首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch基因首先由Metz等发现,后因证实该基因功能缺失的果蝇其翅膀边缘会造成一些缺刻表型而得名.研究表明,Notch是一个高度保守的信号通路,广泛表达于无脊椎动物和哺乳动物等多个物种,在多种器官及细胞的发育过程中作为主要的仲裁信号通路决定细胞的命运,并且通过细胞间相互作用的方式精确地调节着细胞的生长、分化及凋亡[1].  相似文献   

2.
目的 探讨低浓度胰酶不同消化分离时间对体外培养新生大鼠海马NSCs增殖与凋亡的影响.方法 取出生24 h内SD大鼠海马组织,以1.25 g/L胰酶37℃分别消化5、10、15、20和25min(依次为A~E组),获得单细胞悬液后进行培养.通过台盼蓝染色计数、细胞形态观察和神经球数目比较不同消化时间对NSCs活力和生长的影响;用5-溴-2脱氧尿嘧啶核苷(BrdU)标记法检测NSCs的增殖能力;用免疫荧光细胞化学法检测BrdU、nestin的表达:用Annexin V-FITC/PI染色和流式细胞仪检测细胞凋亡率.结果 原代和传代培养的NSCs都能快速增殖并形成神经球;免疫荧光染色结果显示神经球细胞均表达NSCs特异性标志物nestin;所获得的细胞能将BrdU结合到细胞核中;各组培养3、5、7 d后,C组(消化15 min)NSCs成球数最多,BrdU标记克隆率最高,细胞凋亡率最低,与其他组比较差异有统计学意义(P<0.05).结论 体外分离培养的新生大鼠海马NSCs具有增殖能力,1.25 g/L胰酶在不同消化时间对NSCs增殖能力和凋亡率的影响有所不同,消化时间过长或过短都会抑制NSCs增殖,诱导NSCs凋亡,且消化时间越长NSCs的凋亡率越高.
Abstract:
Objective To study the influence of digestion times of low concentration trypsin on the proliferation and apoptosis of neural stem cells (NSCs) in the hippocampus of neonate rats.Methods Hippocampus of neonatal rats (within 24 h) were taken out, and treated with trypsin at 1.25g/L concentration and 37 ℃ for 5, 10, 15, 20 and 25 minutes; unicellular suspension was then successfully got and primary culture and subculture were performed. Effects of trypsinization on cell viability and growth of NSCs were compared by observing the cell morphology and Trypan blue staining.The 5-bromodeoxyuridine labeling was performed to assess the self-renewing and proliferative activities of NSCs. Fluorescence immunocytochemistry was carried out to examine the expressions of BrdU and nestin. Apoptosis was measured by Annexin V-FITC/PI assay and flow cytometry. Results Primary and passage culture of NSCs enjoyed rapid proliferation and formation of neurospheres. The neurosphere cells expressed NSCs specific marker nestin by immunofluorescence; all the neurosphere cells could incorporate BrdU into the nucleus; of the neurospheres obtained from the 3rd, 5th and 7th d, those digested for 15 rain enjoyed the highest level of NSCs neurospheres, the highest BrdU labeled clone and the lowest cell apoptosis as compared with those digested for 5, 10, 20 and 25 min (P<0.05). Conclusion The NSCs isolated from the hippocampus of neonatal rats have the ability of proliferation in vitro. And 1.25 g/L concentration of trypsin with digestion times could positively change the proliferative and apoptosis capacity of NSCs: too short or long digestion times can inhibit the proliferation of NSCs and induce the apoptosis of NSCs; the longer the digestion time, the higher the apoptosis of NSCs.  相似文献   

3.
目的 研究人胚胎额叶皮层和海马组织神经干细胞的自主分化特性。观察额叶皮层神经干细胞和海马神经干细胞特性的异同。方法 从人胚胎额叶皮层和海马组织分别分离提出神经干细胞,经无血清体外培养、扩增,形成神经球。神经球贴壁进行不加诱导剂的自主分化。采用细胞生长曲线检测神经干细胞的增殖能力。使用5-溴脱氧尿嘧啶核苷(BrdU)标记分裂增生的细胞,观察细胞的分裂增殖情况。免疫细胞化学法鉴定神经干细胞的自主分化能力,比较额叶皮层和海马神经干细胞的分化特点。结果 从人胚胎额叶皮层和海马分离的神经干细胞具有增殖能力,额叶皮层神经干细胞的细胞倍增时间为3.9d,海马神经干细胞的细胞倍增时间为3.2d。细胞贴壁分化后出现Nestin、GFAP、Tuj-1表达阳性的细胞。皮层和海马神经干细胞分化产生的Tuj-1阳性细胞分别是40.7%和19.3%;皮层和海马神经干细胞分化产生的GFAP阳性细胞分别是59.3%和80.7%。结论 分离培养的额叶皮层和海马神经干细胞具有自我更新和增殖能力,可以向神经元、胶质细胞分化。额叶皮层神经干细胞与海马神经干细胞的倍增时问、自主分化特点和分化为神经细胞和胶质细胞的比率各有不同。  相似文献   

