首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An elucidation of the interaction between the bone marrow microenvironment and hematopoietic stem cells is critical to the understanding of the molecular basis of stem cell self renewal and differentiation. This interaction is dependent, at least in part, on direct cell to cell contact or cellular adhesion to extracellular matrix proteins. Long-term bone marrow cultures (LTMC) provide an appropriate microenvironment for maintenance of primitive hematopoietic stem cells and a means of analyzing this stem cell-stromal cell interaction in vitro. Although LTMC have been successfully generated from murine and human bone marrow, only limited success has been reported in a primate system. In addition, few permanent stromal cell lines are available from nonmurine bone marrow. Because the primate has become a useful model for large animal bone marrow transplant studies and, more specifically, retroviral-mediated gene transfer analysis, we have generated immortalized bone marrow stromal cell lines from primate bone marrow using gene transfer of the Simian virus large T (SV40 LT) antigen. At least one stromal cell line has demonstrated the capacity to maintain early hematopoietic cells in long-term cultures for up to 4 weeks as measured by in vitro progenitor assays. Studies were undertaken to characterize the products of extracellular matrix biosynthesis and growth factor synthesis of this cell line, designated PU-34. In contrast to most murine bone marrow-derived stromal cell lines capable of supporting hematopoiesis in vitro that have been examined, the extracellular matrix produced by this primate cell line includes collagen types I, laminin. Growth factor production analyzed through RNA blot analysis, bone marrow cell culture data, and factor-dependent cell line proliferation assays includes interleukin-6 (IL-6), IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, M-CSF, leukemia inhibitory factor, and a novel cytokine designated IL-11. This immortalized primate bone marrow stromal cell line may be useful in maintaining early progenitor cells for experimental manipulation without the loss of reconstituting capacity and as a potential source of novel hematopoietic growth factors.  相似文献   

3.
An adherent cell line (AP63) derived from murine spleen was characterized as fibroblastic, and several of its properties distinguished it from other adherent cells (i.e., macrophages and endothelial cells). The ability of the AP63 cells to regulate in vitro myelopoiesis was investigated. Medium conditioned by the cell line (CM) induced granulocyte-macrophage (GM) colonies, thus demonstrating the production of colony-stimulating activity by AP63 cells. A relatively large proportion of these colonies had a "tight" morphology and contained many early myeloid cells and cells capable of secondary cluster and colony formation. CM also contained a prostaglandinlike inhibitor of colony formation. Furthermore, AP63 cells inhibited GM colony formation by bone marrow cells in their immediate vicinity, whereas colony formation was stimulated at greater distances. These observations may reflect in vivo regulatory properties of hemopoietic stromal fibroblasts with respect to proliferation and differentiation of GM progenitor cells.  相似文献   

4.
5.
OBJECTIVE: Osteoblasts play an important role in regulating hematopoiesis in the bone marrow. Here we show that U2-OS, a widely used osteoblastic cell line derived from an osteosarcoma, has the capacity to support proliferation of human hematopoietic progenitor cells in vitro. In this study, U2-OS cells are characterized at the molecular level to unravel the molecular mechanisms underlying the support of hematopoiesis. MATERIALS AND METHODS: U2-OS was analyzed in great detail using RT-PCR and flow cytometry. In addition, a cDNA library was constructed and randomly sequenced to obtain insight in the repertoire of expressed molecules. RESULTS: A broad panel of growth factors and cytokines is expressed by U2-OS. TGF-beta, GM-CSF, c-kit ligand, and IL-7 are produced constitutively and IL-1beta, IL-6, IL-8, TNF-alpha, IFN-gamma, and MIP1-alpha are upregulated upon stimulation. In addition to those, mRNAs of the CC chemokine LARC and leukemia inhibitory factor were identified. U2-OS cells express high levels of beta1-integrins at the cell surface: VLA-2, VLA-3, VLA-4, VLA-5, VLA-6, and the integrin alphavbeta3. Besides integrins, ALCAM and NCAM are detected on the cell surface of U2-OS. Interestingly, we show that CD34(+) progenitor cells expressing ALCAM are highly proliferative when compared with CD34(+) ALCAM(low) cells, hinting at a role for ALCAM in anchoring progenitor cells to the bone marrow stroma. Interestingly, random sequencing of an U2-OS cDNA library yielded almost 10% of novel cDNAs with a potential role in hematopoiesis. The involvement of these novel molecules in hematopoiesis is an interesting target for future investigations. CONCLUSIONS: We conclude that U2-OS supports outgrowth of hematopoietic progenitor cells and accordingly expresses adhesion molecules and growth factors and a number of novel, as yet uncharacterized potentially interesting genes.  相似文献   

