首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Acetaldehyde has been proposed as one of the mediators of liver injury in alcoholic liver disease. We investigated whether increased acetaldehyde levels affected the development of alcoholic liver injury. Male Wistar rats were fed a liquid diet containing fish oil and ethanol by intragastric infusion. Sustained elevations of acetaldehyde were achieved by daily treatment with two inhibitors of aldehyde dehydrogenase (ALDH): disulfiram and benzcoprine. Pathologic changes, plasma and liver acetaldehyde, nuclear factor-kappa B (NF-kappaB) and I kappa B alpha (I kappaB alpha) protein, tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase 2 (COX-2) mRNA were evaluated. Treatment with the ALDH inhibitors led to increased acetaldehyde in liver and plasma but prevented necrosis and inflammation. Steatosis was not affected. Both inhibitors decreased activation of NF-kappaB and down-regulated TNF-alpha and COX-2 expression. Decreased activation of NF-kappaB was accompanied by I kappaB alpha preservation. Acetaldehyde probably inhibits NF-kappaB activation through I kappaB alpha preservation. Down-regulation of TNF-alpha and COX-2 occur secondary to inhibition of NF-kappaB and account for the absence of necrosis and inflammation in the ALDH inhibitor-treated groups.  相似文献   

3.
Objective and design  Azithromycin (AZM) has been used as an anti-inflammatory agent in the treatment of cystic fibrosis (CF), particularly those with chronic infection with P. aeruginosa (PA). To investigate mechanisms associated with the beneficial effects of AZM in CF, we examined bacterial load, cytokine levels, and clearance of inflammatory cells in CF mice infected with mucoid PA and treated with AZM. Methods  Gut-corrected Cftr tm1Unc -TgN(FABPCFTR)#Jaw CF mice infected with an alginate-overproducing PA CF-isolate were treated with AZM or saline and examined for survival of animals, lung bacterial load, inflammation, cytokine levels, and apoptotic cells up to 5 days post-infection. Results  Administration of AZM (20 mg/kg) 24 h after the infection improved 5-day survival to 95% compared with treatment with saline (56%). AZM administration was associated with significant reductions in bacterial load, decreased lung inflammation, and increased levels of IFN-γ. AZM increased macrophage clearance of apoptotic neutrophils from the lung. Conclusion  Azithromycin enhances bacterial clearance and reduces lung inflammation by improving innate immune defense mechanisms in CF mice.  相似文献   

4.
5.
It is not known whether the progressive airway changes in cystic fibrosis (CF) are all secondary to infection and inflammation. The CF mouse nose shares electrophysiologic and cellular properties with human CF airway epithelium. In the present work, we tested the hypothesis that structural abnormalities in the nasal mucosa of CF mice develop independent of infection and inflammation. We performed nasal lavage and subsequent serial coronal section through the nasal tissue of adult CF (mutations Cftr(TgHm1G551D) and Cftr(tm1Unc)-TgN((FABPCFTR))) and wild-type mice raised under normal housing conditions. Nasal tissue was also obtained from Day 17 embryos and newborn pups. Detailed histologic examination of the respiratory and olfactory epithelium within the nasal cavity was performed. Bacterial culture, cell count, and macrophage inflammatory protein-2 (MIP-2) concentration were assessed in nasal lavage fluid. Significantly thickened respiratory epithelium and increased mucous cell density was found in adult CF mice of both mutations compared with wild-type animals. In contrast, the olfactory epithelium was thinner, with a decreased cell density. Areas of lymphoid aggregates were found in CF mice but not in non-CF mice. There were no differences in bacterial growth, cell count, or MIP-2 concentrations. No genotype differences were observed in the embryonic or newborn periods. There are significant histologic changes in the nasal mucosa of adult CF mice, not associated with increased lumenal inflammation or bacterial content, and which are not present perinatally. These may be novel therapeutic targets.  相似文献   

6.
Nitric oxide (NO) is produced from three isoforms of nitric oxide synthase (NOS), neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). Cystic fibrosis (CF) patients have an increased bacterial load in the airways which stimulates iNOS and therefore NO production. Upregulation of iNOS in normal epithelial cells protects the lung from damage, but in CF cells, iNOS is not upregulated and NO production is reduced. Reduced iNOS expression is associated with neutrophil sequestration in the lung, thus increasing the potential damage from neutrophil proteases and reactive oxygen species. In contrast, high concentrations of NO may augment the inflammatory process in acute lung injury from sepsis. Meng et al. have shown that cystic fibrosis epithelial cells, when stimulated by a cytokine mix and co-cultured with activated neutrophils, have reduced iNOS expression compared to normal epithelial cells. Although iNOS expression may not accurately reflect activity and NO production may arise from elsewhere, this study suggests that reduced iNOS expression may play a part in the pathophysiological processes in cystic fibrosis.  相似文献   

