首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1,5-Diazaanthraquinones (DAQs) are promising anticancer drugs, however, their clinical potential is limited due to poor solubility. Conjugation of anticancer agents to hydrophilic water-soluble polymers can overcome this problem and has already been used to generate conjugates with demonstrated clinical benefit. Here a library of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates containing a novel amino-functionalised 1,5-diazaanthraquinone derivative (amino-DAQ) have been synthesised. The conjugates were fully characterised by UV, HPLC, SEC, FT-Raman and NMR spectroscopy. Conjugation to HPMA copolymers improved amino-DAQ aqueous solubility (>7-fold). The HPMA copolymer-amino-DAQ conjugates were slightly less haemolytic than the parent compound (2% Hb released in 1 h for conjugate HPMA copolymer-GFLG (5 mol%)-amino-DAQ conjugate compared to 13% obtained with amino-DAQ). When conjugates were incubated with isolated rat liver lysosomal enzymes (Tritosomes) the rate of amino-DAQ release was influenced by both drug loading and the composition of the peptidyl side chain used to link the drug to the carrier. The higher the drug loading the lower the rate of drug release. Whereas the GG linker did not release amino-DAQ, up to 26% of the amino-DAQ was released from a GFLG linker over 24 h. The in vitro cytotoxicity of these conjugates was evaluated against two different cell lines, B16F10 murine melanoma and MCF-7 human breast cancer cells. HPMA copolymer-amino-DAQ conjugates, which are internalised by cells by the endocytic pathway, showed much lower in vitro cytotoxicity (IC50 for HPMA copolymer-GFLG (5 mol%)-amino-DAQ conjugate > 397 μM drug-equiv.) than the free drug (the IC50 for amino-DAQ was 12.6 and 2.8 μM against the B16F10 murine melanoma and the MCF-7 breast cancer cell line, respectively). Nonetheless, the observed lysosomal activation of the HPMA copolymer-GFLG-amino-DAQ conjugates, suggests that evaluation of the antitumour potential in vivo is warranted.  相似文献   

2.
The concept of polymer–drug conjugates was proposed more than 30 years ago, and an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugate of doxorubicin covalently bound to the polymer backbone by a Gly-Phe-Leu-Gly peptidyl linker (FCE28068) became the first synthetic polymer-based anticancer conjugate to enter clinical trial in 1994. This conjugate arose from rational design attempting to capitalise on passive tumour targeting by the enhanced permeability and retention effect and, at the cellular level, lysosomotropic drug delivery to improve therapeutic index. Early clinical results were promising, confirming activity in chemotherapy refractory patients and the safety of HPMA as a new polymer platform. Subsequent Phase I/II trials have investigated an HPMA copolymer-based conjugate containing a doxorubicin and additionally galactose as a targeting moiety to promote liver targeting (FCE28069), and also HPMA copolymer conjugates of paclitaxel (PNU 166945), camptothecin (PNU 166148) and two platinates (AP5280 and AP5346- ProLindac™). The preclinical and clinical observations made in these, and clinical studies with other polymer conjugates, should shape the development of next generation anticancer polymer therapeutics.  相似文献   

3.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer-AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM-Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 x 10(- 8) M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2-0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [(3)H]androstenedione both AGM and HPMA copolymer-GFLG-AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.  相似文献   

4.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10? 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.  相似文献   

5.
Coupling of low molecular weight anticancer drugs to antibodies, serum proteins or polymers through a cleavable linker has been an effective method for improving the therapeutic index of cytotoxic established agents. Modern drug–antibody conjugates that have recently entered clinical trials have primarily used highly potent drugs such as calicheamicin or maytansins. Gemtuzumab ozogamicin, a conjugate of calicheamicin and an anti-CD33 humanized antibody, is the first drug–antibody conjugate to receive market approval. Drug conjugates that have undergone clinical assessment include N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates with doxorubicin, camptothecin, paclitaxel and Pt(II) complexes, poly(ethylene glycol) conjugates with camptothecin and paclitaxel, polyglutamate conjugates with paclitaxel and camptothecin, a methotrexate–albumin conjugate and an albumin-binding doxorubicin prodrug. This review summarizes the Phase I – III studies that have been performed with these macromolecular prodrugs.  相似文献   