6.
7.
After our previous report that osteoclast-like multinucleated cells (MNCs) were formed in response to 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] in cocultures of mouse spleen cells and osteoblast-rich populations freshly isolated from fetal mouse calvariae, we examined whether such primary osteoblast-like cells can be replaced by established cell lines in inducing osteoclast-like cell formation. We first used two clonal cell lines simultaneously established from newborn mouse calvariae. One was the osteoblastic cell line MC3T3-E1, and the other was the preadipose cell line MC3T3-G2/PA6. Tartrate-resistant acid phosphatase (TRACP; a marker enzyme of osteoclasts)-positive mononuclear cells and MNCs were formed in the cocultures of spleen cells and MC3T3-G2/PA6 cells in the presence of 1 alpha,25-(OH)2D3. Dexamethasone greatly potentiated TRACP-positive MNC formation induced by 1 alpha,25-(OH)2D3, whereas the glucocorticoid alone had no effect on it. In contrast, osteoblastic MC3T3-E1 cells failed to induce TRACP-positive cells in the cocultures. Another bone marrow-derived stromal cell line ST2 also induced TRACP-positive MNC formation in the cocultures in response to 1 alpha,25-(OH)2D3 and dexamethasone. Salmon calcitonin enhanced cAMP production in the cocultures only when TRACP-positive cells were formed. Autoradiographic studies demonstrated that [125I]calcitonin specifically bound to TRACP-positive cells formed in the cocultures. When spleen cells and either MC3T3-G2/PA6 or ST2 cells were cocultured on sperm whale dentine slices in the presence of 1 alpha,25-(OH)2D3 and dexamethasone, numerous resorption lacunae were formed. These results show that the two bone marrow-derived stromal cell lines can support osteoclast-like cell differentiation in cocultures with spleen cells.  相似文献   

8.
9.
Although coculture of hematopoietic stem cells (HSCs) with stromal cells is a useful system to study hematopoiesis in the niche, little is known regarding the precise cellular and molecular mechanisms of maintaining HSCs through cell–cell interactions. The murine preadipose stromal cell line MC3T3-G2/PA6 (PA6) has been demonstrated to support HSCs in vitro. In this study, microarray analysis was performed on PA6 cells and HSC-nonsupporting PA6 subclone cells to identify genes responsible for supporting HSC activity. Comparison of gene expression profiles revealed that only 144 genes were down-regulated by more than twofold in PA6 subclone cells. Of these down-regulated genes, we selected 11 candidate genes and evaluated for the maintenance of HSC function by overexpressing these genes in PA6 subclone cells. One unknown gene, 1110007F12Rik (also named as Tmem140), which is predicted to encode an integral membrane protein, demonstrated a partial restoration of the defect in HSC-supporting activity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Dendritic cells (DC) are produced continuously by a unique, long-term culture (LTC) system in which hemopoiesis is supported by a splenic stromal cell layer in the absence of added growth factors. Flow cytometric analysis reveals the production of two distinct cell subsets. The more predominant large-cell subset resembles highly endocytic DC that are large, granular, and possess membrane extensions. They also express high levels of the DC markers CD11c, CD11b, DEC-205, and CD80 on their cell surface. They do not resemble mature DC because they express low levels of MHC type II and CD86 molecules, as well as c-kit and Fc receptor (FcR). These are known characteristics of immature DC. Small cells are smaller and less granular than large cells, with negative to low expression of CD11c, DEC-205, and CD86. A majority of small cells express varying levels of CD11b and CD80. Subpopulations of small cells express low levels of c-kit, FcR, and MHC type II, and only a 20% subpopulation is weakly endocytic. Upon transfer to an irradiated stromal layer, cells within the small subset proliferate and differentiate to resemble the large cells in size, complexity, membrane extensions, and CD11c and CD86 expression. The two cell subsets produced in LTC are developmentally linked, with the heterogeneous small-cell subset containing progenitors of the larger homogeneous, immature DC subset. LTC represent a valuable model system for studying DC development from hemopoietic progenitors.  相似文献   

