首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The underlying mechanisms of idiopathic dystonias are poorly understood. The dystonic phenotype in the dt(sz) mutant hamster, a model of paroxysmal dystonia, has been suggested to be based on a deficit of gamma-aminobutyric acid (GABA)ergic interneurons and changes of the GABA(A)-benzodiazepine receptor complex in the striatum. In order to confirm and extend previous observations, the effects of compounds which bind to different sites of the GABA(A) receptor on the severity of dystonia were determined after striatal microinjections in comparison to systemic treatments in dt(sz) mutants. The GABA(A) receptor agonist (muscimol) and the benzodiazepine (flurazepam) reduced the severity of dystonia after striatal and systemic injections. The antidystonic effects of the barbiturate phenobarbital were less marked both after striatal and intraperitoneal administration of drugs. Intrastriatal injections of GABA delayed the onset of dystonic attacks. Striatal and systemic treatments with the GABA(A) receptor antagonist, bicuculline, and with pentylenetetrazole, which reduces GABAergic function, accelerated the onset of dystonia at subconvulsant doses. The benzodiazepine receptor antagonists flumazenil aggravated dystonia after systemic and intrastriatal injections. In all, the present data substantiate the relevance of striatal GABAergic disinhibition in the pathogenesis of paroxysmal dystonia in dt(sz) mutants.  相似文献   

2.
Attacks of sustained dystonic postures of limbs and trunk can be initiated by handling or mild environmental stimuli (e.g. new cage) in an inbred line of Syrian hamsters. The severity of the dystonic syndrome in these mutant hamsters (gene symbol dtsz) is age-dependent, with a peak at about 30-40 days of age. A scoring system for grading type and severity of the dystonic attacks can be used to study the activity of drugs against dystonic movements with individual pre- and post-drug vehicle trials as control. In the present experiments, the effects of drugs which alter GABAergic functions in the brain were studied in dystonic hamsters. Anticonvulsants, i.e. valproate, diazepam and phenobarbital, which augment GABAergic neurotransmission, decreased the severity of dystonic attacks in the mutant hamsters, while administration of subconvulsive doses of pentylenetetrazol or the inverse benzodiazepine receptor agonist FG 7142 increased the severity of the syndrome. Anticonvulsants, i.e. phenytoin and carbamazepine, which are not thought to act via effects on GABAergic neurotransmission, exerted no antidystonic effects, but even worsened the attack in several animals. In contrast, the GABA-elevating drug, aminooxyacetic acid, produced a marked antidystonic effect in the hamsters. Similarly, the GABAB receptor agonist, baclofen, significant decreased the severity of the dystonic attack. The data indicate that dystonic movements in dtsz mutant hamsters can be attenuated by drugs which facilitate GABAergic functions, but worsened by drugs which impair GABAergic neurotransmission. These data thus seem to suggest that the dystonic syndrome in dtsz mutant hamsters is under GABAergic influence. The data show furthermore that dystonic hamsters are a suitable model to detect antidystonic effects of drugs.  相似文献   

3.
Striatal dysfunctions seem to play a key role in the pathophysiology of dystonia in the dt(sz) mutant hamster, a model of paroxysmal non-kinesigenic dyskinesia, in which stress precipitates dystonic episodes. Previous examinations have shown changes in kynurenic acid levels and antidystonic effects of the kynurenine 3-hydroxylase inhibitor 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulfon-amide (Ro 61-8048) after systemic treatment in dt(sz) hamsters. In the present study, intrastriatal injections of Ro 61-8048 (60-80 microg/hemisphere) significantly reduced the severity of dystonia in dt(sz) hamsters, suggesting that kynurenine 3-hydroxylase inhibitors may be interesting candidates for managing dyskinesias which are related to striatal dysfunction.  相似文献   

