首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adverse experiences during pregnancy induce placental programming, affecting the fetus and its developmental trajectory. However, the influence of ‘positive’ maternal experiences on the placenta and fetus remain unclear. In animal models of early life stress, environmental enrichment (EE) has ameliorated and even prevented associated impairments in brain and behavior. Here, using a maternal immune activation (MIA) model in rats, we test whether EE attenuates maternal, placental and/or fetal responses to an inflammatory challenge, thereby offering a mechanism by which fetal programming may be prevented. Moreover, we evaluate life-long EE exposure on offspring development and examine a constellation of genes and epigenetic writers that may protect against MIA challenges. In our model, maternal plasma corticosterone and interleukin-1β were elevated 3 h after MIA, validating the maternal inflammatory response. Evidence for developmental programming was demonstrated by a simultaneous decrease in the placental enzymes Hsd11b2 and Hsd11b2/Hsd11b1, suggesting disturbances in glucocorticoid metabolism. Reductions of Hsd11b2 in response to challenge is thought to result in excess glucocorticoid exposure to the fetus and altered glucocorticoid receptor expression, increasing susceptibility to behavioral impairments later in life. The placental, but not maternal, glucocorticoid implications of MIA were attenuated by EE. There were also sustained changes in epigenetic writers in both placenta and fetal brain as a consequence of environmental experience and sex. Following MIA, both male and female juvenile animals were impaired in social discrimination ability. Life-long EE mitigated these impairments, in addition to the sex specific MIA associated disruptions in central Fkbp5 and Oprm1. These data provide the first evidence that EE protects placental functioning during stressor exposure, underscoring the importance of addressing maternal health and well-being throughout pregnancy. Future work must evaluate critical periods of EE use to determine if postnatal EE experience is necessary, or if prenatal exposure alone is sufficient to confer protection.  相似文献   

2.
3.
Untreated perinatal depression can have severe consequences for the mother and her children. However, both the efficacy to mothers and safety to exposed infants of pharmacological antidepressants such as selective serotonin reuptake inhibitors (SSRIs), have been questioned. We previously reported that maternal SSRI exposure increased hippocampal IL-1β levels, which may be tied to limited efficacy of SSRIs during the postpartum to the dam but is not yet known whether maternal postpartum SSRIs affect the neuroinflammatory profile of adult offspring. In addition, although controversial, perinatal SSRI exposure has been linked to increased risk of autism spectrum disorder (ASD) in children. Oxytocin (OT) is under investigation as a treatment for ASD, but OT is a large neuropeptide that has difficulty crossing the blood–brain barrier (BBB). TriozanTM is a nanoformulation that can facilitate OT to cross the BBB. Thus, we investigated the impact of maternal postpartum SSRIs and offspring preadolescent OT treatment on adult offspring neuroinflammation, social behavior, and neurogenesis in the hippocampus. Using a model of de novo postpartum depression, corticosterone (CORT) was given in the postpartum to the dam with or without treatment with the SSRI, fluoxetine (FLX) for 21 days postpartum. Offspring were then subsequently treated with either OT, OT + TriozanTM, or vehicle for 10 days prior to adolescence (PD25-34). Maternal FLX decreased hippocampal IL-10 and IL-13 and neurogenesis in both sexes, whereas maternal CORT increased hippocampal IL-13 in both sexes. Maternal CORT treatment shifted the neuroimmune profile towards a more proinflammatory profile in offspring hippocampus, whereas oxytocin, independent of formulation, normalized this profile. OT treatment increased hippocampal neurogenesis in adult males but not in adult females, regardless of maternal treatment. OT treatment increased the time spent with a novel social stimulus animal (social investigation) in both adult male and female offspring, although this effect depended on maternal CORT. These findings underscore that preadolescent exposure to OT can reverse some of the long-lasting effects of postpartum maternal CORT and FLX treatments in the adult offspring. In addition, we found that maternal treatments that reduce (CORT) or increase (FLX) hippocampal inflammation in dams resulted in opposing patterns of hippocampal inflammation in adult offspring.  相似文献   