12.
13.
To understand the physiological role of ghrelin, it is crucial to study both the actions of ghrelin and the regulation of ghrelin secretion. Although ghrelin actions have been extensively revealed, the direct factors regulating ghrelin secretion by ghrelin-producing cells (X/A-like cells), however, is not fully understood. In this study, we examined the effects of peptide hormones and neurotransmitters on in vitro ghrelin secretion by the recently developed ghrelin-producing cell line MGN3-1. Oxytocin and vasopressin significantly stimulated ghrelin secretion by MGN3-1 cells. Because MGN3-1 cells express only oxytocin receptor mRNA, not vasopressin receptor mRNA, oxytocin is the likely regulator, with the effect of vasopressin mediated by a cross-reaction. We also discovered that dopamine stimulates ghrelin secretion from MGN3-1 cells in a similar manner to the previously known ghrelin stimulators, epinephrine and norepinephrine. MGN3-1 cells expressed mRNA encoding dopamine receptors D1a and D2. The dopamine receptor D1 agonist fenoldopam stimulated ghrelin secretion, whereas the D2, D3 agonist bromocriptine did not. Furthermore, the D1 receptor antagonist SKF83566 attenuated the stimulatory effect of dopamine. These results indicate that the stimulatory effect of dopamine on ghrelin secretion is mediated by the D1a receptor. In conclusion, we identified two direct regulators of ghrelin, oxytocin and dopamine. These findings will provide new direction for further studies seeking to further understand the regulation of ghrelin secretion, which will in turn lead to greater understanding of the physiological role of ghrelin.  相似文献   

14.
OBJECTIVE: To determine the role of Smad3 in modulating hematopoiesis, continuous bone marrow cultures were established from Smad-/- mice, and the longevity of hematopoiesis and extent of adipogenesis in the supportive hematopoietic microenvironment were compared to those from cultures of control, Smad3+/+ or heterozygous Smad3+/- mice. MATERIALS AND METHODS: Long-term bone marrow cultures (LTBMCs) were established from Smad3+/+, Smad3+/-, or Smad3-/- mice. On a weekly basis, the number of cobblestone islands, number of nonadherent cells, confluence of the adherent cells, or CFU-GEMM colonies was determined. Bone marrow stromal cell lines were established and cobblestone island production on these cell lines determined in the presence of nonadherent cells from week-42 Smad3-/- or week-4 C57BL/6J LTBMCs. RESULTS: Initial proliferative capacity of the LTBMCs was similar in all groups through week 20, at which time there was an increase in cobblestone islands and production of nonadherent cells and CFU-GEMM colonies in the Smad3-/- group. By week 28, only the Smad3-/- LTBMCs had significantly maintained increased production of these parameters. Maintenance of cobblestone islands indicative of the most primitive hematopoietic progenitor cells persisted past 45 weeks in Smad3-/- cultures. The Smad3-/- stromal cell line also demonstrated increased support of cobblestone island production when incubated with nonadherent cells from week-42 Smad3-/- or week-4 C57BL/6J LTBMCs. Evaluation of adipocytogenesis in stromal cells showed significantly greater accumulation of adipocytes in lines from Smad3-/- than from Smad3+/+ mice. CONCLUSIONS: These data provide evidence for a significant effect of deletion of the Smad3 signaling pathway in increased hematopoiesis in LTBMCs and support the negative regulatory influence of TGFbeta signaling on adipocytogenesis and long-term hematopoiesis in vitro.  相似文献   

15.
Issaad  C; Croisille  L; Katz  A; Vainchenker  W; Coulombel  L 《Blood》1993,81(11):2916-2924
Analysis of molecular mechanisms associated with stem cell commitment and differentiation requires an in vitro assay that identifies the most primitive hematopoietic stem cells in human bone marrow. Such primitive stem cells usually do not form colonies in short-term semisolid assays and are best identified by their ability to initiate sustained hematopoiesis when they are cocultured with competent stromal cells. In this study, we investigated whether a murine marrow stromal cell line (MS-5) that supports colony-forming unit-spleen (CFU-S) maintenance would permit, both in short-term colony assays and long-term cultures, the development of primitive human stem cells sorted on the basis of their high expression of CD34 and lack of expression of CD38 antigen. In short-term colony assays, this population included almost exclusively primitive progenitor cells. MS-5 cells synergized with any combination of interleukin-3, Steel factor, granulocyte colony- stimulating factor, agar-leukocyte conditioned medium, and erythropoietin and increased at least twofold both the cloning efficiency of CD34++/CD38- cells and the size of the colonies. Furthermore, MS-5 cells triggered the development of multipotent blast cell progenitors with a high proliferative potential, which in these conditions represented 1% to 2% of CD34++/CD38- cells. When MS-5 cells were substituted by human stromal cells or when growth factor combinations were used in the absence of stromal cells, much lower numbers of CFU-blast were detected. This selective action of MS-5 on early progenitors was also observed when MS-5 cells were used as feeders in long-term cultures of CD34++/CD38- cells. Murine cells promoted the expansion of high proliferative potential primitive progenitor cells up to 3 months, although they did not support their differentiation in mature clonogenic progenitors or terminally differentiated cells. Sustained hematopoiesis in these longterm cultures was accounted for by 2% to 5% of initial CD34++/CD38- cells as estimated by limiting dilution experiments. Mechanisms by which murine stromal cells act specifically on human primitive stem cells are unclear, but from our data this effect is unlikely to be explained solely by known species cross-reactive growth factors. Further manipulation of this long-term coculture system should prove useful in identifying stromal molecules regulating commitment and differentiation of early human progenitor cells.  相似文献   

