首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of decomposition of peroxynitrite (OONO(-)) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO(-) was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO(-), after protonation at pH 7.0 to HOONO, decomposes into (1)O(2) and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO(-) solution were added to a buffer solution (final pH 7.0-7.2), and the formation of (1)O(2) and NO(-) in high yields was observed. The (1)O(2) generated was trapped as the transannular peroxide (DPAO(2)) of 9, 10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO-) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO(-), the amount of singlet oxygen trapped was reduced by a factor of approximately 2 whereas the yield of trapping of NO(-) by methemoglobin remained unaffected. Because NO(3)(-) is known to be the ultimate decomposition product of OONO(-), these results suggest that the nitrate anion is not formed by a direct isomerization of OONO(-), but by an indirect route originating from NO(-).  相似文献   

2.
A potential of about -0.8 (+/-0.2) V (at 1 M versus normal hydrogen electrode) for the reduction of nitric oxide (NO) to its one-electron reduced species, nitroxyl anion (3NO-) has been determined by a combination of quantum mechanical calculations, cyclic voltammetry measurements, and chemical reduction experiments. This value is in accord with some, but not the most commonly accepted, previous electrochemical measurements involving NO. Reduction of NO to 1NO- is highly unfavorable, with a predicted reduction potential of about -1.7 (+/-0.2) V at 1 M versus normal hydrogen electrode. These results represent a substantial revision of the derived and widely cited values of +0.39 V and -0.35 V for the NO/3NO- and NO/1NO- couples, respectively, and provide support for previous measurements obtained by electrochemical and photoelectrochemical means. With such highly negative reduction potentials, NO is inert to reduction compared with physiological events that reduce molecular oxygen to superoxide. From these reduction potentials, the pKa of 3NO- has been reevaluated as 11.6 (+/-3.4). Thus, nitroxyl exists almost exclusively in its protonated form, HNO, under physiological conditions. The singlet state of nitroxyl anion, 1NO-, is physiologically inaccessible. The significance of these potentials to physiological and pathophysiological processes involving NO and O2 under reductive conditions is discussed.  相似文献   

3.
The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pK(a) of HNO is predicted to be 7.2 +/- 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO(-) affects the rates of acid-base chemistry of the HNO/NO(-) couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (K(eq) = 6.9 x 10(-5)). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.  相似文献   

4.
We have previously reported that bacterial flavohemoglobin (HMP) catalyzes both a rapid reaction of heme-bound O(2) with nitric oxide (NO) to form nitrate [HMP-Fe(II)O(2) + NO --> HMP-Fe(III) + NO(3)(-)] and, under anaerobic conditions, a slower reduction of heme-bound NO to an NO(-) equivalent (followed by the formation of N(2)O), thereby protecting against nitrosative stress under both aerobic and anaerobic conditions, and rationalizing our finding that NO is rapidly consumed across a wide range of O(2) concentrations. It has been alternatively suggested that HMP activity is inhibited at low pO(2) because the enzyme is then in the relatively inactive nitrosyl form [k(off)/k(on) for NO (0.000008 microM) k(off)/k(on) for O(2) (0.012 microM) and K(M) for O(2) = 30-100 microM]. To resolve this discrepancy, we have directly measured heme-ligand turnover and NADH consumption under various O(2)/NO concentrations. We find that, at biologically relevant O(2) concentrations, HMP preferentially binds NO (not O(2)), which it then reacts with oxygen to form nitrate (in essence NO(-) + O(2) --> NO(3)(-)). During steady-state turnover, the enzyme can be found in the ferric (FeIII) state. The formation of a heme-bound nitroxyl equivalent and its subsequent oxidation is a novel enzymatic function, and one that dominates the oxygenase activity under biologically relevant conditions. These data unify the mechanism of HMP/NO interaction with those recently described for the nematode Ascaris and mammalian hemoglobins, and more generally suggest that the peroxidase (FeIII)-like properties of globins have evolved for handling of NO.  相似文献   