4.
Neurotrophins are a family of functionally and structurally related proteins which play a key role in the survival, development, and function of neurons in both the central and peripheral nervous systems. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are the family members of neurotrophins. Neurotrophins play a crucial role in influencing the development of the brain and learning and memory processes. Studies demonstrate that they also play crucial role in influencing reproductive and immune systems. Neurotrophins have been shown to influence various processes in the mother, placenta, and fetus during pregnancy. Development and maturation of feto-placental unit and the fetal growth trajectories are influenced by neurotrophins.In addition to neurotrophins, neuropeptides like neuropeptide Y also play a crucial role during various processes of pregnancy and during fetal brain development. Neurotrophins have also been shown to have a cross talk with various angiogenic factors and influence placental development. Alterations in the levels of neurotrophins and neuropeptides lead to placental pathologies resulting in various pregnancy complications like preeclampsia, intrauterine growth restriction and preterm births. Studies in animals have reported low levels of maternal micronutrients like folic acid, vitamin B12 and omega-3 fatty acids influence brain neurotrophins resulting in impaired cognitive functioning in the offspring. Maternal nutrition is also known to affect the expression of neuropeptides. It is essential to understand the role of various neurotrophins across various stages of pregnancy and its relationship with neurodevelopmental outcomes in children. This will lead to early prediction of poor neurodevelopmental outcomes. The present review describes evidence describing the role of neurotrophins in determining pregnancy outcome and altered neurodevelopment in the offspring. The possible mechanism through which maternal nutrition influences neurotrophins and neuropeptides to regulate offspring brain development and function is also discussed.  相似文献   

5.
Behavioral abnormalities in offspring of murine dams that receive immune stimulation with (poly)I:C during pregnancy are well-documented. In this prenatal model, (poly)I:C-induced maternal cytokines, particularly IL-6, appear involved in the etiology of the behavioral abnormalities. While much has been published on the abnormal behaviors of offspring in this model, much less is known about how maternal immune stimulation affects the adaptive immune system of the offspring, and its possible role in the observed pathophysiology. In the present study, pregnant dams were stimulated with (poly)I:C at E12, and 24 h later cytokine levels were measured in maternal sera and amniotic fluids. Lymphocytes from offspring were also analyzed for T Helper (TH) cell subsets. The results demonstrate that lymphocytes from offspring of pregnant dams stimulated with (poly)I:C develop into TH17 cells upon in vitro activation. This preferential TH17 cell differentiation occurs in offspring of pregnant dams with an immunological “memory” phenotype, but not in offspring of immunologically “naive” dams. Comparable levels of IL-6 were found in the sera of immune and naïve pregnant dams, however, there was a disparity between levels of IL-6 in maternal sera and amniotic fluids of (poly)I:C-injected dams. In matings between IL-6 KO dams (IL-6−/−) and wild-type males (IL-6+/+) there was no IL-6 in sera from (poly)I:C-injected dams, but there were high levels of IL-6 in their amniotic fluids. Analysis of supernatants of cultured placental cell preparations from these IL-6 KO dams confirmed that the IL-6 was produced from the fetal (IL-6+/−) component, and heterozygous IL-6+/− offspring could also produce IL-6.  相似文献   

6.
Interleukin (IL)-1β and IL-6 have been implicated in brain development, injury progression, and fetal/maternal immune interactions. We examined IL-1β and IL-6 protein expression in cerebral cortex (CC) and white matter (WM) from non-ischemic ovine fetuses at 87–90, 122–127, and 135–137 days of gestation, pregnant ewes at 87–90 and 135–137 days of gestation, and fetuses exposed to 48 or 72 h of reperfusion after ischemia. Protein expression was determined by Western immunoblot. In non-ischemic CC, IL-1β was higher (P < 0.05) in adult sheep and fetuses at 135–137 than 87–90 and 122–127 days, and IL-6 higher at 122–127 than 87–90 days, and in adults than fetuses at 87–90, 122–127, and 135–137 days of gestation. In non-ischemic fetal WM, IL-6 was higher at 135–137 than 87–90 days, but IL-1β did not differ. In CC, IL-1β was higher in ewes at 135–137 than 87–90 days and IL-6 at 135–137 days and in non-pregnant adults than ewes at 87–90 days of gestation. In WM, IL-1β was higher in ewes at 135–137 than 87–90 days of gestation, but IL-6 did not differ. Forty-eight and 72 h after ischemia, CC IL-1β was higher than in non-ischemic fetuses. Seventy-two hours after ischemia, IL-1β and IL-6 were higher in WM than CC. In conclusion, IL-1β and IL-6 exhibit developmental regulation in fetal brain, change during gestation in brains of pregnant ewes, show regional differences in normal brains of fetuses and ewes, demonstrate differential responses after ischemia in CC and WM, and IL-1β but not IL-6 increases after ischemia in CC.  相似文献   