7.
8.
Inflammation and oxidative stress have been shown to play a critical role in the pathophysiology that leads to neurodegeneration. Omega-6 phospholipids, e.g. dilinoleoylphosphatidylcholine (DLPC), have been shown to have anti-inflammatory properties and therefore experiments were undertaken to determine whether DLPC can prevent inflammatory neurodegenerative events in the model neuronal cell line, SH-SY5Y. Tumor necrosis factor (TNF-α) and H2O2 activate mitogen-activated protein kinase (MAPK) in SH-SY5Y cells within 5 min and this activation is completely blocked by DLPC (12 μM). DLPC blocks IκBα phosphorylation in the SH-SY5Y cells and prevents the phosphorylation and activation of nuclear factor-kappa B (NF-κB). The phospholipid inhibits induction of MAPK and NF-κB in similar fashion to the MEK1/2-inhibitor, U0126 (10 μM). DLPC completely abolishes TNF-α, H2O2 and lipopolysaccaride (LPS)-induced neuronal tau phosphorylation. Cellular amyloid precursor protein levels are reduced by DLPC and LPS-induced amyloid-β expression and secretion in SH-SY5Y cells are completely blocked by DLPC. Taken together, these data suggest that DLPC can act through MAPK to block neuronal inflammatory cascades and prevent potential pathological consequences in the neuronal metabolism of amyloid and tau proteins.  相似文献   

9.
Endogenous heparin-binding lectin purified from postmortem lung samples of two cystic fibrosis (CF) patients was compared to lectin derived from normal tissue with respect to structure, carbohydrate specificity, interaction with alginate derived from CF isolates of Pseudomonas aeruginosa, and secretion within the lung. Lectin was purified from extracts of lung tissue by gel filtration on Sepharose CL-2B followed by affinity chromatography on heparin-Sepharose. Lectin purified from either CF lung or control tissue ran as two peptides of approximately 16,000 and 13,000 molecular weight on electrophoresis in sodium dodecyl sulfate. The lectins displayed similar carbohydrate specificity and interacted in much the same way with bacterial alginate. An increase in lectin secretion was seen in CF lungs affecting the bronchial epithelial cells and the mucosal glands. The data suggest that the major changes seen in endogenous heparin-binding lectin in CF are related to the quantity and distribution of lectin secretion.  相似文献   

10.
11.
Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7-28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development.  相似文献   

12.
The IL-1 cytokine family comprises 11 members (7 ligands with agonist activity, 3 receptor antagonists and 1 anti-inflammatory cytokine) and is recognised as a key mediator of inflammation and fibrosis in multiple tissues including the lung. IL-1 targeted therapies have been successfully employed to treat a range of inflammatory conditions such as rheumatoid arthritis and gouty arthritis. This review will introduce the members of the IL-1 cytokine family, briefly discuss the cellular origins and cellular targets and provide an overview of the role of these molecules in inflammation and fibrosis in the lung.  相似文献   

13.
Chronic lung infection in cystic fibrosis is characteristically associated with polyagglutinable, serum-sensitive, mucoid strains of Pseudomonas aeruginosa. Enzyme-linked immunosorbent assay (ELISA) methods for standard-free quantitation of immunoglobulin G (IgG) and IgM antibodies to P. aeruginosa lipopolysaccharides (LPSs) have been developed. We now report the development of assays for quantitation of monomer and dimer total IgA and IgA anti-LPS antibodies. Use of these methods in diagnosis of early chronic P. aeruginosa lung infection was assessed. IgG and IgA anti-LPS levels increased significantly at the onset of chronic infection and continued to increase to very high levels in the later stages of infection. IgM anti-LPS levels also rose at the onset of chronic infection but did not increase further. The function of true- and false-positive rates was illustrated by using various concentrations of IgG, IgA, and IgM anti-LPS for discrimination of patients. Values that gave optimum separations were used for statistical evaluation of the diagnostic sensitivities and specificities of anti-LPS antibody concentrations. The results obtained in these assays were compared with a diagnosis, based on the number of precipitins in crossed immunoelectrophoresis, of serum samples from cystic fibrosis patients. In 64 paired serum samples taken before and immediately after the onset of chronic infection, as defined by crossed immunoelectrophoresis precipitins, the predictive values of a positive ELISA were 86% for IgG and 89% for IgA. The predictive values for a negative ELISA were 98% for IgG and 97% for IgA. Results of the IgM anti-LPS ELISA had a lower predictive value. Immunoblotting and absorption studies showed that IgG anti-LPS antibodies were directed specifically against LPS of P. aeuruginosa. ELISAs were developed to determine the specific IgG sublclasses involved. The increase in IgG anti-LPS involved all four subclasses. Highest anti-LPS titers were seen with IgG1 and IgG4, but the largest relative increases were seen with IgG2 and IgG3.  相似文献   