5.
The nitroxyl anion (HNO) is emerging as a novel regulator of cardiovascular function with therapeutic potential in the treatment of diseases such as heart failure. It remains unknown whether tolerance develops to HNO donors, a limitation of currently used nitrovasodilators. The susceptibility of the HNO donor, Angeli's salt (AS), to the development of vascular tolerance was compared with the NO donors, glyceryl trinitrate (GTN) and diethylamine/NONOate (DEA/NO) in rat isolated aortae. Vasorelaxation to AS was attenuated (P<0.01) by the HNO scavenger l-cysteine, whereas the sensitivity to GTN and DEA/NO was decreased (P<0.01) by the NO. scavenger carboxy-[2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidozoline-1-oxy-3-oxide]. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one impaired responses to GTN>or=AS>DEA/NO. Pretreatment with 10, 30, and 100 micromol/L of GTN for 60 minutes induced a 4- (P<0.05), 13- (P<0.01), and 48-fold (P<0.01) decrease in sensitivity to GTN, demonstrating tolerance development. In contrast, pretreatment with AS or DEA/NO (10, 30, and 100 micromol/L) did not alter their subsequent vasorelaxation. All of the nitrovasodilators (30 micromol/L) displayed a similar time course of vasorelaxation and cGMP accumulation over a 60-minute period. Unlike vasorelaxation, the magnitude of peak cGMP accumulation differed substantially: DEA/NO>AS>GTN. GTN did not induce cross-tolerance to either AS or DEA/NO. In contrast, pre-exposure to DEA/NO, but not AS, caused a concentration-dependent attenuation (P<0.01) of GTN-mediated relaxation, which was negated by the protein kinase G inhibitor guanosine 3',5'-cyclic monophosphorothioate, 8-(4-chlorophenylthio)-,Rp-isomer, triethylammonium salt. In conclusion, vascular tolerance does not develop to HNO, nor does cross-tolerance between HNO and GTN occur. Thus, HNO donors may have therapeutic advantages over traditional nitrovasodilators.  相似文献   

6.
The radical scavenging activity of oxidized and reduced idebenone (ID-O and ID-H, respectively) against superoxide radical (O2(-*) was studied in vitro using two methods: (1) O2(-*) radicals were generated enzymatically in a hypoxanthine (HPX)-xanthine oxidase (XOD) system and detected by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping. Superoxide dismutase and other scavengers added to this system competed to various extents with DMPO to trap O2(-*) radicals, resulting in a decrease of the ESR signal intensity of the DMPO-OOH spin adduct. ID-O reacted about 12-fold quicker (k = 4.48 x 10(4) M(-1)s(-1)) with the O2(-*) radicals than ID-H (k = 3.62 x 10(3) M(-1)s(-1)) x (2) O2(-*) radicals were generated chemically in potassium superoxide (KO2)-crown ether system. Quinoid compounds reacted with the O2(-*)radicals to form semiquinone radicals that could be observed by ESR. At liquid nitrogen temperature (-196 degrees C), the ESR signal of O2(-*) radicals could be observed directly, thus allowing us to estimate the scavenging activity of ID-O and ID-H. These experiments also revealed that ID-O possesses an O2(-*) radical scavenging activity, whereas ID-H reacts quantitatively much slower. Analyzing various quinone compounds, it has been established that the O2(-*) radical scavenging process is a reversible, most probably oscillating, monovalent electron transfer from superoxide to the quinone, and that the O2(-*) radical scavenging activity depends on the redox potential, i.e., on the actual state of oxidation of the quinones.  相似文献   

