicated that ORL(1) synthesis was increased in NRM, vlPAG and DRN of neuropathic pain rats, suggesting that ORL(1) was involved in nociceptive transmission of neuropathic pain.  相似文献   

2.
Orphanin FQ (OFQ) is the endogenous agonist of the opioid receptor-like receptor (ORL-1). It and its precursor, prepro-OFQ, exhibit structural features suggestive of the opioid peptides. A cDNA encoding the OFQ precursor sequence in the rat recently has been cloned, and the authors recently generated a polyclonal antibody directed against the OFQ peptide. In the present study, the authors used in situ hybridization and immunohistochemistry to examine the distribution of OFQ peptide and mRNA in the central nervous system of the adult rat. OFQ immunoreactivity and prepro-OFQ mRNA expression correlated virtually in all brain areas studied. In the forebrain, OFQ peptide and mRNA were prominent in the neocortex endopiriform nucleus, claustrum, lateral septum, ventral forebrain, hypothalamus, mammillary bodies, central and medial nuclei of the amygdala, hippocampal formation, paratenial and reticular nuclei of the thalamus, medial habenula, and zona incerta. No OFQ was observed in the pineal or pituitary glands. In the brainstem, OFQ was prominent in the ventral tegmental area, substantia nigra, nucleus of the posterior commissure, central gray, nucleus of Darkschewitsch, peripeduncular nucleus, interpeduncular nucleus, tegmental nuclei, locus coeruleus, raphe complex, lateral parabrachial nucleus, inferior olivary complex, vestibular nuclear complex, prepositus hypoglossus, solitary nucleus, nucleus ambiguous, caudal spinal trigeminal nucleus, and reticular formation. In the spinal cord, OFQ was observed throughout the dorsal and ventral horns. The wide distribution of this peptide provides support for its role in a multitude of functions, including not only nociception but also motor and balance control, special sensory processing, and various autonomic and physiologic processes.  相似文献   

3.
The recently discovered neuropeptide orphanin FQ (OFQ), and its opioid receptor-like (ORL1) receptor, exhibit structural features suggestive of the micro, kappa, and delta opioid systems. The anatomic distribution of OFQ immunoreactivity and mRNA expression has been reported recently. In the present analysis, we compare the distribution of orphanin receptor mRNA expression with that of orphanin FQ binding at the ORL1 receptor in the adult rat central nervous system (CNS). By using in vitro receptor autoradiography with (125)I-[(14)Tyr]-OFQ as the radioligand, orphanin receptor binding was analyzed throughout the rat CNS. Orphanin binding sites were densest in several cortical regions, the anterior olfactory nucleus, lateral septum, ventral forebrain, several hypothalamic nuclei, hippocampal formation, basolateral and medial amygdala, central gray, pontine nuclei, interpeduncular nucleus, substantia nigra, raphe complex, locus coeruleus, vestibular nuclear complex, and the spinal cord. By using in situ hybridization, cells expressing ORL1 mRNA were most numerous throughout multiple cortical regions, the anterior olfactory nucleus, lateral septum, endopiriform nucleus, ventral forebrain, multiple hypothalamic nuclei, nucleus of the lateral olfactory tract, medial amygdala, hippocampal formation, substantia nigra, ventral tegmental area, central gray, raphe complex, locus coeruleus, multiple brainstem motor nuclei, inferior olive, deep cerebellar nuclei, vestibular nuclear complex, nucleus of the solitary tract, reticular formation, dorsal root ganglia, and spinal cord. The diffuse distribution of ORL1 mRNA and binding supports an extensive role for orphanin FQ in a multitude of CNS functions, including motor and balance control, reinforcement and reward, nociception, the stress response, sexual behavior, aggression, and autonomic control of physiologic processes.  相似文献   