4.
Previously, enhanced levels of spermine which stimulates N-methyl-D-aspartate (NMDA) receptors, particularly those containing the NR2B subunit, were found in brains of dt(sz) mutant hamsters, a model of paroxysmal dyskinesia in which dystonic episodes occur in response to stress. Therefore, the effects of the NR2B selective NMDA receptor antagonist Ro 25-6981 ([R-(R,S)]-alpha-(4-hydroxyphenyl)-beta-methyl-4-phenyl-methyl)-1-piperidine-propanol] on severity of dystonia were investigated in the dt(sz) hamster. Ro 25-6981 failed to exert antidystonic effects, but even caused a moderate aggravation at higher doses (10.0, 12.5 mg/kg). This result indicates that overstimulation of receptors that include the NR2B subunit by polyamines is not involved in the dystonic syndrome. NR2B-selective NMDA receptor antagonists seem not to provide a novel approach in the treatment of hereditary paroxysmal dyskinesias.  相似文献   

5.
The effects of the nootropic drug piracetam and its analogue, the antiepileptic drug levetiracetam (ucb L059) on severity of dystonic attacks were studied in a mutant hamster model of idiopathic generalized dystonia. Both drugs significantly decreased the severity of dystonia. In contrast to seizure models, in which levetiracetam is much more potent as an anticonvulsant than piracetam, the antidystonic potency of levetiracetam was only moderately higher than that of piracetam. The antidystonic activity of piracetam and levetiracetam was not associated with any behavioral side effects. The data indicate that piracetam and levetiracetam are interesting novel treatments for idiopathic dystonia.  相似文献   

6.
The effects of the gamma-aminobutyric acid (GABA)-potentiating drug gabapentin (1-(aminomethyl) cyclohexaneacetic acid) on severity of dystonia were examined in a hamster model of idiopathic paroxysmal dystonic choreoathetosis. In the genetically dystonic hamster (dt(sz)) recent pharmacological and neurochemical studies suggested that disturbed GABAergic inhibition is involved in the pathogenesis. In line with a case report of beneficial effects in human paroxysmal dystonic choreoathetosis, gabapentin reduced the severity of dystonia in mutant hamsters at doses of 5 and 10 mg kg(-1) i.p. At higher doses (20 and 100 mg kg(-1)), gabapentin, however, failed to exert antidystonic effects. The GABApotentiating activity of gabapentin could explain the antidystonic effects of low doses, while the loss of efficacy at higher doses may be due to other mechanisms of gabapentin.  相似文献   

7.
The role of the glutamatergic system in the convulsant and proconvulsant action of a mitochondrial toxin, 3-nitropropionic acid, was studied in mice. The occurrence of 3-nitropropionic acid-induced seizures was inhibited by the -amino-2,3-dihydro-5-methyl-3-oxo-isoxazole-propionate (AMPA)/kainate receptor antagonists, 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione disodium (NBQX) and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine HCl (GYKI 52466), with ED50 of 14.1 (7.9–25.2) and 7.2 (5.3–9.6) mg/kg, respectively. The N-methyl- -aspartate (NMDA) receptor antagonists, dizocilpine (MK-801) and 3-(2-carboxypiperazine-4-yl)propenyl-1-phosphonic acid (CPPene), were ineffective. Moreover, 3-nitropropionic acid given in a subthreshold dose potently enhanced seizures generated by intracerebroventricular administration of AMPA and kainate, lowering their CD50 from 0.98 (0.83–1.17) and 0.73 (0.64–0.83) to 0.55 (0.45–0.66) (P<0.001) and 0.58 (0.51–0.65) (P<0.05) nmol, respectively. In contrast, NMDA action was not changed by 3-nitropropionic acid application. We conclude that AMPA/kainate-mediated events are involved in proconvulsive and convulsive effects of 3-nitropropionic acid.  相似文献   

