首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to assess the antinociceptive and antiallodynic effect of pyritinol as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral acute administration of pyritinol (50-200 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. Moreover, prolonged administration of pyritinol (12.5-50 mg/kg, every 2 days for 2 weeks) reduced formalin-induced nociception. 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, a guanylyl cyclase inhibitor, 2 mg/kg, i.p.), but not naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) or indomethacin (a non-selective cycloxygenase inhibitor, 5 mg/kg, i.p.), blocked the pyritinol-induced antinociception in diabetic rats. Given alone ODQ, naltrexone or indomethacin did not modify formalin-induced nociception in diabetic rats. Oral acute (200 mg/kg) or prolonged (25 mg/kg, every 2 days for 2 weeks) administration of pyritinol significantly reduced streptozotocin-induced changes in free carbonyls, dityrosine, malondialdehyde and advanced oxidative protein products. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of pyritinol (50-200 mg/kg) reduced tactile allodynia in diabetic rats. Results indicate that pyritinol is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that activation of guanylyl cyclase and the scavenger properties of pyritinol, but not improvement in glucose levels, play an important role in these effects.  相似文献   

2.
Benfotiamine relieves inflammatory and neuropathic pain in rats   总被引:3,自引:0,他引:3  
Benfotiamine has shown therapeutic efficacy in the treatment of painful diabetic neuropathy in human beings. However, so far there is no evidence about the efficacy of this drug in preclinical models of pain. The purpose of this study was to assess the possible antinociceptive and antiallodynic effect of benfotiamine in inflammatory and neuropathic pain models in the rat. Inflammatory pain was induced by injection of formalin in non-diabetic and diabetic (2 weeks) rats. Reduction of flinching behavior was considered as antinociception. Neuropathic pain was induced by either ligation of left L5/L6 spinal nerves or administration of streptozotocin (50 mg/kg, i.p.) in Wistar rats. Benfotiamine significantly reduced inflammatory (10-300 mg/kg) and neuropathic (75-300 mg/kg) nociception in non-diabetic and diabetic rats. Results indicate that oral administration of benfotiamine is able to reduce tactile allodynia from different origin in the rat and they suggest the use of this drug to reduce inflammatory and neuropathic pain in humans.  相似文献   

3.
The purpose of this study was to assess the effect of the non-selective cholecystokinin receptor antagonist proglumide on the antinociceptive activity of ketorolac and meloxicam in non-diabetic and diabetic rats. Streptozotocin (60 mg/kg) injection caused hyperglycemia which was maintained for 2 weeks. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Local peripheral ipsilateral, but not contralateral, administration of ketorolac and meloxicam produced antinociception in non-diabetic and diabetic rats. However, the antinociceptive effect of both drugs was significantly reduced in diabetic animals. Proglumide was ineffective by itself and it did not affect the antinociception induced by the cyclooxygenase inhibitors in non-diabetic rats. Contrariwise, proglumide reduced formalin-induced nociception and it increased ketorolac- or meloxicam-induced antinociception in diabetic rats. These results suggest that peripheral cholecystokinin plays an important role in diabetes-induced sensitization as well as in the reduction of the antinociceptive effects of ketorolac and meloxicam in diabetic rats. The combination of cholecystokinin receptor antagonists and ketorolac or meloxicam may be a useful strategy to reduce nociception in diabetic patients.  相似文献   

4.
Acetaminophen (APAP) produces antinociception and hypothermia. Because the antinociceptive effect in rats is partially dependent on opioid and cannabinoid CB1 receptor activation, we determined if activation of these receptors also contributes to the hypothermic effect of APAP. Rats injected with APAP (100, 250, 375 or 500 mg/kg, i.p.) displayed dose-related hypothermia. For combined administration, the hypothermic effect of APAP (400 mg/kg, i.p.) was not altered by pretreatment with: naltrexone (10 mg/kg, s.c.), a non-selective opioid antagonist; naltrindole (1 mg/kg, s.c.), a delta opioid antagonist; nor-binaltorphimine (10 mg/kg, i.p.), a kappa opioid antagonist; SR 141716A (3 mg/kg, i.m.), a cannabinoid CB1 receptor antagonist; or JTC-801(1 mg/kg, i.p.), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist. The demonstration that APAP produces hypothermia independent of opioid, cannabinoid CB1 or NOP receptor activation is contrary to its antinociceptive effect, which requires opioid and cannabinoid CB1 receptor activation.  相似文献   