14.
Cystic fibrosis (CF) is characterized by prolonged and excessive inflammatory responses in the lung and increased activation of NF-kappaB. Parthenolide is a sesquiterpene lactone derived from the plant feverfew, which has been used in folk medicine for anti-inflammatory activity. Several studies suggest that this compound inhibits the NF-kappaB pathway, but the exact site is controversial. We hypothesized that parthenolide might ameliorate the excessive inflammatory response in CF models by inhibiting activation of NF-kappaB. This was tested in vitro, using two pairs of cell lines with defective versus normal CF transmembrane conductance regulator (CFTR) (antisense/sense transfected 16 HBE and IB-3/S9), and in vivo, using CFTR-knockout (KO) mice. All cell lines were pretreated with parthenolide and then stimulated with IL-1beta and/or TNF. Parthenolide significantly inhibited IL-8 secretion induced by these cytokines and prevented NF-kappaB activation, IkappaBalpha degradation, and IkappaB Kinase complex activity. CFTR-KO and wild-type mice were pretreated with parthenolide or vehicle alone then challenged intratracheally with LPS. Bronchoalveolar lavage was performed 3, 6, and 8 h later. Parthenolide pretreatment inhibited PMN influx as well as cytokine and chemokine production. This was also associated with inhibition of IkappaBalpha degradation and NF-kappaB activation. We thus conclude that parthenolide inhibits IkappaB kinase, resulting in stabilization of cytoplasmic IkappaBalpha, which in turn leads to inhibition of NF-kappaB translocation and attenuation of subsequent inflammatory responses. IkappaB kinase may be a good target, and parthenolide and/or feverfew might be promising treatments for the excessive inflammation in CF.  相似文献   

15.
Because mouse strains susceptible to bleomycin, such as C57BL/ 6J, tend to produce T helper type 1 (Th1) cytokines in response to immune activation, we hypothesized that the inflammatory response to bleomycin is mediated, in part, by local production of the Th1 cytokine interferon-gamma (IFN-gamma). Consistent with this hypothesis, fibrosis-prone C57BL/6J and A/J mice demonstrated significantly elevated expression of IFN-gamma protein (by enzyme-linked immunosorbent assay) in bronchoalveolar lavage fluid at 24 h, and subsequently increased lung inflammation, weight loss, and mortality 10 d after intratracheal bleomycin administration compared with fibrosis-resistant BALB/c mice or saline control mice. To directly determine a role for IFN-gamma in bleomycin toxicity, we exposed C57BL/6J mice with a homozygous null mutation of the IFN-gamma gene (IFN-gamma[-/-]) and wild-type C57BL/6J mice to intratracheal bleomycin. IFN-gamma(-/-) mice demonstrated significantly lower parenchymal inflammation, weight loss, and mortality 10 d after 5 U/kg intratracheal bleomycin administration compared with control mice. At 3 wk after 1.5 U/kg bleomycin exposure, single lung collagen determined by hydroxyproline assay was significantly lower in IFN-gamma(-/-) mice compared with wild-type C57BL/6J mice. Together, these results suggest that IFN-gamma mediates, in part, bleomycin-induced pulmonary inflammation and fibrosis.  相似文献   

16.
Epidemiological data on bacterial translocation (BT), colonization and inflammation in normal human livers is lacking. In this study we investigated the status of bacterial colonization and inflammation in the normal, cirrhotic primary biliary cirrhosis (PBC), and nonalcoholic steatohepatitis (NASH) human liver tissues. Comparatively normal livers showed increased bacterial colonization than PBC and NASH. We analyzed mRNA levels of Toll-like receptors (TLR) 2 and TLR4, and protein levels of TLR4. Phosphorylated IKKα (pIKKα) protein estimation served as a marker for nuclear factor-kappa B (NF-κB) activation. In spite of the increased bacterial colonization in normal liver tissues, lower levels of TLR2/4 mRNA and TLR4 and pIKKα proteins were found compared to PBC and NASH indicating the maintenance of suppressed inflammation and immune tolerance in normal livers. To our knowledge, this is the first clinical evidence showing suppressed inflammation despite bacterial colonization in normal human livers thus maintaining liver immune homeostasis.  相似文献   