8.
In this work, the involvement of ionotropic glutamatergic receptors and nitric oxide on striatal dopamine release induced by anatoxin-a was investigated in conscious and freely-moving rats. To study the participation of glutamatergic receptors, the effects of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and N-methyl-D-aspartate (NMDA) receptor antagonists, dizocilpine (MK-801) and d(-)-2-amino-5-phosphonopentanoic acid (APV), were examined. The perfusion of 3.5 mM anatoxin-a increased the extracellular dopamine levels to 701% relative to the basal. When CNQX was administered with 3.5 mM anatoxin-a, the increase of dopamine levels was 29% smaller than that observed with anatoxin-a alone. When MK-801 and APV were administered, the effect of anatoxin-a was attenuated 26% and 25% respectively in terms of that observed with anatoxin-a alone. And with CNQX plus MK-801, the effect of anatoxin-a was 53% inhibited in terms of the effect of anatoxin-a alone. These results suggest that the striatal dopamine release induced by anatoxin-a is partly mediated by activation of both ionotropic glutamatergic receptors. Since the neuronal form of nitric oxide synthase (nNOS) produces nitric oxide (NO) primarily in response to activation of NMDA receptors, it was tested if NO could play any role in the effect of anatoxin-a. Treatment with NOS inhibitors, L-nitro-arginine methyl ester (L-NAME) and d(-)-2-amino-5-phosphonopentanoic acid (7-NI), induced decreased anatoxin-a effects of 22% and 26% respectively. In conclusion, the present in vivo results demonstrate that anatoxin-a induced an indirect activation of ionotropic glutamatergic receptors (NMDA and AMPA/kainite receptors), which stimulate striatal dopamine release. On the other hand, activation of NMDA receptors may elicit NO increased levels enhancing dopamine release.  相似文献   

9.
Quisqualate is a potent neurotoxin in cortical cultures of the rat. Unlike N-methyl-D-aspartate (NMDA), the toxicity of quisqualate is due to overstimulation of a membrane receptor after the agonist has been removed. This receptor appears to be the 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor since 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) are potent antagonists when added to the post incubation media. NBQX and DNQX are ineffective when present only during quisqualate exposure, indicating the AMPA receptor is not involved in the initial event. Transfer of culture media 30 min after quisqualate exposure to either neuronal or non-neuronal cells was found to cause toxicity in previously untreated neuronal cells. This effect could not be reproduced with NMDA. The neurotoxic chain of events could be interrupted during quisqualate exposure by removal of sodium from the incubation media, suggesting the involvement of a sodium-dependent plasma membrane uptake mechanism. Quisqualate may be continually recycled by internalization and release, causing neurotoxicity by persistent stimulation of the AMPA receptor.  相似文献   

10.
Currently prescribed antidepressants affect the reuptake and/or metabolism of biogenic amines. Unfortunately for patients, these treatments require several weeks to produce significant symptom remission. However, recently it has been found that ketamine, a dissociative anesthetic agent that noncompetitively antagonizes NMDA (N-Methyl-d-aspartic acid) receptors, has rapid antidepressant effects at sub-anesthetic doses in clinically depressed patients. These findings indicate that modulation of the glutamatergic system could be an efficient way to achieve antidepressant activity. For this reason, other mechanisms influencing glutamatergic functioning have gained interest. For example, the metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 (N,N′-dibenzyhydryl-ethane-1,2-diamine dihydrochloride) has been shown to be effective in the forced swim and tail-suspension test, behavioral assays sensitive to antidepressants. Here we extend the characterization of AMN082 by demonstrating its effects on differential reinforcement of low rates of responding (DRL)-30, another assay sensitive to antidepressants. Furthermore, we show the engagement of glutamatergic signaling by demonstrating the ability of the selective AMPA (2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid) receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione) to reverse the effects of AMN082 in the tail suspension test. In contrast, NBQX failed to reverse the effects of imipramine in the same behavioral test. Finally, we report that behaviorally efficacious doses of AMN082 modulate phosphorylation of AMPA and NMDA receptor subunits in the hippocampus. These results suggest that the antidepressant-like effects of AMN082 are, at least in part, due to modulation of AMPA and NMDA receptor activity. Therefore, our findings confirm the hypothesis that mGluR7 could represent a novel target for treating depression.  相似文献   