4.
Orphanin FQ/nociceptin (OFQ/N), the endogenous ligand for the ORL-1/KOR-3 receptor, produces a wide variety of behavioral responses. Its precursor protein, prepro-OFQ/N (ppOFQ/N) contains several series of amino acids bounded by pairs of basic amino acids, raising the possibility that additional functional neuropeptides could be generated by proteolytic posttranslational processing. Several of these processing products have been shown to have pharmacological activity, including the 17 amino acid peptide OFQ/N (mppOFQ/N(140-157)) which is a major product of this precursor in the hypothalamus. Here we have used a newly developed radioimmunoassay and RP-HPLC to detect mppOFQ/N(160-187) in mouse hypothalamic extracts. Murine ppOFQ/N(160-187) has potent analgesic activity supraspinally (3.4 nmol, i.c.v.) and spinally (4.3 nmol, i.t.). This analgesic activity was reversed by the opioid antagonist naloxone (5 mg/kg, s.c.) and kappa(1)-selective opioid antagonist nor-BNI (60 microg, i.c.v.), despite the inability of ppOFQ/N(160-187) to compete binding in mu, delta, kappa(1), kappa(3), or OFQ/N binding assays. These findings suggest that murine ppOFQ/N(160-187) may be a physiologically relevant neuropeptide with a novel mechanism of action.  相似文献   

5.
The distributions of orphanin FQ (OFQ/N; also known as nociceptin) and its cognate receptor, opioid receptor-like receptor-1 (NOP), overlap steroid-responsive regions throughout reproductive circuits of the limbic system and hypothalamus. For example, in the ventromedial nucleus of the hypothalamus (VMH), OFQ/N facilitates lordosis in female rats through estrogen and progesterone regulation of nociceptin activity. We studied estrogen and progesterone regulation of OFQ/N and NOP mRNA expression in limbic-hypothalamic reproductive circuits. Ovariectomized rats were treated with 17beta-estradiol-benzoate (2 microg) and 26 hours later with oil or progesterone (500 microg) and were killed 30 hours after initial treatment. Alternate brain sections were processed for OFQ/N or NOP mRNA in situ hybridization. High levels of hybridization for NOP and OFQ/N and overlapping distributions were observed throughout the limbic hypothalamic reproductive circuits; however, in VMH, only NOP expression was observed. Estrogen treatment increased NOP mRNA expression in anteroventral periventricular nucleus (AVPV), median preoptic nucleus, and VMH. Subsequent progesterone treatment did not alter estrogen-induced expression of NOP mRNA in VMH or median preoptic nucleus but reduced expression in the AVPV. OFQ/N mRNA levels were also regulated by steroids. In the caudal part of the posterodorsal medial amygdala, estrogen increased OFQ/N mRNA levels, and progesterone did not alter this increase, whereas, in the medial part of the medial preoptic nucleus, estrogen and progesterone were needed to increase OFQ/N mRNA levels. Steroid regulation of OFQ/N and NOP in the medial preoptic nucleus and VMH is consistent with emerging data indicating that this opioid system regulates female reproduction.  相似文献   

6.
Ma F  Xie H  Dong ZQ  Wang YQ  Wu GC 《Brain research》2003,988(1-2):189-192
Nocistatin and nociceptin/orphanin FQ (N/OFQ) are two neuropeptides derived from the same precursor protein, prepronociceptin (ppOFQ), and exhibit different effects on spinal neurotransmission. Nocistatin does not bind to nociceptin/orphanin FQ peptide receptor (NOP), but intrathecal (i.t.) nocistatin has been reported to block the analgesic effect of i.t. N/OFQ. In this study, we investigated the effect of i.t. nocistatin on N/OFQ analgesia to radiant thermal stimuli in chronic constriction injury (CCI) rat. Firstly, to investigate the analgesic effect of N/OFQ, different doses of N/OFQ (3, 10, 30 microg) were intrathecally injected and foot withdrawal latency (FWL) to radiant heat was recorded. It is observed that 3 microg N/OFQ had no effect on FWL, 10 and 30 microg N/OFQ significantly increased FWL of CCI rat. Then, 10 microg N/OFQ, 10 microg nocistatin and a drug cocktail including 10 microg N/OFQ and 10 microg nocistatin were intrathecally injected. The results showed that FWL significantly decreased after using N/OFQ and nocistatin compared with using only N/OFQ, and 10 microg nocistatin had no effect on FWL versus control, suggesting that this dose of nocistatin per se had no effect on the pain threshold of CCI rat, but could block the analgesic effect of N/OFQ. These results indicated that i.t. N/OFQ dose-relatedly depressed thermal hyperalgesia produced by CCI and nocistatin could block N/OFQ analgesia at spinal level in CCI rat.  相似文献   