7.
OBJECTIVE: The nitroxyl anion (HNO) is the one-electron reduction product of NO(). This redox variant has been shown to be endogenously produced and to have effects that are pharmacologically distinct from NO(). This study investigates the vasodilator and chronotropic effects of HNO in the rat isolated coronary vasculature. METHODS: Sprague-Dawley rat hearts were retrogradely perfused with Krebs' solution (8 ml/min) using the Langendorff technique. Perfusion pressure was raised using a combination of infusion of phenylephrine and bolus additions of the thromboxane mimetic U46619 to attain a baseline perfusion pressure of 100-120 mm Hg. The vasodilator effects of a nitroxyl anion donor, Angeli's salt, were examined in the absence and presence of HNO and NO* scavengers, K+ channel inhibition, and soluble guanylate cyclase (sGC) inhibition. In addition, the inotropic and chronotropic effects of Angeli's salt were examined in hearts at resting perfusion pressure (50-60 mm Hg) and compared to responses evoked by acetylcholine and isoprenaline. RESULTS: Angeli's salt causes a potent and reproducible vasodilatation in isolated perfused rat hearts. This response is unaffected by the NO* scavenger hydroxocobalamin (0.1 mM) but is significantly inhibited by the HNO scavenger N-acetyl-L-cysteine (4 mM), suggesting that HNO is the mediator of the observed responses. Vasodilatation responses to Angeli's salt were virtually abolished in the presence of the sGC inhibitor ODQ (10 microM). The magnitude of the vasodilatation response to Angeli's salt was significantly reduced in the presence of 30 mM K+, 10 microM glibenclamide and in the presence of the calcitonin gene-related peptide (CGRP) antagonist CGRP((8-37)) (0.1 microM). Angeli's salt had little effect on heart rate or force of contraction, whilst isoprenaline and acetylcholine elicited significant positive and negative cardiotropic effects, respectively. CONCLUSIONS: The HNO donor Angeli's salt elicits a potent and reproducible vasodilatation response. The results suggest that the response is elicited by HNO through sGC-mediated CGRP release and K(ATP) channel activation.  相似文献   

8.
The kinetics of reduction of benzoquinone (Q) to hydroquinone (H(2)Q) by the Os(IV) hydrazido (trans-[Os(IV)(tpy)(Cl)(2)(N(H)N(CH(2))(4)O)]-PF(6) = [1]PF(6), tpy = 2,2':6',2"-terpyridine), sulfilimido (trans-[Os(IV)-(tpy)(Cl)(2)(NS(H)-4-C(6)H(4)Me)]PF(6) = [2]PF(6)), and phosphoraniminato (trans-[Os(IV)(Tp)(Cl)(2)(NP(H)(Et)(2))] = [3], Tp(-) = tris(pyrazolyl)-borate) complexes have been studied in 1:1 (vol/vol) CH(3)CN/H(2)O and CH(3)CN/D(2)O (1.0 M in NH(4)PF(6)/KNO(3) at 25.0 +/- 0.1 degrees C). The reactions are first order in both [Q] and Os(IV) complex and occur by parallel pH-independent (k(1)) and pH-dependent (k(2)) pathways that can be separated by pH-dependent measurements. Saturation kinetics are observed for the acid-independent pathway, consistent with formation of a H-bonded intermediate (K(A)) followed by a redox step (k(red)). For the pH-independent pathway, k(1)(H(2)O)/k(1)(D(2)O) kinetic isotope effects are 455 +/- 8 for [1(+)], 198 +/- 6 for [2(+)], and 178 +/- 5 for [3]. These results provide an example of colossal kinetic isotope effects for proton-coupled electron transfer reactions involving nitrogen, sulfur, and phosphorus as proton-donor atoms.  相似文献   

9.
Cadherin interaction probed by atomic force microscopy   总被引:17,自引:0,他引:17       下载免费PDF全文
Single molecule atomic force microscopy was used to characterize structure, binding strength (unbinding force), and binding kinetics of a classical cadherin, vascular endothelial (VE)-cadherin, secreted by transfected Chinese hamster ovary cells as cis-dimerized full-length external domain fused to Fc-portion of human IgG. In physiological buffer, the external domain of VE-cadherin dimers is a approximately 20-nm-long rod-shaped molecule that collapses and dissociates into monomers (V-shaped structures) in the absence of Ca(2+). Trans-interaction of dimers is a low-affinity reaction (K(D) = 10(-3)-10(-5) M, k(off) = 1.8 s(-1), k(on) = 10(3)-10(5) M(-1) x s(-1)) with relatively low unbinding force (35-55 pN at retrace velocities of 200-4,000 nm x s(-1)). Higher order unbinding forces, that increase with interaction time, indicate association of cadherins into complexes with cumulative binding strength. These observations favor a model by which the inherently weak unit binding strength and affinity of cadherin trans-interaction requires clustering and cytoskeletal immobilization for amplification. Binding is regulated by low-affinity Ca(2+) binding sites (K(D) = 1.15 mM) with high cooperativity (Hill coefficient of 5.04). Local changes of free extracellular Ca(2+) in the narrow intercellular space may be of physiological importance to facilitate rapid remodeling of intercellular adhesion and communication.  相似文献   