11.
The neurobiological mechanism underlying the negative motivational component of withdrawal from acute opiate dependence is far from understood. Our objectives were to determine whether the glutamatergic system is involved in the motivational component of morphine withdrawal in acutely dependent rats and such an involvement is associated with dopaminergic neurotransmission. We examined the effects of various kinds of glutamate receptor antagonists on conditioned place aversion (CPA) induced by naloxone-precipitated withdrawal from a single morphine exposure 24 h before. Furthermore, the influence of pretreatment with the dopamine receptor antagonist haloperidol on those effects of glutamate receptor antagonists was also investigated. CPA was attenuated in a dose-dependent manner by all glutamate receptor antagonists examined including the NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-imine maleate (MK-801) and phencyclidine hydrochloride (PCP), AMPA receptor antagonist 1-(4-aminophenyl)4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466), and metabotropic receptor antagonists (+/-)-2-amino-3-phosphonopropionic acid (AP-3) and (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG). The effects of MK-801, GYKI 52466 and MCPG were blocked by haloperidol.These results suggest that the glutamatergic system involving multiple classes of receptors plays a role in the motivational component of withdrawal from acute morphine dependence, and the function of the glutamatergic system would be closely associated with dopaminergic neurotransmission.  相似文献   

12.
Riluzole, a glutamate release inhibitor, and motor behavior   总被引:1,自引:0,他引:1  
Riluzole (2-amino-6-trigluoromethoxy benzothiazole) has neuroprotective, anticonvulsant, anxiolytic and anesthetic qualities. These effects are mediated by blockade of glutamate transmission, stabilizing of sodium channels and blockade of γ-aminobutyric acid (GABA) reuptake. The action profile of riluzole is dominated by its effects on glutamate transmission which are predominately mediated by N-methyl-D-aspartate (NMDA) receptor-linked processes in vitro. In vivo studies show that blockade and stimulation of the different NMDA receptor complex binding sites or AMPA receptors modulate motor behavior in a characteristic manner. It was therefore interesting to examine if blockade of glutamatergic transmission by riluzole induced similar behavioral effects as direct NMDA/AMPA receptor antagonists and if these effects are mediated by a specific receptor. The effects of riluzole alone and in combination with several other neuroactive compounds on the central nervous system was assessed by behavioral paradigms to evaluate sniffing behavior, locomotion, ataxia and rigidity. Accompanying compounds included the NMDA receptor agonist NMDA, the partial glycine site agonist D-cycloserine (DCS), and the α-amino-3-hydroxy-5-phenyl-4-isoxazolepropionic acid (AMPA) receptor antagonist GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzo-diazepine HCl]. Riluzole influenced neither stereotyped sniffing behavior nor locomotion but impaired motor coordination and attenuated rigidity induced by blockade of dopamine D1 and D2 receptor antagonists when given alone. At higher doses spontaneous behavioral activity decreased and motor coordination was more impaired. Augmentation of the riluzole effects were observed when NMDA, but not GYKI 52466, was coadministered. The glycine site agonist DCS increased the anticataleptic properties of riluzole. The results indicate that when given alone, riluzole has a behavioral profile resembling that of competitive NMDA receptor antagonists. However, coadministration of riluzole with NMDA/AMPA receptor ligands suggests that this assumption is incorrect, and that riluzole affects glutamatergic transmission by a more indirect mechanism. Nevertheless, the profile of riluzole together with its pre- and postsynaptic blockade of glutamatergic transmission implies beneficial properties in diseases where an overactive glutamate system induces chronic neurotoxicity and/or acute behavioral effects. Received: 15 December 1997 / Accepted: 12 May 1998  相似文献   

13.
We investigate the anticonvulsant and adverse effects of various dose combinations of the AMPA receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F) quinoxaline) and the low-affinity, rapidly channel blocking NMDA receptor antagonist memantine in the kindling model of epilepsy. While memantine was ineffective when given alone, co-administration with NBQX markedly potentiated the increase in focal seizure threshold induced by NBQX alone. This synergistic (i.e. over-additive) interaction was seen at doses of both drugs which did not induce behavioural adverse effects. The data substantiate that combinations of AMPA and NMDA receptor antagonists provide a new strategy for the treatment of epileptic seizures.  相似文献   