6.
Elastin-like polypeptide (ELP) is a macromolecular carrier with thermally responsive properties that can passively accumulate in solid tumors and additionally aggregate in tumor tissue when exposed to hyperthermia. In this study, ELP was conjugated to the anticancer drug doxorubicin (DOXO) and three different cell penetrating peptides (CPP) in order to inhibit tumor growth in mice compared to free doxorubicin. Fluorescence microscopy studies in MCF-7 breast carcinoma cells demonstrated that the three different CPP-ELP-DOXO conjugates delivered doxorubicin to the cell nucleus. All CPP-ELP-DOXO conjugates showed cytotoxicity with IC(50) values in the range of 12-30μM at 42°C, but the ELP carrier with SynB1 as the cell penetrating peptide had the lowest intrinsic cytotoxicity. Therefore, the antitumor efficacy of SynB1-ELP-DOXO was compared to doxorubicin under hyperthermic conditions. C57BL/6 female mice bearing syngeneic E0771 murine breast tumors were treated with either free doxorubicin or the SynB1-ELP-DOXO conjugate with or without focused hyperthermia on the tumor. Under hyperthermic conditions, tumor inhibition with SynB1-ELP-DOXO was 2-fold higher than under therapy with free doxorubicin at the equivalent dose, and is thus a promising lead candidate for optimizing thermally responsive drug polymer conjugates.  相似文献   

7.
Novel micelle-forming poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) block copolymers bearing doxorubicin (DOX) side groups (PEO-b-P(CL-DOX)) on the PCL block were synthesized. Prepared block copolymers were characterized, assembled to polymeric micellar drug conjugates and assessed for the level of DOX release at pH 7.4 and pH 5.0 using a dialysis membrane to separate released and conjugated drug. The possibility for the degradation of PCL backbone for PEO-b-P(CL-DOX) micelles was investigated using gel permeation chromatography. Micelle-forming DOX conjugate did not show any signs of DOX release at 37 degrees C within 72h of incubation at both pHs, but revealed signs of poly(ester) core degradation at pH 5.0. In further studies, PEO-b-PCL micelles bearing benzyl, carboxyl or DOX groups in the core were also used as micellar nano-containers for the physical encapsulation of DOX, where maximum level of drug-loading and control over the rate of DOX release was achieved by polymeric micelles containing benzyl groups in their core, i.e., PEO-b-poly(alpha-benzylcarboxylate-epsilon-caprolactone) (PEO-b-PBCL) micelles. The in vitro cytotoxicity of chemically conjugated DOX as part of PEO-b-P(CL-DOX) and physically encapsulated DOX in PEO-b-PBCL against B16F10 murine melanoma cells was assessed and compared to that of free DOX. Consistent with the results of in vitro release study, cytotoxicity of micellar PEO-b-P(CL-DOX) conjugate (IC(50) of 3.65mug/mL) was lower than that of free and physically encapsulated DOX in PEO-b-PBCL (IC(50) of 0.09 and 3.07mug/mL, respectively) after 24h of incubation. After 48h of incubation, the cytotoxicity of conjugated DOX (IC(50) of 0.50mug/mL) was still lower than the cytotoxicity of free DOX (IC(50) of 0.03mug/mL), but surpassed that of physically encapsulated DOX in PEO-b-PBCL (IC(50) of 1.54mug/mL). The results point to a potential for PEO-b-P(CL-DOX) and PEO-b-PBCL as novel polymeric micellar drug conjugates and nano-containers bearing hydrolyzable cores for DOX delivery.  相似文献   

8.
The biodistribution and pharmacokinetics of bone-targeting N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-alendronate conjugates were evaluated following intravenous administration of radioiodinated conjugates to young healthy BALB/c mice. The synthesis of a polymerizable and cathepsin K cleavable alendronate derivative, N-methacryloylglycylglycylprolylnorleucylalendronate, enabled the preparation of HPMA copolymer-alendronate conjugates with varying composition. Using the RAFT (reversible addition-fragmentation chain transfer) polymerization technique, four conjugates with different molecular weight and alendronate content and two control HPMA copolymers (without alendronate) with different molecular weight were prepared. The results of biodistribution studies in mice demonstrated a strong binding capacity of alendronate-targeted HPMA copolymer conjugates to bone. Conjugates with low (1.5 mol%) alendronate content exhibited a similar bone deposition capacity as conjugates containing 8.5 mol % of alendronate. The molecular weight was an important factor in the biodistribution of the HPMA copolymer conjugates. More conjugate structures need to be evaluated, but the data suggest that medium molecular weights (50-100 kDa) might be effective drug carriers for bone delivery.  相似文献   