10.
Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH(-) to FAD and form H(2)O(2) as a product. Limiting rate constants of k(cat)K(M)(O(2)) = (5.7 +/- 1.8) x 10(2) M(-1).s(-1) and k(cat)K(M)(O(2)) = (1.5 +/- 0.3) x 10(6) M(-1).s(-1) are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O(2). Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal.mol(-1) (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal.mol(-1) (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal.mol(-1) (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.  相似文献   

11.
Nitric oxide (NO) functions as a signaling agent by activation of the soluble isoform of guanylate cyclase (sGC), a heterodimeric hemoprotein. NO binds to the heme of sGC and triggers formation of cGMP from GTP. Here we report direct kinetic measurements of the multistep binding of NO to sGC and correlate these presteady state events with activation of enzyme catalysis. NO binds to sGC to form a six-coordinate, nonactivated, intermediate (k(on) > 1.4 x 10(8) M(-1).s(-1) at 4 degrees C). Subsequent release of the axial histidine heme ligand is shown to be the molecular step responsible for activation of the enzyme. The rate at which this step proceeds also depends on NO concentration (k = 2.4 x 10(5) M(-1).s(-1) at 4 degrees C), thus identifying a novel mode of regulation by NO. NO binding to the isolated heme domain of sGC was also rapid (k = 7.1 +/- 2 x 10(8) M(-1).s(-1) at 4 degrees C); however, no intermediate was observed. The data show that sGC acts as an extremely fast, specific, and highly efficient trap for NO and that cleavage of the iron-histidine bond provides the driving force for activation of sGC. In addition, the kinetic data indicate that transport or stabilization of NO is not necessary for effective signal transmission.  相似文献   

12.
The kinetics of the reduction of horseheart ferricytochrome c by sodium dithionite (phosphate buffer-sodium chloride; pH 6.5, mu = 1.0, 25 degrees ) features two reaction pathways; one with the rate constant k(3) = 1.17 x 10(4) M(-1) sec(-1), the other with the rate constant k(1)k(2)/k(-1) = 6.0 x 10(4) M(-1) sec(-1). These pathways are interpreted in terms of remote attack (possibly by way of the exposed edge of the porphyrin system) and adjacent attack (requiring the opening of the heme crevice). The limiting rate for the adjacent pathway (k(1) = 30 sec(-1)) is in good agreement with the rate of heme-crevice opening of ferricytochrome c determined in other studies. The implication of the adjacent attack pathway to the function of cytochrome c in vivo is discussed.  相似文献   

13.
Wheat leaves emit nitrous oxide during nitrate assimilation   总被引:14,自引:0,他引:14       下载免费PDF全文
Nitrous oxide (N(2)O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N(2)O flux was monitored simultaneously with photosynthetic CO(2) and O(2) exchanges from intact canopies of 12 wheat seedlings. The rates of N(2)O-N emitted ranged from <2 pmol x m(-2) x s(-1) when NH(4)(+) was the N source, to 25.6 +/- 1.7 pmol x m(-2) x s(-1) (mean +/- SE, n = 13) when the N source was shifted to NO(3)(-). Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N(2)O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO(2) assimilated to O(2) evolved. (15)N isotopic signatures on N(2)O emitted from leaves supported direct N(2)O production by plant NO(3)(-) assimilation and not N(2)O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N(2)O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N(2)O produced by leaves occurred during photoassimilation of NO(2)(-) in the chloroplast. Given the large quantities of NO(3)(-) assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N(2)O during NO(2)(-) photoassimilation could be an important global biogenic N(2)O source.  相似文献   