5.
1. RB 101, a complete inhibitor of enkephalin-catabolizing enzymes, has been previously shown to produce antinociception in normal rats after systemic administration. Moreover, its coadministration with a cholecystokinin-B (CCK-B) receptor antagonist has been shown to strongly enhance its antinociceptive effect in normal rats. In this work, we determined whether RB 101 was able to reduce hyperalgesia and allodynia in diabetic rats, a model of neuropathic pain. The type of opioid receptors (mu or delta) involved was determined using naloxone and naltrindole, respectively, and the interactions between endogenous enkephalins and CCK on nociception control was investigated using coadministration of RB 101 and the CCK-B receptor antagonist CI-988. 2. RB 101 suppressed mechanical hyperalgesia (paw pressure-induced vocalization test), partially alleviated mechanical allodynia (von Frey hair test), and was ineffective in thermal allodynia (tail immersion test). The analgesic effect was completely cancelled by naloxone or naltrindole, suggesting that is requires the availability of mu- and/or delta-opioid receptors. 3. The combination of an inactive dose of CI-988 with the lowest effective dose of RB 101 resulted in a stronger increase in the vocalization threshold comparatively to RB 101 alone. 4. The present study demonstrates that the antinociception generated by RB 101 induced by elevation of extracellular levels of endogenous enkephalins, can be extended to neuropathic pain in diabetic rats and that blockade of CCK-B receptors potentiated antinociceptive effects elicited by RB 101.  相似文献   

6.
The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ.  相似文献   

7.
Preclinical Research
Treatment of neuropathic pain is an area of largely unmet medical need. Pregabalin and gabapentin are anticonvulsants widely used for the treatment of neuropathic pain. Unfortunately, these drugs are only effective in 50–60% of the treated patients. In addition, both drugs have substantial side effects. Several studies have reported that ultralow doses of opioid receptor antagonists can induce analgesia and enhance the analgesic effect of opioids in rodents and humans. The objective of the present study was to assess the antiallodynic synergistic interaction between gabapentinoids and naltrexone in rats. Oral administration of pregabalin (ED50 = 2.79 ± 0.16 mg/kg) or gabapentin (ED50 = 21.04 ± 2.87 mg/kg) as well as intrathecal naltrexone (ED50 = 0.11 ± 0.02 ng) reduced in a dose‐dependent manner tactile allodynia in rats. Maximal antiallodynic effects (∼100%) were reached with 30 mg/kg of pregabalin, 300 mg/kg of gabapentin or 0.5 ng of naltrexone. Co‐administration of pregabalin or gabapentin and naltrexone in a fixed‐dose ratio (1:1) remarkably reduced spinal nerve ligation‐induced tactile allodynia showing a synergistic interaction. The data indicate that combinations of pregabalin or gabapentin and ultra‐low doses of naltrexone are able to reduce tactile allodynia in neuropathic rats with lower doses that those used when drugs are given individually and with an improved side effects profile. Drug Dev Res 78 : 371‐380, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Ceftriaxone (CFX) is a β-lactam antibiotic with analgesic properties. However, its role in the formalin-induced nociception remains unknown. The purpose of this study was to investigate the antinociceptive effect of CFX in the 1% formalin test in rats. Formalin induced a typical nociceptive response (flinching behavior) of two phases. Local peripheral pretreatment (20 min) with CFX (400–800 μg/paw) slightly attenuated the flinching behavior in phase 2, but not phase 1. Acute intraperitoneal pretreatment (20 min) also reduced phase 2 of the formalin test. In both cases, CFX induced a dose-dependent antinociception. We also tested the effect of CFX 1 day after its administration and in two schedules of repeated administration. One-day pretreatment with CFX (50–400 mg/kg, ip) induced a dose-dependent antinociceptive effect in formalin-treated rats. Repeated administration (daily during 3 or 7 days) with CFX (50–400 mg/kg, ip) diminished formalin-induced nociception. Results suggest that local or systemic as well as single or repeated administration of CFX reduces formalin-induced nociception.  相似文献   