14.
On rat cortical slices, cyclothiazide, 1–100 μM, (ED50 = 7.1 ± 1.1 μM) enhanced the depolarizing action of α-amino-3-hydroxy-5-methylisoxazole-4-propionate, (AMPA) but not that of N-methyl-D-aspartate (NMDA). Cyclothiazide 10 μM also reversed the action of a 2,3-benzodiazepine, GYKI 53655, which is a non-competitive AMPA receptor antagonist, but not that of the quinoxalinedione, NBQX, which is a competitive AMPA receptor antagonist.  相似文献   

15.
The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at -70 and +40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between +50 and -50 mV. NMDA/AMPA ratio was 0.20±0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26±0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32±0.03. The rectification index (control 2.39±0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02±0.11 and 0.93±0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.  相似文献   

16.
Li CY  Shi HB  Song NY  Yin SK 《Toxicology》2011,284(1-3):19-25
Hyperbilirubinemia is one of the most common clinical phenomena observed in human newborns. To achieve effective therapeutic treatment, numerous studies have been done to determine the molecular mechanisms of bilirubin-induced neuronal excitotoxicity. However, there is no conclusive evidence for the involvement of glutamatergic synaptic transmission in bilirubin-induced neuronal hyperexcitation and excitotoxicity. In the present study, using gramicidin-perforated patch-clamp techniques, spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from lateral superior olive (LSO) neurons isolated from postnatal 11-14-day-old (P11-14) rats. The application of 3 μM bilirubin increased the frequency, but not the amplitude, of sEPSCs. The action of bilirubin was tetrodotoxin (TTX)-insensitive, as bilirubin also increased the frequency, but not the amplitude, of mEPSCs. The amplitudes of GABA-activated (I(GABA)) and glutamate-activated (I(glu)) currents were not affected by bilirubin. Under current-clamp conditions, no spontaneous action potentials were observed in control solution. However, the application of 3 μM bilirubin for 4-6 min evoked a considerable rate of action-potential firing. The evoked firing was partially occluded by D,L-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, but completely inhibited by a combination of APV and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), an AMPA receptor antagonist. These results indicate that bilirubin facilitates presynaptic glutamate release, enhances glutamatergic synaptic transmission by activating postsynaptic AMPA and NMDA receptors, and leads to neuronal hyperexcitation. This study provides a better understanding of the mechanism of bilirubin-induced excitotoxicity and determines for the first time that both AMPA and NMDA receptors are likely involved in the excitotoxicity produced by bilirubin.  相似文献   

17.
The analgesic interaction between intrathecally administered morphine and the NMDA receptor antagonist, ((+/-)-2-amino-5-phosphonopentanoic acid; AP-5), the NMDA receptor glycine site antagonist, (5-nitro-6,7-dichloro-2,3-quinoxaline dion; ACEA 1021), or the AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor antagonist (ACEA 2752) in the formalin test was investigated with a rat model of chronic lumbar intrathecal catheterization. After obtaining dose-response curves for each agent, combinations of morphine and AP-5, ACEA 1021 or ACEA 2752 were tested for their effect on the number of flinches in the formalin test and for associated side-effects, such as motor disturbances, flaccidity, and agitation/allodynia. Using isobolographic analyses, a potent analgesic synergy was observed with decreased side-effects between morphine and ACEA 2752 or AP-5. ACEA 1021 increased the analgesic effect of low-dose morphine. Spinal mu-opioid receptor activation and NMDA or AMPA receptor antagonism showed a synergistic antinociception against tonic pain. These results suggest an important direction in the management of inflammatory pain.  相似文献   

18.
In the dtsz mutant hamster, a model of paroxysmal dyskinesia in which dystonic episodes occur in response to stress, previous studies suggested that retarded development of gamma-aminobutyric acid (GABA)ergic inhibition plays a critical role in the pathogenesis. In the present study, we therefore examined the effects of selective GABA uptake inhibitors on severity of dystonia in dtsz hamsters. R(-)N-(4,4-di(3-methylthien-2-yl)-but-3-enyl) nipecotic acid hydrochloride (tiagabine, 5-20 mg/kg i.p.) and 1-[2-[[(diphenylmethylene) imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride (NNC-711, 1-10 mg/kg i.p.) significantly reduced the severity of dystonia. These data suggest that GABA uptake inhibitors may provide novel therapeutic approaches for paroxysmal dyskinesias.  相似文献   