14.
The influence of nitric oxide (NO) on microvascular permeability remains unclear. NO synthase (NOS) inhibitors have been reported to increase as well as to decrease permeability in different experimental models and animal species. We tested the hypothesis that NOS inhibitors influence venular permeability differently in amphibians and mammals. Permeability coefficients to albumin (P(alb)(s)) were measured on in situ mesenteric venules of the frog and rat and excised pig coronary venules before and after exposure to NOS inhibitors. Despite individual variability in magnitude of responses, NOS inhibitors resulted in a reduction in P(alb)(s) in each species. Superfusion with 10(-5) M N(G)-monomethyl-l-arginine (l-NMMA) reduced P(alb)(s) of frog mesenteric venules by 42% (from a median of 11.4 x 10(-7) cm s(-1), n = 12, P < 0.01) and by 67% in porcine coronary venules (from 12.5 x 10(-7) cm s(-1), n = 5, P < 0.05). The response was attenuated in rat mesenteric venules; 10(-4) M N(G)-nitro-l-arginine methyl ester (l-NAME) reduced P(alb)(s) by 23% (from 7.6 x 10(-7) cm s(-1), n = 9, P = 0.01). The inactive d-enantiomers of the NOS inhibitors were without effect on P(alb)(s) in each model. In pig venules, perfusion with blood modified the permeability responses to l-NMMA, suggesting that effects of NO on permeability are modified by one or more elements of blood. These data support a role of nitric oxide release on venular permeability to albumin that is conserved among the three animal species.  相似文献   

15.
The redox siblings nitroxyl (HNO) and nitric oxide (NO) have often been assumed to undergo casual redox reactions in biological systems. However, several recent studies have demonstrated distinct pharmacological effects for donors of these two species. Here, infusion of the HNO donor Angeli's salt into normal dogs resulted in elevated plasma levels of calcitonin gene-related peptide, whereas neither the NO donor diethylamine/NONOate nor the nitrovasodilator nitroglycerin had an appreciable effect on basal levels. Conversely, plasma cGMP was increased by infusion of diethylamine/NONOate or nitroglycerin but was unaffected by Angeli's salt. These results suggest the existence of two mutually exclusive response pathways that involve stimulated release of discrete signaling agents from HNO and NO. In light of both the observed dichotomy of HNO and NO and the recent determination that, in contrast to the O2/O2- couple, HNO is a weak reductant, the relative reactivity of HNO with common biomolecules was determined. This analysis suggests that under biological conditions, the lifetime of HNO with respect to oxidation to NO, dimerization, or reaction with O2 is much longer than previously assumed. Rather, HNO is predicted to principally undergo addition reactions with thiols and ferric proteins. Calcitonin gene-related peptide release is suggested to occur via altered calcium channel function through binding of HNO to a ferric or thiol site. The orthogonality of HNO and NO may be due to differential reactivity toward metals and thiols and in the cardiovascular system, may ultimately be driven by respective alteration of cAMP and cGMP levels.  相似文献   

16.
Nitrous oxide emission from denitrification in stream and river networks   总被引:13,自引:0,他引:13  
Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an important determinant of how much N(2)O is produced by river networks, but little is known about the N(2)O yield in flowing waters. Here, we present the results of whole-stream (15)N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N(2)O at rates that increase with stream water nitrate (NO(3)(-)) concentrations, but that <1% of denitrified N is converted to N(2)O. Unlike some previous studies, we found no relationship between the N(2)O yield and stream water NO(3)(-). We suggest that increased stream NO(3)(-) loading stimulates denitrification and concomitant N(2)O production, but does not increase the N(2)O yield. In our study, most streams were sources of N(2)O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y(-1) of anthropogenic N inputs to N(2)O in river networks, equivalent to 10% of the global anthropogenic N(2)O emission rate. This estimate of stream and river N(2)O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.  相似文献   

17.
Kinetics of aromatization of 1,4-dimethylbenzene oxide (I) to 2,5-dimethylphenol (II) and 2,4-dimethylphenol (III), the latter arising by an NIH-Shift of a methyl group, as measured in the pH range 1-12, follow the equation -d[I]/dt = [I][k(0) + (k[unk] + k[unk])aH], where k(0) = 4.8 x 10(-3) sec(-1), k[unk] = 7.3 x 10(2) M(-1) sec(-1), and k[unk] = 5.3 x 10(2) M(-1) sec(-1). The ratio of products II to III at pH >/= 6 in the spontaneous rearrangement (k(0)) is 13 to 87, and changes to 54 to 46 in the acid-catalyzed rearrangement (k[unk] and k[unk]). While no intermediate is detectable in the acid-catalyzed rearrangement of the arene oxide by pathway k[unk], simultaneous addition of water (and other nucleophiles) by pathway k[unk] leads, via the intermediate 1,4-dimethyl-2,5-cyclohexadiene-1,4-diol (IV), to the phenols II and III. This new mechanism for the NIH-Shift serves as a model for the ease of nucleophilic addition to other arene oxides, such as those of the polycyclic aromatic hydrocarbons recently implicated in mechanisms of carcinogenesis.  相似文献   