9.
Coupling of low molecular weight anticancer drugs to antibodies, serum proteins or polymers through a cleavable linker has been an effective method for improving the therapeutic index of cytotoxic established agents. Modern drug-antibody conjugates that have recently entered clinical trials have primarily used highly potent drugs such as calicheamicin or maytansins. Gemtuzumab ozogamicin, a conjugate of calicheamicin and an anti-CD33 humanized antibody, is the first drug-antibody conjugate to receive market approval. Drug conjugates that have undergone clinical assessment include N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates with doxorubicin, camptothecin, paclitaxel and Pt(II) complexes, poly(ethylene glycol) conjugates with camptothecin and paclitaxel, polyglutamate conjugates with paclitaxel and camptothecin, a methotrexate-albumin conjugate and an albumin-binding doxorubicin prodrug. This review summarizes the Phase I-III studies that have been performed with these macromolecular prodrugs.  相似文献   

10.
Human squamous cell carcinoma of the head and neck (SCCHN) is characterized by over expression of a tumor cell surface-specific receptor namely Hsp47/CBP2 that makes it a favorable candidate for targeted delivery of anticancer drugs. Several synthetic peptides have been identified as effective ligands for binding to CBP2. The purpose of this study is to investigate the potential of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates containing a Hsp47/CBP2 binding peptide sequence, namely WHYPWFQNWAMA for targeted delivery to SCCHN. An HPMA copolymer containing Dox and CBP2 targeting peptide conjugated via lysosomally degradable glycylphenylalanylleucylglycine (GFLG) spacer was synthesized by free radical precipitation copolymerization. A control polymer without targeting moiety was also synthesized. The conjugates were characterized for drug content, peptide content, molecular weight and molecular weight distribution. The uptake of polymeric conjugates by both drug resistant and drug sensitive SCCHN cells were determined in vitro by flow cytometry using FACS scan analysis. Cytotoxicity of the conjugates towards drug sensitive as well as multidrug resistant SCCHN cells were evaluated by a clonal survival assay and compared to free Dox. The cytotoxicity of the free peptide was similarly evaluated. The internalization and subcellular fate of the conjugates in drug sensitive SCCHN cells was monitored using confocal microscopy. The new targetable copolymer contained 0.16 mmole peptide/g polymer. Studies on drug sensitive SCCHN cells demonstrated lesser uptake of both targeted and non-targeted conjugates compared to free Dox suggesting a slower endocytic mechanism of uptake for the conjugates as opposed to rapid diffusion of free Dox. At higher Dox equivalent concentrations (>20 μM) the targeted conjugate showed significantly higher uptake (p≤0.028) than the non-targeted conjugate. The uptake of the targeted conjugate was inhibited in the presence of an anti Hsp47 antibody suggesting the involvement of active receptor mediated endocytosis in cell entry of the conjugate. Compared to free Dox, the targeted and non-targeted conjugates caused marginally lower inhibition (p≤0.01) of the drug sensitive SCCHN cells. In contrast, the same conjugates showed significantly higher uptake (p≤0.004) by drug resistant SCCHN cells and caused significantly higher inhibition (p≤0.02) of drug resistant SCCHN cells when compared to free Dox. Results suggest that the polymeric conjugates were able to overcome drug resistance. Confocal microscopy studies demonstrated the uptake of the polymeric conjugates, followed by internalization, intralysosomal localization and subsequent release of Dox. HPMA copolymer-Dox-peptide conjugates targeted to SCCHN cells were able to overcome drug resistance and increase efficacy in vitro. The results suggest that targetable polymeric conjugates have potential to improve systemic head and neck cancer chemotherapy by increasing tumor localization and reducing dose-limiting toxicity.  相似文献   

11.
The effect of an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-Adriamycin-OV-TLl6 antibody conjugate [P(GFLG)-ADR-Ab] on OVCAR-3 human ovarian carcinoma cells was studied. A nontargeted HPMA copolymer-ADR conjugate (P(GFLG)-ADR) and free ADR were the controls. The IC(50) doses were 0.65, 3.0, and 65 microM for free ADR, targeted P(GFLG)-ADR-Ab conjugate, and nontargeted P(GFLG)-ADR conjugate, respectively. These differences reflect the different mechanisms of cell entry of the compounds evaluated. Free ADR and HPMA copolymer-ADR conjugates had different impacts on the expression of MDR1, MRP, c-fos, c-jun, and bcl-2 genes which encode the P-glycoprotein (MDR1) and the multidrug resistance-associated protein (MRP) efflux pumps, and play an important role in cell death signaling pathways (c-fos, c-jun, and bcl-2). Whereas high doses of free ADR induced MDR1 gene expression, HPMA copolymer-bound ADR appeared to be without effect. On the contrary, expression of the MRP gene was not influenced by free ADR, whereas HPMA copolymer-ADR conjugates seemed to suppress the gene expression in a concentration-dependent manner. There were differences in the expression of c-fos, c-jun, and bcl-2 genes after the incubation of OVCAR-3 cells with free and HPMA copolymer-bound ADR indicating differences in activation of cell death signaling pathways.  相似文献   