9.
In the present study, the effect of chromaffin cell transplant in the spinal cord was evaluated on formalin-induced mechanical secondary allodynia in the rat. Chromaffin cells were transplanted into the lumbar subarachnoid space before or after formalin injection. Subcutaneous formalin injection (50 μl, 1%) produced long-lasting secondary allodynia in the ipsilateral and contralateral hind paws. Once secondary allodynia was established, treatment with chromaffin cells produced a significant reduction in the nociceptive behavior in both hind paws. The antiallodynic effect was time-dependent since it was observed 15 days after chromaffin cell transplants but not before. On the other hand, pre-treatment with chromaffin cells prevented the expression of secondary allodynia in both hind paws in the rat. Antiallodynic effect of chromaffin cells was reverted with the non-selective opioid receptor antagonist naltrexone and the non-selective α(2)-adrenoceptor antagonist rauwolscine. Clusters of viable chromaffin cells labeled with anti-tyrosine hydroxylase antibodies were observed in the retrieved transplants 15 days after transplant. These results establish the analgesic efficacy of intrathecal chromaffin cells on formalin-induced secondary allodynia. Our data suggest that chromaffin cells release neuroactive substances including opioid peptides and adrenergic amines that reduce secondary allodynia in rats through activation of their receptors.  相似文献   

10.
The present study was conducted to characterize the development of tactile allodynia in the streptozotocin-induced rat model of diabetes, and to evaluate the antinociceptive effects of systemically administered morphine and the adenosine kinase inhibitor, 5′-deoxy-5-iodotubercidin (5′d-5IT) in this model. Rats were injected with 75 mg/kg streptozotocin (i.p.), and blood glucose levels were determined 3–4 weeks later. Diabetic (blood glucose levels≥250 mg/dl) and vehicle-injected rats were examined weekly for the development of tactile allodynia by measuring the threshold for hind paw withdrawal using von Frey hairs. Withdrawal thresholds were reduced to 6.8±0.6 g (mean±S.E.M.) in approximately one-third of streptozotocin-treated rats 7 weeks after streptozotocin treatment as compared to control thresholds (13.2±0.1 g), and this allodynia persisted for at least an additional 7 weeks. In additional experiments, morphine sulfate (5–21 μmol/kg, i.p.) produced dose-dependent antinociceptive effects on tactile allodynia for up to 2 h post-dosing. The adenosine kinase inhibitor, 5′d-5IT (2.5 and 5 μmol/kg, i.p.) also dose-dependently attenuated tactile allodynia. Pretreatment with the opioid receptor antagonist, naloxone (27 μmol/kg, i.p.) or the non-selective adenosine receptor antagonist, theophylline (111 μmol/kg, i.p.) significantly diminished the anti-allodynic effects of morphine and 5′d-5IT, respectively. The present study demonstrates that the potent and selective adenosine kinase inhibitor, 5′d-5IT, is equally effective as morphine in blocking tactile allodynia in this model.  相似文献   

11.
The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or beta-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1-2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, beta-funaltrexamine (20 mg/kg, s.c.), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam.  相似文献   

12.
The spinal antinociceptive potency of the delta-opioid receptor agonist, Tyr-D-Ser(otbu)-Gly-Phe-Leu-Thr (DSTBULET), was studied in rats. The tail flick test was used as nociceptive stimulus and the rotarod test was used to detect any motor or sedative effects. A dose-response curve was also made for the mu-opioid receptor agonist, morphine. The ED50 for DSTBULET was 0.3 micrograms (0.4 nmol) and a near 100% maximum effect was achieved with 5 micrograms (7.5 nmol). No motor or sedative effects were detected. Antinociception by DSTBULET was antagonized by s.c. naltrindole (1 mg/kg), a selective delta-opioid receptor antagonist, and naloxone (1 mg/kg), a non-selective opioid receptor antagonist. The ED50 for morphine was 0.5 micrograms (1.0 nmol) and the antinociceptive effects were not antagonized by naltrindole (1 mg/kg). The results evidence further the important role of the delta-opioid receptor in spinal nociceptive processing.  相似文献   