19.
Cholecystokinin (CCK) elicits a sympathetic vasomotor reflex that is implicated in gastrointestinal circulatory control. We sought to determine (1) the site in the solitary tract nucleus (NTS) responsible for mediating this reflex and (2) the possible involvement of excitatory amino acid (EAA) receptors. In addition, we sought to determine whether the NTS site responsible for mediating the baroreflex (phenylephrine, PE, 10 μg/kg i.v.) and the von Bezold–Jarisch reflex (phenylbiguanide, PBG, 10 μg/kg i.v) overlap with that involved in the CCK-induced reflex (CCK, 4 μg/kg, i.v.), and to compare the relative importance of NMDA and non-NDMA receptors in these reflexes. In separate experiments, the effects of PE, PBG, and CCK on mean arterial blood pressure, heart rate, and splanchnic sympathetic nerve discharge were tested before and after bilateral microinjection into the NTS of the γ-aminobutyric acidA (GABAA) agonist muscimol, the EAA antagonist kynurenate, the NMDA receptor antagonist d(−)-2-amino-5-phosphopentanoic acid (AP-5), the non-NMDA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), AP-5 + NBQX, or vehicle. While all treatments (except vehicle) significantly attenuated/abolished/reversed the splanchnic sympathoinhibitory responses to PE, PBG, and CCK, the extent of blockade varied between the different treatment groups. Both NMDA and non-NMDA receptors were essential to the baroreflex and the von Bezold–Jarisch reflex, whereas the CCK reflex was more dependent on non-NMDA receptors. Muscimol, kynurenate, and AP-5 + NBQX significantly attenuated the bradycardic responses to PE and PBG (P < 0.05), whereas AP-5, NBQX, or vehicle did not. The bradycardic responses to CCK remained intact after all treatments. These results suggest that while there is overlap in the area of the NTS responsible for eliciting all three reflexes, NMDA and non-NMDA receptors are recruited differentially for the full expression of these reflexes. The CCK-induced sympathoinhibitory reflex is unique in that it relies predominantly on non-NMDA receptors in the NTS and elicits bradycardic effects that are independent of the NTS.  相似文献   

20.
Previous studies have shown beneficial effects of the cannabinoid CB(1)/CB(2) receptor agonist (R)-4,5-dihydro-2-methyl-4-(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo [3,2,1-ij]quinolin-6-one mesylate (WIN 55,212-2) in dt(sz) mutant hamsters, a model of idiopathic paroxysmal dystonia (dyskinesia). To examine the pathophysiological significance of the cannabinergic system in the dystonic syndrome, the effect of the cannabinoid CB(1) receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716A) on severity of dystonia was investigated in dt(sz) mutants which exhibit episodes of dystonic and choreoathetotic disturbances in response to mild stress. SR 141716A (5 and 10 mg/kg i.p.) failed to exert any effects on the severity of dystonia. While the antidystonic efficacy of WIN 55,212-2 (5 mg/kg i.p.) was confirmed, cannabidiol (which has low affinity to cannabinoid receptors) tended to delay the progression of dystonia only at a high dose (150 mg/kg i.p.). The antidystonic and cataleptic effects of WIN 55,212-2 (5 mg/kg i.p.) were completely antagonized by pretreatment with SR 141716A at doses of 2.5 mg/kg (catalepsy) and 10 mg/kg (antidystonic efficacy). These data indicate that the antidystonic efficacy of WIN 55,212-2 is selectively mediated via CB(1) receptors. The lack of prodystonic effects of SR 141716A together with only moderate antidystonic effects of WIN 55,212-2 suggests that reduced activation of cannabinoid CB(1) receptors by endocannabinoids is not critically involved in the dystonic syndrome. In view of previous pathophysiological findings in mutant hamsters, the antidystonic efficacy of WIN 55,212-2 can be explained by modulation of different neurotransmitter systems within the basal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号