12.
Macromolecular gelatin-methotrexate conjugates have potential therapeutic advantages over the free drug. Conjugates with MTX:gelatin molar ratios (MR) ranging from 1:1 to 27:1 were examined for cell growth inhibition, stability, degradation, and methotrexate (MTX) release. Conjugate growth inhibition was less than that of free MTX whose IC(50) value of 1.3 x 10(-8) M was about 10-fold less. Cell uptake of fluorescein labeled gelatin (145 kD) was observed by 24-30 h. Higher MR conjugates produced less growth inhibition, measurably greater stability at pH 7.4 based on MTX release, and had less gelatin degradation in the conjugate by the lysosomal enzyme Cathepsin B (Cat B) compared to low MR conjugates. Cat B conjugate degradation was greater at the in vitro lysosomal pH of 4.8 than the intra-tumor pH of 6.5. The presence of Cat B did not meaningfully affect MTX release, but less MTX was released at pH 4.8 than pH 6.5. The maximum MTX release was a relatively low 7% after 72 h at pH 6.5 for the low MR conjugate. Low molecular weight conjugate fragments were also produced and were also influenced by pH and MR. Reduced growth inhibition by high MR conjugates may be due to a hindered enzymatic degradation in the lysosomes. A strong peptide conjugate bond at lysosomal pH and a 24-30 h delayed gelatin uptake may contribute to reduced growth inhibition of the conjugate compared to free MTX. MTX release under these in vitro conditions occurs by aqueous hydrolysis, not by Cat B cleavage of the conjugate bond.  相似文献   

13.
《Journal of drug targeting》2013,21(10):968-980
Abstract

Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.  相似文献   

14.
Human squamous cell carcinoma of the head and neck (SCCHN) is characterized by over expression of a tumor cell surface-specific receptor namely Hsp47/CBP2 that makes it a favorable candidate for targeted delivery of anticancer drugs. Several synthetic peptides have been identified as effective ligands for binding to CBP2. The purpose of this study is to investigate the potential of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates containing a Hsp47/CBP2 binding peptide sequence, namely WHYPWFQNWAMA for targeted delivery to SCCHN. An HPMA copolymer containing Dox and CBP2 targeting peptide conjugated via lysosomally degradable glycylphenylalanylleucylglycine (GFLG) spacer was synthesized by free radical precipitation copolymerization. A control polymer without targeting moiety was also synthesized. The conjugates were characterized for drug content, peptide content, molecular weight and molecular weight distribution. The uptake of polymeric conjugates by both drug resistant and drug sensitive SCCHN cells were determined in vitro by flow cytometry using FACS scan analysis. Cytotoxicity of the conjugates towards drug sensitive as well as multidrug resistant SCCHN cells were evaluated by a clonal survival assay and compared to free Dox. The cytotoxicity of the free peptide was similarly evaluated. The internalization and subcellular fate of the conjugates in drug sensitive SCCHN cells was monitored using confocal microscopy. The new targetable copolymer contained 0.16 mmole peptide/g polymer. Studies on drug sensitive SCCHN cells demonstrated lesser uptake of both targeted and non-targeted conjugates compared to free Dox suggesting a slower endocytic mechanism of uptake for the conjugates as opposed to rapid diffusion of free Dox. At higher Dox equivalent concentrations (>20 microM) the targeted conjugate showed significantly higher uptake (p < or = 0.028) than the non-targeted conjugate. The uptake of the targeted conjugate was inhibited in the presence of an anti Hsp47 antibody suggesting the involvement of active receptor mediated endocytosis in cell entry of the conjugate. Compared to free Dox, the targeted and non-targeted conjugates caused marginally lower inhibition (p < or = 0.01) of the drug sensitive SCCHN cells. In contrast, the same conjugates showed significantly higher uptake (p < or = 0.004) by drug resistant SCCHN cells and caused significantly higher inhibition (p < or = 0.02) of drug resistant SCCHN cells when compared to free Dox. Results suggest that the polymeric conjugates were able to overcome drug resistance. Confocal microscopy studies demonstrated the uptake of the polymeric conjugates, followed by internalization, intralysosomal localization and subsequent release of Dox. HPMA copolymer-Dox-peptide conjugates targeted to SCCHN cells were able to overcome drug resistance and increase efficacy in vitro. The results suggest that targetable polymeric conjugates have potential to improve systemic head and neck cancer chemotherapy by increasing tumor localization and reducing dose-limiting toxicity.  相似文献   