13.
Loperamide (0.1-3.2mg/kg i.p.) produced dose-dependent and complete suppression of writhing in the acetic acid-induced writhing assay in mice. Naltrexone (NTX; 0.1-10.0mg/kg s.c.) and its N-methylated derivative quaternary naltrexone (QNTX; 1.0 and 10.0mg/kg s.c.) were roughly equipotent in antagonizing the antinociceptive effects of loperamide. In contrast, NTX was approximately 100-fold more potent than QNTX in antagonizing the antinociceptive effects of the classical mu agonist morphine. Furthermore, the antinociceptive effects of loperamide were not antagonized by central administration of the selective mu antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP; 300ng i.c.v.), or by systemic administration of either the kappa selective antagonist nor-binaltorphimine (nor-BNI; 32.0mg/kg s.c.), or the delta antagonist naltrindole (NTI; 10.0mg/kg s.c.). These doses of CTAP, nor-BNI and NTI were effective antagonists of morphine, the kappa agonist U69,593 and the delta agonist BW 373U86 [(+/-)-4-((R*)-a-((2S*5R*)-4-allyl-2,5-dimethyl-1- piperazinal)-3-hydroxybenzyl)-N, N-diethylbenzamide dihydrochloride], respectively. These results indicate that the antinociceptive effects of loperamide in mice are mediated, at least in part, by opioid receptors; however, these receptors are distinct from the opioid receptors mediating the effects of morphine, U69,593 and BW 373U86. These results are consistent with the hypothesis that loperamide produces its antinociceptive effects by acting, at least in part, at peripheral opioid receptors.  相似文献   

14.
Antinociception achieved after peripheral administration of opioids has opened a new approach to the treatment of severe and chronic pain. Additionally, opioid analgesics with restricted access to the central nervous system could improve safety of opioid drugs used in clinical practice. In the present study, peripheral components of antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone were investigated after local intraplantar (i.pl.) administration in rat models of inflammatory and neuropathic pain. Their antinociceptive activities were compared with those of morphine, the classical mu-opioid receptor agonist. Intraplantar administration of morphine and the 6-amino acid derivatives produced dose-dependent reduction of formalin-induced flinching of the inflamed paw, without significant effect on the paw edema. Local i.pl. administration of the new derivatives in rats with neuropathic pain induced by sciatic nerve ligation produced antiallodynic and antihyperalgesic effects; however, the antinociceptive activity was lower than that observed in inflammatory pain. In both models, the 6-amino acid derivatives and morphine at doses that produced analgesia after i.pl. administration were systemically (s.c.) much less active indicating that the antinociceptive action is due to a local effect. Moreover, the local opioid antinociceptive effects were significantly attenuated by naloxone methiodide, a peripherally acting opioid receptor antagonist, demonstrating that the effect was mediated by peripheral opioid receptors. The present data indicate that the peripherally restricted 6-amino acid conjugates of 14-O-methyloxymorphone elicit antinociception after local administration, being more potent in inflammatory than in neuropathic pain. Opioid drugs with peripheral site of action can be an important target for the treatment of long lasting pain.  相似文献   