7.
Multiple sclerosis (MS) is characterized by an autoimmune response against myelin antigens driven by autoreactive T cells. Several lines of evidence indicate that environmental factors, such as previous infection, can influence and trigger autoimmune responses. However, the importance of the gestational period, particularly under inflammatory conditions, on the modulation of MS and related neuroinflammation by the offspring is unknown. This study aimed to evaluate the impact of prenatal exposure to lipopolysaccharide (LPS) during late gestation on the neuroinflammatory response in primary mixed glial cultures and on the progression of experimental autoimmune encephalomyelitis (EAE, an animal model of MS) in the offspring. LPS (Escherichia coli 0127:B8, 120 μg/kg) was administered intraperitoneally to pregnant C57BL/6J mice on gestational day 17, and the offspring were assigned to two experiments: (1) mixed glial cultures generated using the brain of neonates, stimulated in vitro with LPS, and (2) adult offspring immunized with MOG35–55. The EAE clinical symptoms were followed for 30 days. Different sets of animals were sacrificed either during the onset (7 days post-immunization [p.i.]), when spleen and lymph nodes were collected, or the peak of disease (20 days p.i.), when CNS were collected for flow cytometry, cytokine production, and protein/mRNA-expression analysis. The primary CNS cultures from the LPS-treated group produced exaggerated amounts of IL-6, IL-1β and nitrites after in vitro stimulus, while IL-10 production was lowered compared to the data of the control group. Prenatal exposure to LPS worsened EAE disease severity in adult offspring, and this worsening was linked to increased CNS-infiltrating macrophages, Th1 cells and Th17 cells at the peak of EAE severity; additionally, exacerbated gliosis was evidenced in microglia (MHC II) and astrocytes (GFAP protein level and immunoreactivity). The IL-2, IL-6 and IL-17 levels in the spleen and lymph nodes were increased in the offspring of the LPS-exposed dams. Our results indicate that maternal immune activation during late gestation predispose the offspring to increased neuroinflammation and potentiate the autoimmune response and clinical manifestation of EAE.  相似文献   

8.
Pro-inflammatory cytokines contribute to hypoxic–ischemic brain injury. Blood–brain barrier (BBB) dysfunction represents an important component of hypoxic–ischemic brain injury in the fetus. Hypoxic–ischemic injury could accentuate systemic cytokine transfer across the fetal BBB. There has been considerable conjecture suggesting that systemic cytokines could cross the BBB during the perinatal period. Nonetheless, evidence to support this contention is sparse. We hypothesized that ischemia–reperfusion increases the transfer of systemic interleukin-1β (IL-1β) across the BBB in the fetus. Ovine fetuses at 127 days of gestation were studied 4 hours after 30 minutes of bilateral carotid artery occlusion and compared with a nonischemic group. Recombinant ovine IL-1β protein was expressed from an IL-1β pGEX-2 T vector in E. coli BL-21 cells and purified. The BBB function was quantified in 12 brain regions using a blood-to-brain transfer constant with intravenous 125I-radiolabeled IL-1β (125I-IL-1β). Interleukin-1β crossed the intact BBB in nonischemic fetuses. Blood-to-brain transport of 125I-IL-1β was higher (P<0.05) across brain regions in fetuses exposed to ischemia–reperfusion than nonischemic fetuses. We conclude that systemic IL-1β crosses the intact fetal BBB, and that ischemia–reperfusion increases transfer of this cytokine across the fetal BBB. Therefore, altered BBB function after hypoxia–ischemia facilitates entry of systemic cytokines into the brain of the fetus.  相似文献   