7.
The heptadecapeptide orphanin FQ or nociceptin (OFQ/N), the endogenous ligand for the orphan opioid receptor, has a complex pharmacology in mice, eliciting either an anti-opioid/hyperalgesic action or analgesia depending upon the dose and testing paradigm. Unlike mice, orphanin FQ/nociceptin fails to elicit hyperalgesia in the rat following intracerebroventricular injection. Both OFQ/N and a truncated version, OFQ/N(1-11), produce a robust analgesic response. OFQ/N analgesia is readily antagonized by the opioid antagonists naloxone or diprenorphine, despite their very poor affinity for the cloned orphan opioid receptor. Antisense studies revealed that probes targeting the second and third coding exon of the orphan clone significantly attenuate OFQ/N analgesia, while the exon 1 probe was inactive. These results indicate that OFQ/N elicits a naloxone-sensitive analgesia in rats similar to that previously reported in mice.  相似文献   

8.
目的:观察大鼠在福尔马林致痛及针刺镇痛时孤啡肽受体mRNA在一些与镇痛有关核团的变化情况。方法:采用原位杂交组织化学技术。结果:电针后10h,导水管周围腹侧区、中缝背核及中缝大核内孤啡肽受体mRNA阳性神经元数增多;而在大鼠脚掌注射福尔马林后,上述核团内孤啡肽受体mRNA阳性神经元数却明显减少;电针并注射福尔马林,脑内孤啡肽受体mRNA水平介于单用电针和福尔马林之间。结论:电针能促进孤啡肽受体的合成而伤害性刺激抑制孤啡肽受体的合成。  相似文献   

9.
Expression of the neuropeptide orphanin FQ/nociceptin (OFQ/N) and its receptor, the opioid receptor-like receptor (ORL1), have been found to have a wide distribution in the central nervous system, and in brain areas involved in sensory perception in particular. The effects of OFQ/N on, e.g., sensory transmission are very complex, and a modulatory effect on pain perception has been suggested. We therefore wanted to investigate the distribution of OFQ/N and ORL1 in the spinal cord and DRG, and also in SCG and some other peripheral tissues. The methods used were in situ hybridization, immunohistochemistry and ligand binding. We found that OFQ/N and ORL1 mRNA are expressed in DRG; primarily in small and large neurons, respectively. In spinal cord, mRNA for OFQ/N and ORL1 is expressed in neurons in laminae I, II and X, and in ventral horn neurons. Further, immunoreactivity for OFQ/N is observed in fibers and neurons in the superficial laminae of the dorsal horn and around the central canal, and also in neurons in the ventral horn of the spinal cord. Receptor ligand binding to the spinal cord grey matter is demonstrated, primarily concentrated to the dorsal horn and around the central canal, and also to medium and large size DRG neurons. These findings on the morphological distribution pattern of OFQ/N and ORL1 at the cellular level may support the notion that OFQ/N is involved in modulating pain transmission. Further, expression of OFQ/N and ORL1 mRNA was also found in SCG, whereas expression was undetectable in skin.  相似文献   

10.
Fu X  Wang YQ  Wu GC 《Brain research》2006,1078(1):212-218
The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous agonist of the N/OFQ peptide receptor (NOP receptor), has been demonstrated to be involved in many physiological and pathological functions including pain regulation. In the present study, the involvement of N/OFQ-NOP receptor system in electroacupuncture (EA)-produced anti-hyperalgesia was investigated in rats with peripheral inflammation. Intrathecal (i.t.) administration of N/OFQ (15 nmol) or EA at acupoints GB30 and GB34 could significantly attenuate hyperalgesia which was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into one hindpaw of rats, manifesting as decreased paw withdrawal latency (PWL) to the noxious thermal stimulus. The anti-nociceptive effect of N/OFQ or EA was significantly blocked by intrathecal injection of [Nphe(1)]nociceptin(1-13)NH(2) (20 nmol), a selective antagonist of the NOP receptor, indicating the NOP-receptor-mediated mechanism. Additionally, the combination of N/OFQ injection with EA treatment could enhance anti-hyperalgesia compared to that produced by each component alone. These findings suggested that the spinal N/OFQ-NOP system might be involved in EA analgesia, which may be one of the mechanisms underlying the anti-nociceptive effect of EA in rat's peripheral inflammatory pain.  相似文献   