16.
To study the effects of feline leukemia virus (FeLV) on the hematopoietic microenvironment, a two-step feline long-term marrow culture (LTMC) system was developed and characterized. The adherent, stromal layer of these cultures is composed of fibroblastoid cells (50% to 80%), macrophages (10% to 30%), fat cells (10% to 20%), and large, polygonal cells that express muscle actin (1% to 2%). When fresh, enriched marrow mononuclear cells (MMNC) were added to 3-week-old irradiated stromal cultures, nonadherent erythroid progenitors (BFU-E) and granulocyte/macrophage progenitors (CFU-GM) could be detected for up to 5 and 12 weeks, respectively. LTMC stromal layers established from marrow cells from cats viremic with either a nonpathogenic strain of FeLV (FeLV-A/61E) or the anemogenic strain FeLV-C/Sarma were morphologically equivalent to uninfected LTMC stromal layers, although more than 80% of the stromal cells expressed FeLV gag protein. When FeLV-infected stromal cultures were recharged with uninfected MMNC, altered patterns of hematopoiesis were observed, compared with recharged, uninfected stromal cultures. In cultures with infected stroma, fewer nonadherent cells (NAC), nonadherent BFU-E, and nonadherent CFU-GM were detected during the first 4 to 5 weeks after recharge. In contrast, greater numbers of NAC and nonadherent CFU-GM were found from weeks 5 to 12 after recharge. When FeLV-infected stromal cultures were recharged with MMNC from a cat heterozygous for the X-chromosome-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD), the percentage of nonadherent CFU-GM expressing the domestic type G-6-PD isoenzyme remained stable over time (mean % domestic [%d], 53% +/- 3%), and was equivalent to that of nonadherent CFU-GM maintained in uninfected cultures (mean %d, 56% +/- 3%), indicating that clonal drift or clonal selection was not responsible for the enhanced maintenance of CFU-GM. Furthermore, as only 10% to 20% of recharged hematopoietic cells became infected with FeLV in vitro, it is unlikely that the altered pattern was due to progenitor infection. We hypothesize that the increase in NAC and nonadherent CFU-GM in FeLV-infected cultures resulted from enhanced growth factor production by stromal cells. The two-step LTMC system may facilitate the characterization of stromal-derived factors that affect progenitor cell engraftment and proliferation.  相似文献   

17.
目的 探讨三氧化二砷 (As2 O3 )体外对人卵巢上皮癌细胞株 3AO增殖和凋亡的影响及其作用机制。方法 将人卵巢上皮癌细胞株 3AO与不同浓度的As2 O3 进行体外培养 ,采用四甲基偶氮唑蓝(MTT)测定不同浓度As2 O3 对 3AO细胞的生长抑制率 ,采用流式细胞技术检测细胞凋亡率、细胞周期时相及其Fas、FasL、P53 和bcl 2蛋白的表达。结果  0 2 5~ 8 0 μmol /L浓度的As2 O3 均显著抑制3AO细胞的增殖 ,且随浓度升高及作用时间的延长 ,抑制率上升 ,As2 O3 与 3AO细胞联合培养 4 8小时的半数致死量 (IC50 )为 (3 90± 0 2 0 ) μmol /L。 0 2 5~ 4 0 μmol /L浓度的As2 O3 均诱导 3AO细胞凋亡 ,随浓度升高 ,凋亡率上升。As2 O3 阻滞 3AO细胞停滞于S期 ,并诱导细胞凋亡。As2 O3 (2 μmol/L )培养3AO细胞 4 8小时 ,Fas蛋白表达率为 (4 6 76± 4 5 0 ) % ,明显高于对照组的 (6 36± 0 82 ) % ,差异有显著性(P <0 0 5 ) ,FasL、P53 和bcl 2蛋白表达无明显变化 (P >0 0 5 )。结论 As2 O3 以剂量 时间依赖性方式抑制人卵巢上皮癌细胞 3AO增殖并诱导其凋亡 ,其作用机制与上调Fas基因表达有关。  相似文献   