15.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer conjugates containing doxorubicin designed in the late 1970s/early 1980s as anticancer polymer therapeutics were the first synthetic polymer-based anticancer conjugates to enter clinical trial beginning in 1994. Early clinical results were promising, confirming activity in chemotherapy refractory patients and the safety of HPMA copolymers as a new polymer platform in this setting. Subsequent Phase I/II trials have investigated conjugates containing paclitaxel (PNU 166945), camptothecin (PNU 166148) (both failed in clinical trials underlining the importance of rational design), and most recently HPMA-copolymer platinates (AP5280 and then AP5346-ProLindacTM) entered Phase II clinical development. There are a growing array of second generation HPMA copolymer-based systems involving combination therapy, incorporating putative targeting ligands, having an ever more complex architecture, and both drug and protein conjugates are being proposed as novel treatments for diseases other than cancer. Despite their promise, and the success of polymeric drugs and polymer-protein conjugates, no polymer-drug conjugate (HPMA copolymer-based or otherwise) has yet entered routine clinical use. It is timely to reflect on the progress made over the last 30 years, the relative merits of HPMA copolymers as a platform compared to other polymeric carriers, and comment on their future potential as polymer-based nanomedicines into the 21st century in comparison with the many alternative strategies now emerging for creation of nanopharmaceuticals.  相似文献   

16.
Conjugates were constructed between daunorubicin or vindesin and a monoclonal antibody to human milk fat globule membrane associated antigen. This antibody recognizes a high molecular weight glycoprotein present at the cell surface of human normal and tumour epithelial cells; after specific binding to plasma membrane of cultured MCF-7 human breast carcinoma cells, it is endocytosed and gains access to lysosomes, wherein it is broken down (Aboud-Pirak et al., Cancer Res 48: 3188-3196, 1988). Covalent linkage of daunorubicin (through a succinylated tetrapeptide arm) or of vindesin (through a hemisuccinate arm) yields conjugates with maximal molar ratios (drug molecule/specific IgG under monomeric form, i.e. unaggregated) or 2.0 and 4.5 respectively. The conjugate with daunorubicin inhibits the binding of the 3H labelled antibody to MCF-7 cells as efficiently as the native unconjugated antibody, whereas the conjugate with vindesin inhibits it only by 56%. Both conjugates are entirely stable in plasma and serum; after 24 hr incubation at pH 4.8 in the presence of rat liver lysosomal enzymes, 60 and 33% of daunorubicin and vindesin respectively are released from the conjugates. Adherent non-confluent cultures of cells recognized (MCF-7) or not (Hep-G2, human hepatocarcinoma cells) by the antibody were incubated from 1 hr to 6 days with different concentrations of daunorubicin or vindesin, free or conjugated to the specific or to a control monoclonal antibody. LD50, defined as the drug concentration required to reach 50% of the amount of cell associated protein obtained in the absence of drug were determined at the end of 6 days continuous incubation or after shorter incubation followed by reincubation in drug free medium up to 6 days. Both cell lines are almost equally susceptible to the free drugs. The conjugate between daunorubicin and the antibody appears inactive, even at saturating concentrations of antibody. This could result from the extrusion out of the cells of daunorubicin molecules released from the conjugate, impairing the drug to reach the intracellular concentration required for cytotoxicity. In contrast, conjugation of vindesin to the specific but not to a control antibody restricts the activity of the drug to cells selectively recognized by the specific antibody. However, even after corrections for the loss of immunoreactivity and for the incomplete release of vindesin from the conjugate, cytotoxicity is achieved at higher concentrations or requires longer exposure to the conjugated than to the free drug.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Efficacy of anticancer drug is limited by the severe adverse effects induced by drug; therefore the crux is in designing delivery systems targeted only to cancer cells. Toward this objectives, we propose, synthesis of poly(ethylene glycol) (PEG)-doxorubicin (DOX) prodrug conjugates consisting N-acetyl glucosamine (NAG) as a targeting moiety. Multicomponent system proposed here is characterized by (1)H NMR, UV spectroscopy, and HPLC. The multicomponent system is evaluated for in vitro cellular kinetics and anticancer activity using MCF-7 and MDA-MB-231 cells. Molecular modeling study demonstrated sterically stabilized conformations of polymeric conjugates. Interestingly, PEG-DOX conjugate with NAG ligand showed significantly higher cytotoxicity compared to drug conjugate with DOX. In addition, the polymer drug conjugate with NAG and DOX showed enhanced internalization and retention effect in cancer cells, compared to free DOX. Thus, with enhanced internalization and targeting ability of PEG conjugate of NAG-DOX has implication in targeted anticancer therapy.  相似文献   