11.
12.
Forebrain injections of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the NOP opioid receptor, previously referred to as ORL1 or OP4 receptor, stimulate feeding in freely feeding rats, while the NOP receptor antagonist [Nphe(1)]N/OFQ(1-13)NH(2) inhibits food deprivation-induced feeding. To further evaluate whether the N/OFQ-NOP receptor system plays a physiological role in feeding control, the present study evaluated forebrain mRNA levels for the N/OFQ precursor (pro-N/OFQ), as well as for the NOP receptor in food deprived rats. The results obtained show that food deprived rats have lower mRNA levels for the NOP receptor in several forebrain regions; a significant reduction was found in the paraventricular and lateral hypothalamic nuclei and in the central nucleus of the amygdala. Food deprived rats also exhibited lower pro-N/OFQ mRNA levels in the central amygdala. These results suggest that the N/OFQ-NOP receptor system may have a physiological role in feeding control. The observation that food deprivation reduces gene expression of the N/OFQ-NOP receptor system is apparently not consistent with a direct hyperphagic action for N/OFQ. Taking into account that N/OFQ exerts inhibitory actions at cellular level, the present results may be in keeping with the hypothesis that N/OFQ stimulates feeding by inhibiting neurons inhibitory for food intake; under conditions of food deprivation, these neurons may be silent and the N/OFQ-NOP receptor system, which controls them, may also be regulated at a lower level. Consistently, in the present study N/OFQ stimulated food intake in freely feeding rats, but did not further increase feeding in food deprived rats.  相似文献   

13.
While the influence of orphanin FQ (OFQ) on the regulation of food intake has been substantiated, little is known about feeding-related brain regions that mediate OFQ-induced feeding. To further investigate this, we injected OFQ intracerebroventricularly and evaluated c-Fos immunoreactivity in brain areas thought to be involved in the regulation of food intake. Altered c-Fos expression as a consequence of OFQ injection was observed in the nucleus of the solitary tract, paraventricular nucleus of the hypothalamus, supraoptic nucleus, central nucleus of amygdala, lateral septal nucleus and lateral habenular nucleus. Presumably, OFQ modulates food ingestion through its action on these brain regions, most probably by activating feeding signals as well as suppressing satiety mechanisms.  相似文献   

14.
Nociceptin/orphanin FQ (N/OFQ) is an endogenous ligand of the ORL1 receptor. N/OFQ, when administered centrally, stimulates feeding in a fashion similar to other opioids. Intracerebroventricular administration of N/OFQ induces changes in c-Fos immunoreactivity in several feeding-related brain sites. A synthetic pseudopeptide, [Phe(1)iota(CH(2)-NH)Gly(2)]-nociceptin(1-13)-NH(2) (hereafter: [FG]N/OFQ(1-13)NH(2)), has been labeled both as an ORL1 agonist and antagonist. The present study was designed to examine the influence of [FG]N/OFQ(1-13)NH(2) on food intake in rats. We also evaluated c-Fos immunoreactivity in those areas of the brain which have been shown to exhibit altered c-Fos expression upon N/OFQ administration. We found that [FG]N/OFQ(1-13)NH(2) increases food consumption in satiated rats. This effect is short-lasting and can be reversed by the opioid antagonist naloxone. Co-administration of [FG]N/OFQ(1-13)NH(2) does not affect orexigenic response to N/OFQ. Intracerebroventricularly-injected [FG]N/OFQ(1-13)NH(2) induces c-Fos expression in the nucleus of the solitary tract, hypothalamic paraventricular and supraoptic nuclei, central nucleus of amygdala, lateral septal and lateral habenular nuclei-brain areas that have been shown to be activated by N/OFQ. These results support the hypothesis that [FG]N/OFQ(1-13)NH(2) acts as an agonist of ORL1 receptor in vivo.  相似文献   