9.
Adverse neurodevelopmental outcomes are linked to perinatal production of inflammatory mediators, including interleukin 6 (IL-6). While a pivotal role for maternal elevation in IL-6 has been established in determining neurobehavioral outcomes in the offspring and considered the primary target mediating the fetal inflammatory response, questions remain as to the specific actions of IL-6 on the developing brain. CD-1 male mice received a subdural injection of the bioactive fusion protein, hyper IL-6 (HIL-6) on postnatal-day (PND)4 and assessed from preweaning until adulthood. Immunohistochemical evaluation of astrocytes and microglia and mRNA levels for pro-inflammatory cytokines and host response genes indicated no evidence of an acute neuroinflammatory injury response. HIL-6 accelerated motor development and increased reactivity to stimulation and number of entries in a light/dark chamber, decreased ability to learn to withhold a response in passive avoidance, and effected deficits in social novelty behavior. No changes were observed in motor activity, pre-pulse startle inhibition, or learning and memory in the Morris water maze or radial arm maze, as have been reported for models of more severe developmental neuroinflammation. In young animals, mRNA levels for MBP and PLP/DM20 decreased and less complexity of MBP processes in the cortex was evident by immunohistochemistry. The non-hydroxy cerebroside fraction of cerebral lipids was increased. These results provide evidence for selective effects of IL-6 signaling, particularly trans-signaling, in the developing brain in the absence of a general neuroinflammatory response. These data contribute to our further understanding of the multiple aspects of IL-6 signaling in the developing brain.  相似文献   

10.
Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may “program” offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment.  相似文献   

11.
Depression affects 10–15% of pregnant women and has been associated with preterm delivery and later developmental, behavioural and learning disabilities. We tested the hypothesis that maternal depression is associated with DNA methylation alterations in maternal T lymphocytes, neonatal cord blood T lymphocytes and adult offspring hippocampi. Genome-wide DNA methylation of CD3+ T lymphocytes isolated from 38 antepartum maternal and 44 neonatal cord blood samples were analyzed using Illumina Methylation 450 K microarrays. Previously obtained methylation data sets using methylated DNA immunoprecipitation and array-hybridization of 62 postmortem hippocampal samples of adult males were re-analyzed to test associations with history of maternal depression. We found 145 (false discovery rate (FDR) q<0.05) and 2520 (FDR q<0.1) differentially methylated CG-sites in cord blood T lymphocytes of neonates from the maternal depression group as compared with the control group. However, no significant DNA methylation differences were detected in the antepartum maternal T lymphocytes of our preliminary data set. We also detected 294 differentially methylated probes (FDR q<0.1) in hippocampal samples associated with history of maternal depression. We observed a significant overlap (P=0.002) of 33 genes with changes in DNA methylation in T lymphocytes of neonates and brains of adult offspring. Many of these genes are involved in immune system functions. Our results show that DNA methylation changes in offspring associated with maternal depression are detectable at birth in the immune system and persist to adulthood in the brain. This is consistent with the hypothesis that system-wide epigenetic changes are involved in life-long responses to maternal depression in the offspring.  相似文献   

12.
Activation of the maternal immune system in rodent models sets in motion a cascade of molecular pathways that ultimately result in autism- and schizophrenia-related behaviors in offspring. The finding that interleukin-6 (IL-6) is a crucial mediator of these effects led us to examine the mechanism by which this cytokine influences fetal development in vivo. Here we focus on the placenta as the site of direct interaction between mother and fetus and as a principal modulator of fetal development. We find that maternal immune activation (MIA) with a viral mimic, synthetic double-stranded RNA (poly(I:C)), increases IL-6 mRNA as well as maternally-derived IL-6 protein in the placenta. Placentas from MIA mothers exhibit increases in CD69+ decidual macrophages, granulocytes and uterine NK cells, indicating elevated early immune activation. Maternally-derived IL-6 mediates activation of the JAK/STAT3 pathway specifically in the spongiotrophoblast layer of the placenta, which results in expression of acute phase genes. Importantly, this parallels an IL-6-dependent disruption of the growth hormone-insulin-like growth factor (GH-IGF) axis that is characterized by decreased GH, IGFI and IGFBP3 levels. In addition, we observe an IL-6-dependent induction in pro-lactin-like protein-K (PLP-K) expression as well as MIA-related alterations in other placental endocrine factors. Together, these IL-6-mediated effects of MIA on the placenta represent an indirect mechanism by which MIA can alter fetal development.  相似文献   