17.
BACKGROUND: Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice raised in nonair-controlled conventional circumstances spontaneously develop atopic dermatitis-like skin lesions; however, the underlying mechanisms remain unclear. OBJECTIVE: We wanted to identify the critical intracellular signaling molecules in T cells that induce atopic dermatitis-like skin legions in NC/Nga mice. METHODS: We examined the levels of signal transduction and cytokine production in T cells, particularly those in atopic dermatitis-like lesions induced by the topical injection of mite antigens in NC/Nga mice under specific pathogen-free conditions. RESULTS: In NC/Nga mice maintained under specific pathogen-free conditions, the capability of T(H)1/T(H)2 and T cytotoxic 1/T cytotoxic 2 (Tc1/Tc2) cell differentiation increased significantly. T-cell antigen receptor-mediated activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase cascade and nuclear factor-kappaB (NF-kappaB) signaling were enhanced in NC/Nga T cells. The expression of T(H)2 cytokines (IL-4, IL-13, and IL-5) and that of GATA-binding protein 3 (GATA3), avian musculoaponeurotic fibrosarcoma (c-Maf), NF-kappaB, and activator protein 1 (AP1) selectively increased in draining lymph node T cells of NC/Nga mice. Moreover, the cell transfer of inhibitory NF-kappaB mutant-infected T(H)2 cells reduced ear thickness in the mite antigen-induced skin lesion of NC/Nga mice. CONCLUSION: Hyperresponsive T(H)2 cells with an enhanced activity of NF-kappaB and AP1 play a crucial role in the pathogenesis of atopic dermatitis-like skin lesions in NC/Nga mice. CLINICAL IMPLICATIONS: These results indicate potential therapeutic usefulness of developing selective inhibitors for NF-kappaB in the treatment of human atopic dermatitis.  相似文献   

18.
In cystic fibrosis (CF), inflammatory mediator production by airway epithelial cells is a critical determinant of chronic airway inflammation. To determine whether altered signal transduction through the nuclear factor (NF)-kappaB pathway occurs in CF epithelial cells and results in excessive generation of inflammatory cytokines, we evaluated tumor necrosis factor (TNF)-alpha-induced production of the NF-kappaB-dependent cytokine interleukin (IL)-8 and activation of NF-kappaB in three different human bronchial epithelial cell lines: (1) BEAS cells that express wild-type CF transmembrane conductance regulator (CFTR), (2) IB3 cells with mutant CFTR, and (3) C38 cells, which are "corrected" IB3 cells complemented with wild-type CFTR. Treatment of cells with TNF-alpha (30 ng/ml) resulted in markedly elevated NF-kappaB activation and production of IL-8 by IB3 cells compared with BEAS and C38 cells. Despite the differences in NF- kappaB activation, no differences in basal levels of IkappaB-alpha or TNF-alpha- induced IkappaB-alpha processing and degradation were detected among the cell lines. In contrast, the basal level of IkappaB-beta was increased in the IB3 cells. Treatment with TNF-alpha resulted in increased formation of hypophosphorylated IkappaB-beta and increased nuclear localization of IkappaB-beta in IB3 cells compared with the other cell types. These findings provide additional evidence of a dysregulated inflammatory response in CF.  相似文献   

19.
20.
Cystic fibrosis (CF) is a complex inherited disease which affects many organs, including the pancreas and liver, gastrointestinal tract and reproductive system, sweat glands and, particularly, the respiratory system. Pseudomonas aeruginosa is the main cause of chronic airway infection. In order to reduce morbidity and mortality due to lung infection by P. aeruginosa, aerosol antibiotics have been used to achieve high local concentrations in the airways and to reduce systemic toxicity. In the course of this review, the current treatments to control CF lung infections by P. aeruginosa are presented. Some innovative aerosol formulations such as liposomes and microspheres are herein reviewed, which may improve the efficiency of anti-pseudomonal agents, and ensure patients’ compliance to treatments, by reducing dosing frequency and/or drug dose, while maintaining therapeutic efficacy, preventing the occurrence of bacterial resistance and/or reducing adverse effects due to their controlled-release properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号