15.
16.
17.
At the spinal level, the involvement of nociceptin/orphanin FQ (N/OFQ) in pain transmission is controversial. JTC-801, a selective nonpeptidergic N/OFQ antagonist, is a good tool to examine the involvement of endogenous N/OFQ in pathophysiological conditions. In the present study, we studied the effect of JTC-801 on neuropathic pain induced by L5 spinal nerve transection in mice. Thermal hyperalgesia was evident on day 3 postsurgery and maintained during the 10-day experimental period. Oral administration of JTC-801 relieved the thermal hyperalgesia in neuropathic mice in a dose-dependent manner. Following L5 nerve transection, the increase in nitric oxide synthase (NOS) activity was observed in the superficial layer of dorsal horn and around the central canal in the spinal cord by NADPH diaphorase histochemistry. Using the novel fluorescent nitric oxide (NO) detection dye diaminofluorescein-FM, we confirmed that NO production increased in the spinal slice prepared from neuropathic mice and that the increase was more prominent in the ipsilateral side to the nerve transection than in the contralateral side. These increases in NOS activity and NO production in neuropathic mice were blocked by pretreatment of oral JTC-801. Although intraperitoneal injection of the nonselective NOS inhibitor NG.-nitro-L-arginine methyl ester transiently, but significantly, attenuated neuropathic hyperalgesia, inducible NOS-deficient mice showed neuropathic pain after L5 spinal nerve transection. These results suggest that N/OFQ is involved in the maintenance of neuropathic pain and that the analgesic effect of JTC-801 on neuropathic pain is mediated by inhibition of NO production by neuronal NOS.  相似文献   

18.
Xing GG  Liu FY  Qu XX  Han JS  Wan Y 《Experimental neurology》2007,208(2):323-332
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.  相似文献   

19.
Nociceptin/orphanin FQ (N/OFQ) is an opioid-like heptadecapeptide agonist for the opioid receptor homolog, N/OFQ receptor. To explore the precise distribution of the peptide-receptor system, the authors examined the brain and spinal cord from receptor-deficient mice bearing the targeted mutation (morc(m1)), a lacZ insertional mutation in the N/OFQ receptor gene. Precursor protein N/OFQ (preproN/OFQ) mRNA was detected by using in situ hybridization, and the N/OFQ receptor was detected by using X-gal histochemistry. The N/OFQ receptor reflected by lacZ expression was observed at high levels in the dentate gyrus, lateral septum, subparafascicular thalamic nucleus, medial preoptic area, median preoptic nucleus, ventromedial preoptic nucleus, anterior hypothalamic area, paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, auditory brainstem nuclei, pontine dorsal tegmentum, and nucleus of the solitary tract. In situ detection of the N/OFQ receptor mRNA by digoxigenin-labeled riboprobes coupled with tyramide signal amplification in normal and wild-type mice resulted in the regional distribution paralleling the lacZ expression in these regions. PreproN/OFQ mRNA was expressed at high levels in the subparafascicular thalamic nucleus, central gray, central tegmental field, auditory brainstem nuclei, caudal spinal trigeminal nucleus, and spinal dorsal horn. Furthermore, variable levels of expression of the peptide and receptor were seen in distinct sites of the brain and spinal cord. These data indicate a correspondence of the peptide and the receptor in local distribution at limbic, hypothalamic, and brainstem sites. Together with concurrent physiologic and behavioral studies in mutant mice, the results suggest functional roles for the N/OFQ system, including the central regulation of learning and memory, hearing ability, water balance, food intake, and blood pressure.  相似文献   

20.
Nociceptin/orphanin FQ (N/OFQ) and its receptor share similarities to opioids and their receptors in terms of the molecular structure and signaling pathway, but the two systems exhibit different actions in vivo. To understand the mechanism of N/OFQ-system actions, we examined, by in situ hybridization analysis, the distribution of preproN/OFQ and N/OFQ receptor mRNAs in the developing and adult mouse central nervous systems (CNS). In most neural regions, preproN/OFQ mRNA was mainly expressed in a small population of middle-sized neurons. These neurons were scattered between large projection-type neurons or within the neuropil, suggestive of interneurons. In some other nuclei (lateral septum, bed nucleus of the stria terminalis, reticular thalamic nucleus, inferior colliculus, and rostral periolivery nucleus), preproN/OFQ mRNA was expressed in a number of large projection-type neurons. By contrast, N/OFQ receptor mRNA was evenly expressed in most neurons of the adult CNS. Considering the inhibitory actions of N/OFQ, the distinct cellular expression pattern of the N/OFQ system suggests that the release of N/OFQ from interneurons may lower neuronal and synaptic activities of neighboring neurons, leading to integration or modulation of local circuits. Furthermore, the cellular expression pattern, distinct from that of the opioid system, may provide a possible molecular/cellular basis for the different in vivo actions of N/OFQ and opioids. In embryonic stages, both preproN/OFQ and N/OFQ receptor mRNAs were highly and widely expressed in the mantle zone, suggesting the possible importance of N/OFQ signaling in CNS development. J. Comp. Neurol. 399:139–151, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号