18.
Purpose To evaluate a novel targeted anticancer prodrug consisting of several copies of sialic acid (SA, targeting moiety), doxorubicin (DOX), citric acid (multifunctional spacer) and poly(ethylene glycol) (PEG, carrier). Methods α, ω bis carboxyl PEG was covalently conjugated with multiple copies of SA and DOX through a citric acid spacer and characterized by proton nuclear magnetic resonance (1HNMR), matrix-assisted laser desorption/ionization-time of flight (MALDI/TOF), and high-performance liquid chromatography (HPLC). The molecular models of conjugates were established using ChemDraw software. Stability, spontaneous and esterase-stimulated drug release was analyzed by HPLC. Cellular internalization (fluorescence microscopy) and cytotoxicity [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay] of free DOX and prodrugs were evaluated. Results 1HNMR, MALDI/TOF, and HPLC showed the formation of the PEG prodrug conjugates. More than 40% of the drug was released from its conjugate in the presence of esterase enzyme, whereas the conjugate was stable at pH 7.4 in the absence of enzyme. Molecular modeling studies showed stable conformations of conjugates. The targeted prodrug conjugates with two copies of SA and DOX showed enhanced cytotoxicity when compared with non-targeted prodrugs and free DOX. Conclusions Targeting of the conjugate to cancer cells by SA with increased copies of targeting moiety and anticancer drug enhanced prodrug uptake by cancer cells and cytotoxicity of the prodrug.  相似文献   

19.
A series of novel pyrrolo[2,1-c][l,4]benzodiazepine (PBD)-polyamide conjugates (1 and 2) and 2,2'-PBD dimers (3, 4 and 5) were synthesized and evaluated for cytotoxicity in >60 human tumor cell lines. In general PBD-polyamide conjugates (1 and 2) exhibit higher cytotoxic potency compared with 2,2'-PBD dimers (3, 4 and 5). Compound 2 exhibits a wide spectrum of anticancer activities against 17 cell lines in six cancer panels with LC50 values of <9 microM, and is especially effective against colon cancer, melanoma, renal cancer and breast cancer. Compound 1 selectively affects cell growth against renal cancer A 498 cell line and compound 4 affects cell growth against breast cancer MDA-MB-231/ATCC cell line with an LC50 value 0.06 microM. Increases in the chain length of the linker in 2,2'-PBD dimers significantly increase the cytotoxic potency and increases in the number of pyrrole groups in the PBD-polyamide conjugates similarly increase the cytotoxic potency.  相似文献   

20.
A novel bone targeting, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer based, prostaglandin E1 (PGE1) delivery system was designed, synthesized and characterized. PGE1 was bound to the polymer backbone via a spacer, composed of a cathepsin K sensitive tetrapeptide (Gly-Gly-Pro-Nle) and a self-eliminating 4-aminobenzyl alcohol structure. The HPMA copolymer conjugates were prepared by photo-initiated free radical copolymerization of HPMA, PGE1-containing macromonomer, and optionally a comonomer containing a reactive p-nitrophenyl ester group. The latter group was used as attachment points for the D-aspartic acid octapeptide targeting moieties. Incubation of the PGE1-containing macromonomer and HPMA copolymer-PGE1 conjugates with cathepsin K resulted in release of unmodified PGE1. The rate of release depended on the composition of the conjugate. The higher the PGE1 content in the conjugate, the slower the PGE1 release. This appeared to be the result of association of hydrophobic side-chains in aqueous media, which rendered the formation of the enzyme substrate complex more difficult. The data seems to indicate that HPMA copolymer-PGE1 conjugates have a potential in the treatment of osteoporosis and other bone diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号