13.
Cytokines have been shown to influence susceptibility to febrile seizures and epilepsy. In this study, the role of interleukin-1β (IL-1β) was examined in developing rats. IL-1β and interleukin-1 receptor antagonist (IL-1ra) were administered to developing rats, and seizures were induced by moist warm air. Twenty male Lewis rats (21–23 days old) were divided into two groups (IL-1β and saline control groups) and two holes were made in the skull for EEG electrodes. We applied human recombinant IL-1β intra-nasally 1 h before seizures induced by moist warm air. The brain temperature at the appearance of seizure discharges on EEG, and the latency time from the hyperthermia onset until the appearance of seizure discharges on EEG were measured. And the same study using IL-1ra was performed. The median brain temperature for the IL-1β group, 42.6 °C (range: 41.8–43.0), was significantly lower than that for the control, 42.9 (42.3–43.4) (P = 0.043). The brain temperature for the IL-1ra group, 43.3 (42.8–43.7), was significantly higher than that for the control, 42.9 (42.2–43.5) (P = 0.011), and the latency time for the IL-1ra group, 398 s (270–561), was significantly longer than that for the control, 325 (252–462) (P = 0.035). These results demonstrate that IL-1β promotes hyperthermia-induced seizures in developing rats.  相似文献   

14.
The contribution of peripheral immunity to autism spectrum disorders (ASDs) risk is debated and poorly understood. Some mothers of children with ASD have autoantibodies that react to fetal brain proteins, raising the possibility that a subset of ASD cases may be associated with a maternal antibody response during gestation. The mechanism by which the maternal immune system breaks tolerance has not been addressed. We hypothesized that the mechanism may involve decreased expression of the MET receptor tyrosine kinase, an ASD risk gene that also serves as a key negative regulator of immune responsiveness. In a sample of 365 mothers, including 202 mothers of children with ASD, the functional MET promoter variant rs1858830 C allele was strongly associated with the presence of an ASD-specific 37+73-kDa band pattern of maternal autoantibodies to fetal brain proteins (P=0.003). To determine the mechanism of this genetic association, we measured MET protein and cytokine production in freshly prepared peripheral blood mononuclear cells from 76 mothers of ASD and typically developing children. The MET rs1858830 C allele was significantly associated with MET protein expression (P=0.025). Moreover, decreased expression of the regulatory cytokine IL-10 was associated with both the MET gene C allele (P=0.001) and reduced MET protein levels (P=0.002). These results indicate genetic distinction among mothers who produce ASD-associated antibodies to fetal brain proteins, and suggest a potential mechanism for how a genetically determined decrease in MET protein production may lead to a reduction in immune regulation.  相似文献   

15.
16.
Melatonin is a naturally occurring indolamine with mild antioxidant properties that is neuroprotective in perinatal animals. There is limited information on its effects on preterm brain injury. In this study, 23 chronically instrumented fetal sheep received 25 minutes of complete umbilical cord occlusion at 101 to 104 days gestation (term is 147 days). Melatonin was administered to the ewe 15 minutes before occlusion (0.1 mg/kg bolus followed by 0.1 mg/kg per hour for 6 hours, n=8), or the equivalent volume of vehicle (2% ethanol, n=7), or saline (n=8), or maternal saline plus sham occlusion (n=8). Sheep were killed after 7 days recovery in utero. Fetal blood pressure, heart rate, nuchal activity, and temperature were similar between groups. Vehicle infusion was associated with improved neuronal survival in the caudate nucleus, but greater neuronal loss in the regions of the hippocampus, with reduced proliferation and increased ameboid microglia in the white matter (P<0.05). Maternal melatonin infusion was associated with faster recovery of fetal EEG, prolonged reduction in carotid blood flow, similar neuronal survival to vehicle, improved numbers of mature oligodendrocytes, and reduced microglial activation in the white matter (P<0.05). Prophylactic maternal melatonin treatment is partially protective but its effects may be partly confounded by ethanol used to dissolve melatonin.  相似文献   