18.
体外培养的肝癌细胞株与正常肝细胞株蛋白质的差异表达   总被引:5,自引:2,他引:5  
目的:运用SELDI蛋白质芯片技术分析体外培养的肝癌细胞株(HepG2)与正常肝细胞株(L02)蛋白质表达差异.方法:在体外培养HepG2和L02细胞株,收获细胞,将细胞用细胞裂解液裂解后,采用SELDI蛋白质芯片技术用IMAC3 及WCX2芯片检测HepG2、L02的蛋白质谱.结果:体外培养的肝癌细胞株与正常肝细胞株的蛋白质存在差异表达,IMAC3芯片共捕获61个蛋白,发现差异峰7个,与 L02细胞相比,其中3个差异蛋白在肝癌细胞中高表达,4个差异蛋白在肝癌细胞中低表达.WCX2芯片共捕获91个蛋白, 发现差异峰14个,其中3个差异蛋白在肝癌细胞中高表达,11 个差异蛋白在肝癌细胞中低表达.结论:SELDI蛋白芯片技术检测肝癌细胞株与正常肝细胞株蛋白质的差异表达方法简便,敏感性高,重复性好.  相似文献   

19.
神经母细胞瘤体外细胞系的构建方法   总被引:1,自引:2,他引:1  
目的 对神经母细胞瘤(NB)进行体外培养,探讨神经母细胞瘤(NB)体外建系的方法。方法 NB患儿新鲜手术标本,采用组织块培养法、酶消化培养法建立原代细胞系;用选择性酶消化法和机械刮除法进行细胞纯化;从细胞形态学、神经特异性烯醇化酶染色、软琼脂克隆形成实验三方面对细胞进行初步鉴定,证实所培养细胞是否为NB细胞。结果 两种细胞培养法均可培养出NB细胞,纯化后可得形态均一的细胞系。结论 可采用适当的细胞培养方法建立神经母细胞瘤的体外细胞系。  相似文献   

20.
To develop a purification strategy for isolating the most primitive hematopoietic stem cells present in normal human marrow we have combined cell separation techniques with an assay for cells that initiate sustained hematopoiesis in vitro in the presence of irradiated human marrow adherent cells. These "feeders" were established by subculturing 2- to 6-week-old primary long-term marrow culture adherent layers at a density of 3 x 10(4) irradiated cells per square centimeter. Test "long-term culture (LTC)-initiating cells" were plated on top of the feeders and the cocultures then maintained as standard long-term marrow cultures with half-media changes and removal of half of the nonadherent cells each week. The total number of myeloid, erythroid, and multilineage clonogenic progenitors present after 5 weeks was used to provide a quantitative assessment of the number of LTC-initiating cells originally added. Using this assay, the density, light scatter, and two cell surface antigen properties of LTC- initiating cells have been defined and compared with cells capable of directly forming colonies in methylcellulose. While the majority of the clonogenic cells were found in the high forward light scatter (FLS) "blast" window, LTC-initiating cells had significantly lower FLS properties and in this respect were more similar to lymphocytes. LTC- initiating cells also expressed less HLA-DR antigen than clonogenic cells. The majority of LTC-initiating cells were found in the top 2% of the CD34 (My10) fluorescence profile, whereas clonogenic cells were found throughout the top 5% of the CD34 fluorescence profile. By combining low FLS, low orthogonal light scatter (OLS), low HLA-DR expression, and high CD34 expression, a population could be obtained that was enriched for LTC-initiating cells approximately 800-fold over unseparated marrow. This population contains only 0.06% of the marrow cells and 2% of the total clonogenic cells, but retains 50% to 60% of the LTC-initiating cells present in the original marrow. The ability to purify these two populations independently shows that the LTC and clonogenic assays identify distinct, although not necessarily nonoverlapping cell types in human marrow. Since clonogenic cells are derived from LTC-initiating cells, the LTC assay clearly detects a more primitive population. The availability of a simple approach that allows the purification of such cells by three orders of magnitude in high yield should be useful for the investigation of early events in hematopoiesis as well as for the definitive isolation of human hematopoietic stem cells with long-term in vivo repopulating potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号