15.
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (相似文献   

16.
Many natural terpenoid compounds from plants exhibit antinociceptive property but very few studies have addressed their efficacy in visceral models of nociception. The present study evaluated the antinociceptive potential of oleanolic acid, a pentacyclic triterpene in the mouse model of colonic nociception induced by mustard oil. We further examined the possible participation of opioid, alpha2-adrenergic, and transient receptor potential vanilloid 1 (TRPV1)-receptors in its mechanism. Mice were pretreated orally with oleanolic acid (3, 10, 30 mg/kg) or vehicle, and the pain-related behavioral responses to intracolonic injection of mustard oil was analysed. Oleanolic acid significantly suppressed the mustard oil-induced nociceptive behaviors at test doses of 10 and 30 mg/kg, in a dose-related manner. The antinociceptive effect of oleanolic acid (30 mg/kg) was significantly blocked by pretreatment with the opioid antagonist, naloxone (2 mg/kg, i.p.), while the alpha2-adrenoceptor antagonist, yohimbine (2 mg/kg, s.c.), had no effect. Pretreatment with ruthenium red (3 mg/kg, s.c.), a non-competitive TRPV1 antagonist alone caused significant inhibition of mustard oil-induced nociception but its co-administration with oleanolic acid produced neither antagonism nor potentiation of oleanolic acid antinociception. In the open-field test that detects sedative or motor abnormality, mice received 30 mg/kg oleanolic acid did not show any per se influence, but significantly inhibited the mustard oil-induced decrease in ambulation frequency. These data demonstrate the visceral antinociceptive potential of oleanolic acid that involves an opioid mechanism and possibly a modulatory influence on vanilloid-receptors, which needs further study.  相似文献   

17.
Tramadol is an atypical analgesic with a unique dual mechanism of action. It acts on monoamine transporters to inhibit reuptake of noradrenaline (NA) and serotonin (5-HT), and consequent upon metabolism, displays potent agonist activity at micro-opioid receptors. Here, we present data for the novel compound NS7051, which was shown to have sub-micromolar affinity (Ki=0.034microM) for micro-opioid receptors and inhibited reuptake of 5-HT, NA and DA (IC(50)=4.2, 3.3 and 3.5microM in cortex, hippocampus and striatum respectively). NS7051 (1-30mg/kg, s.c.) produced a dose-dependent naloxone-reversible increase in the hot plate withdrawal latency, and was also analgesic in the tail flick test. In models of persistent and chronic inflammatory nociception, NS7051 reversed flinching behaviours during interphase and second phase of the formalin test (ED(50)=1.7 and 1.8mg/kg, s.c.), and hindpaw weight-bearing deficits induced by complete Freund's adjuvant injection (ED50=1.2mg/kg, s.c.). In the chronic constriction injury model of neuropathic pain, mechanical allodynia and hyperalgesia were both reversed by NS7051 (ED50=6.7 and 4.9mg/kg, s.c.). Tramadol was also active in all pain models although at considerably higher doses (20-160mg/kg, s.c.). No ataxia was observed at antiallodynic doses giving therapeutic indices of 19 and 3 for NS7051 and tramadol. The combined opioid receptor agonism and monoamine reuptake inhibitory properties of NS7051 inferred from behavioural studies appear to contribute to its well tolerated antinociceptive profile in rats. However, unlike tramadol this did not correlate with the ability to increase hippocampal monoamine levels measured by microdialysis in anesthetised rats.  相似文献   

18.
Preclinical Research
The aim of the present study was to analyze the antihyperalgesic and antiallodynic interaction between the non‐selective cholecystokinin (CCK) antagonist receptor, proglumide, and the selective cyclooxygenase‐2 inhibitor, celecoxib in streptozotocin (STZ)‐induced diabetic rats. Hyperalgesia was evaluated in the formalin test and tactile allodynia using von Frey filaments. Isobolographic analyses were employed to define the nature of the compound interactions, using a fixed dose ratio (0.5:0.5). Proglumide (20–160 mg/kg) and celecoxib (0.3–30 mg/kg) in these fixed dose ratio combinations induced dose‐dependent antihyperalgesia and an antiallodynic effect in diabetic rats. ED40 values were calculated for the treatments and an isobologram was constructed. Theoretical ED40 values for combination proglumide–celecoxib estimated from the isobolograms for antihyperalgesic and antiallodynic activity (30.50 ± 1.90 mg/kg and 45.81 ± 4.55 mg/kg, respectively) were obtained, while experimental ED40 values for this antihyperalgesic and antiallodynic combined effect (13.83 ± 0.65 mg/kg and 17.74 ± 3.57 mg/kg; respectively) were significantly different. Coadministration of proglumide–celecoxib showed an interaction index value of 0.45 ± 0.03 for the antihyperalgesic effect and 0.39 ± 0.08 for the antiallodynic activity, indicating a synergistic interaction. These data suggest that proglumide and celecoxib can interact synergistically to reduce hyperalgesic and allodynic behaviors in diabetic neuropathy. This combination could be useful to treat neuropathic pain in diabetic patients. Drug Dev Res 78 : 116–123, 2017. ©2017 Wiley Periodicals, Inc.  相似文献   