17.
Maternal infections with bacterial or viral agents during pregnancy are associated with an increased incidence of schizophrenia in the offspring at adulthood although little is known about the mechanism by which maternal infection might affect fetal neurodevelopment. Exposure of pregnant rodents to the bacterial endotoxin, lipopolysaccharide (LPS), results in behavioral deficits in the adult offspring that are relevant to schizophrenia. It is however unknown whether these effects are due to the direct action of the inflammatory stimulus on the developing fetus, or due to secondary immune mediators (cytokines) activated at maternal/fetal sites. In this study we sought to elucidate the site of action of LPS, following a single intraperitoneal (i.p.) injection, in pregnant rats at gestation day 18. Animals received 5 muCi of iodinated LPS ((125)I-LPS) and its distribution was assessed in maternal/fetal tissues (1-8 h). In addition, induction of the inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, was measured in maternal/fetal tissues following maternal LPS challenge (0.05 mg/kg, i.p.) (2-8 h). (125)I-LPS was detected in maternal tissues and placenta, but not the fetus. This distribution was accompanied by significant increases in TNF-alpha, IL-1beta and IL-6 in maternal plasma and placenta, but not in fetal liver or brain. A significant increase in IL-1beta was however detected in fetal plasma, possibly due to transfer from the maternal circulation or placenta. Collectively, these data suggest that effects of maternal LPS exposure on the developing fetal brain are not mediated by the direct action of LPS, but via indirect actions at the level of the maternal circulation or placenta.  相似文献   

18.

Introduction

Our earlier studies have shown that a maternal diet imbalanced with micronutrients like folic acid, vitamin B12 has adverse effects on fatty acid metabolism, global methylation patterns and levels of brain neurotrophins in the offspring at birth. However, it is not clear if these effects are mediated through oxidative stress. The role of oxidative stress in influencing epigenetic mechanisms and thereby fetal programming is not well studied.

Methods and results

Pregnant female rats were divided into six treatment groups at two levels of folic acid both in the presence and absence of vitamin B12. Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups. Following delivery, 8 dams from each group were randomly shifted back to control and the remaining 8 continued on the same treatment diet. Our results indicate for the first time that an imbalance in maternal micronutrients reduces the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (p < 0.05 for both) at birth. At d21 of life, the levels of MDA and GPx (p < 0.05 for both) in pup brain from the micronutrient imbalanced group were higher as compared to control while omega 3 fatty acid supplementation normalizes the levels of GPx.

Conclusion

Our data shows that maternal micronutrient imbalance adversely affects antioxidant defense mechanisms while omega 3 fatty acid supplementation ameliorates some of the negative effects. Our study throws light on the role of oxidative stress in fetal brain programming and consequential risk for neurodegenerative disorders in later life.  相似文献   

19.
Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA.  相似文献   

20.
Although primary infections with Toxoplasma gondii or herpes viruses during pregnancy are established teratogens, chronic maternal infections with these pathogens are considered far less serious. However, such chronic infections have been associated with neuropsychiatric disorders in the offspring. The risks of non-affective psychoses, including schizophrenia, in offspring associated with these exposures during pregnancy have not been completely defined. We used data from neonatal dried blood samples from 199 cases of non-affective psychosis and 525 matched controls (born 1975–1985). We measure immunoglobulin G antibodies directed at T. gondii, cytomegalovirus and herpes simplex virus type-1 and -2, as well as levels of nine acute phase proteins (APPs). We assessed the interaction between maternal antibodies and neonatal APP in terms of risk of non-affective psychosis. Among controls, maternal exposure to T. gondii or cytomegalovirus, but not to the other herpes viruses, was associated with significantly higher levels of neonatal APPs. Among cases, none of the maternal exposures were associated with any significant change in APPs. We observed increased RR for non-affective psychosis associated with maternal infection with T. gondii (odds ratio 2.1, 95% confidence interval 1.1–4.0) or cytomegalovirus (1.7, 0.9–3.3) only among neonates with low APP levels. These findings suggest that chronic maternal infection with T. gondii or cytomegalovirus affect neonatal markers of innate immunity. Deficient fetal immune responses in combination with maternal chronic infections may contribute to subsequent risk for psychosis. A greater understanding of the maternal–fetal immunological interplay may ultimately lead to preventive strategies toward neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号