18.
Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite different from conventional PT in bulk water. Here we show that, in contrast with the behavior of strong nitric acid in aqueous solution, gas-phase HNO(3) does not dissociate upon collision with the surface of water unless a few ions (> 1 per 10(6) H(2)O) are present. By applying online electrospray ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO(3(g)) beams we found that NO(3)(-) production increases dramatically on > 30-μM inert electrolyte solutions. We also performed quantum mechanical calculations confirming that the sizable barrier hindering HNO(3) dissociation on the surface of small water clusters is drastically lowered in the presence of anions. Anions electrostatically assist in drawing the proton away from NO(3)(-) lingering outside the cluster, whose incorporation is hampered by the energetic cost of opening a cavity therein. Present results provide both direct experimental evidence and mechanistic insights on the counterintuitive slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to electrostatic effects.  相似文献   

19.
CueO (YacK), a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli. The crystal structure of CueO has been determined to 1.4-A resolution by using multiple anomalous dispersion phasing and an automated building procedure that yielded a nearly complete model without manual intervention. This is the highest resolution multicopper oxidase structure yet determined and provides a particularly clear view of the four coppers at the catalytic center. The overall structure is similar to those of laccase and ascorbate oxidase, but contains an extra 42-residue insert in domain 3 that includes 14 methionines, nine of which lie in a helix that covers the entrance to the type I (T1, blue) copper site. The trinuclear copper cluster has a conformation not previously seen: the Cu-O-Cu binuclear species is nearly linear (Cu-O-Cu bond angle = 170 degrees) and the third (type II) copper lies only 3.1 A from the bridging oxygen. CueO activity was maximal at pH 6.5 and in the presence of >100 microM Cu(II). Measurements of intermolecular and intramolecular electron transfer with laser flash photolysis in the absence of Cu(II) show that, in addition to the normal reduction of the T1 copper, which occurs with a slow rate (k = 4 x 10(7) M(-1)x (-1)), a second electron transfer process occurs to an unknown site, possibly the trinuclear cluster, with k = 9 x 10(7) M(-1) x (-1), followed by a slow intramolecular electron transfer to T1 copper (k approximately 10 s(-1)). These results suggest the methionine-rich helix blocks access to the T1 site in the absence of excess copper.  相似文献   

20.
Effect of oxytocin on contraction of rabbit proximal colon in vitro   总被引:2,自引:0,他引:2  
AIM: To investigate the effects of oxytocin (OT) on isolatedrabbit proximal colon and its mechanism.METHODS: Both longitudinal muscle (LM) and circularmuscle (CM) were suspended in a tissue chamber containing5 mL Krebs solution (37 ℃), bubbled continuously with950 mL@L-1 O2 and 50 mL@L-1 CO2. Isometric spontaneouscontractile responses to oxytocin or other drugs wererecorded in circular and longitudinal muscle strips.RESULTS: OT (0.1 U@L-1) f ailed to elicit significant effectson the contractile activity of proximal colonic smooth musclestrips (P>0.05). OT (1 to 10 U@L-1) decreased the meancontractile amplitude and the contractile frequency of CMand LM. Hexamethonium (10 μmol@L-1) partly blocked theinhibition of oxytocin (1 U@L-1) on the contractile frenquencyof CM. Nω-nitro-L-arginine-methylester (L-NAME, 1 μmol@L-1),progesterone (32 μmol@L-1) and estrogen (2.6 μmol@L-1) hadno effects on OT-induced responses.CONCLUSION: OT inhibits the motility of proximal colon inrabbits. The action is partly relevant with N receptor, butirrelevant with that of NO, progesterone or estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号