19.
This study aimed to investigate the effect of sulfated polysaccharide from red seaweed Solieria filiformis (Fraction F II) in the inflammatory hypernociception in the temporomandibular joint (TMJ) of rats. Male Wistar rats were pretreated (30 min) with a subcutaneous injection (s.c.) of vehicle or FII (0.03, 0.3 or 3.0 mg/kg) followed by intra-TMJ injection of 1.5% Formalin or 5-hydroxytryptamine (5-HT, 225 μg/TMJ). In other set of experiments rats were pretreated (15 min) with an intrathecal injection of the non-selective opioid receptors Naloxone, or μ-opioid receptor antagonist CTOP, or δ-opioid receptor Naltridole hydrochloride, or κ-opioid receptor antagonist Nor-Binaltorphimine (Nor-BNI) followed by injection of FII (s.c.). After 30 min, the animals were treated with an intra-TMJ injection of 1.5% formalin. After TMJ treatment, behavioral nociception response was evaluated for a 45-min observation period, animals were terminally anesthetized and periarticular tissue, trigeminal ganglion and subnucleus caudalis (SC) were collected plasma extravasation and ELISA analysis. Pretreatment with F II significantly reduced formalin- and serotonin-induced TMJ nociception, inhibit the plasma extravasation and inflammatory cytokines release induced by 1.5% formalin in the TMJ. Pretreatment with intrathecal injection of Naloxone, CTOP, Naltridole or Nor-BNI blocked the antinociceptive effect of F II in the 1.5% formalin-induced TMJ nociception. In addition, F II was able to significantly increase the β-endorphin release in the subnucleus caudalis. The results suggest that F II has a potential antinociceptive and anti-inflammatory effect in the TMJ mediated by activation of opioid receptors in the subnucleus caudalis and inhibition of the release of inflammatory mediators in the periarticular tissue.  相似文献   

20.
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the management of acute and chronic pain. The role of the opioid system in the synergism between NSAIDs is not well characterized. Mice were injected with a 5% formalin solution (20 μl) into the upper right lip to perform an orofacial formalin test. The isobolographic method was used to determine the interaction between dexketoprofen, which is the (S)-(+) enantiomer of ketoprofen, and meloxicam co-administration. Additionally, the non-selective, opioid antagonist naltrexone, the selective δ opioid receptor (DOP) antagonist naltrindole and the selective κ opioid receptor (KOP) antagonist norbinaltorphimine were used to assess the opioid effects on this interaction. Intraperitoneal administration of dexketoprofen or meloxicam induced dose-dependent antinociception with different phase I and phase II potencies in the orofacial formalin test. Meloxicam displayed similar potencies (ED(50)) in phase I (7.20 mg/kg) and phase II (8.60 mg/kg). Dexketoprofen was more potent in phase I (19.96 mg/kg) than in phase II (50.90 mg/kg). The interactions between dexketoprofen and meloxicam were synergistic in both phases. This was determined based on the fixed ratios (1:1) of their ED(50) values, which were determined by isobolographic analysis. Furthermore, this antinociceptive activity does not seem to be modulated by opioid receptor blockers because they did not induce changes in the nature of this interaction. This finding may be relevant with regards to NSAID multi-modal analgesia where an opioid antagonist must be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号