4.
人胚海马神经干细胞体外培养及分化研究   总被引:11,自引:3,他引:8  
目的 研究人胚胎海马神经干细胞体外长期培养的条件和其在自主分化条件下的分化能力和分化特点。方法 从人胚胎海马分离神经干细胞。采用无血清培养法,进行体外培养、扩增,形成神经球。使神经球贴壁分化,分化培养基不含有任何细胞有丝分裂促进剂。使用5-溴脱氧尿嘧啶核苷(BrdU)标记分裂增生的细胞,观察细胞的分裂增殖情况。使用免疫细胞化学法鉴定神经干细胞及其在不加诱导剂下的自主分化能力。结果 从人胚胎海马分离的神经干细胞具有增殖能力,细胞倍增时间为3.2d。BrdU检测有正在分裂、增殖的细胞。细胞贴壁分化后可以出现Nestin、GFAP、Tuj-1表达阳性的细胞。神经干细胞共培养6个月,传代14代。结论 分离培养的海马神经干细胞具有自我更新和增殖能力,可以长期培养。在不加任何诱导剂的自主分化条件下可以向神经元、胶质细胞分化。少突胶质细胞的培养需要不同的培养条件。分离培养的干细胞具有神经干细胞的特征。可用于基础和临床的相关研究。  相似文献   

5.
Neural stem cells and their use as therapeutic tool in neurological disorders   总被引:10,自引:0,他引:10  
Spontaneous neural tissue repair occurs in patients affected by inflammatory and degenerative disorders of the central nervous system (CNS). However, this process is not robust enough to promote a functional and stable recovery of the CNS architecture. The development of cell-based therapies aimed at promoting brain repair, through damaged cell-replacement, is therefore foreseen. Several experimental cell-based strategies aimed at replacing damaged neural cells have been developed in the last 30 years. Although successful in promoting site-specific repair in focal CNS disorders, most of these therapeutic approaches have failed to foster repair in multifocal CNS diseases where the anatomical and functional damage is widespread. Stem cell-based therapies have been recently proposed and might represent in the near future a plausible alternative strategy in these disorders. However, before envisaging any human applications of stem cell-based therapies in neurological diseases, we need to consider some preliminary and still unsolved issues: (i) the ideal stem cell source for transplantation, (ii) the most appropriate route of stem cell administration, and, last but not least, (iii) the best approach to achieve an appropriate, functional, and long-lasting integration of transplanted stem cells into the host tissue.  相似文献   

6.
Psychosocial stress, and within the neuroendocrine reaction to stress specifically the glucocorticoid hormones, are well-characterized inhibitors of neural stem/progenitor cell proliferation in the adult hippocampus, resulting in a marked reduction in the production of new neurons in this brain area relevant for learning and memory. However, the mechanisms by which stress, and particularly glucocorticoids, inhibit neural stem/progenitor cell proliferation remain unclear and under debate.Here we review the literature on the topic and discuss the evidence for direct and indirect effects of glucocorticoids on neural stem/progenitor cell proliferation and adult neurogenesis. Further, we discuss the hypothesis that glucocorticoid rhythmicity and oscillations originating from the activity of the hypothalamus-pituitary-adrenal axis, may be crucial for the regulation of neural stem/progenitor cells in the hippocampus, as well as the implications of this hypothesis for pathophysiological conditions in which glucocorticoid oscillations are affected.  相似文献   

7.
目的 体外诱导成人骨髓基质细胞 (BMSCs)转化为神经干细胞 (NSCs)进而分化为神经元和胶质细胞。方法 以含有碱性成纤维细胞生长因子 (b FGF)或表皮生长因子 (EGF)加 b FGF或 b FGF、EGF加全反式维甲酸 (ATRA)的培养液培养 BMSCs,进行显微镜观察 ,纤维连接蛋白 (fibronectin)、I型胶原 (collagen )和神经上皮干细胞蛋白 (nestin)免疫组织化学染色和神经元特异烯醇化酶 (NSE) ,胶质纤维酸性蛋白 (GFAP)免疫荧光染色。结果 经诱导物诱导 72 h后 ,fibronectin和 collagen I免疫阳性细胞减少。nestin免疫阳性细胞增多。 7d后 ,其又减少。同时 NSE和 GFAP免疫阳性细胞增多。细胞分化后 ,NSE阳性细胞最多占细胞总数的 2 4 .76 %±2 .72 % ,同时 GFAP阳性细胞占细胞总数的 36 .5 8%± 3.2 6 %。结论  EGF、b FGF、ATRA及适宜的培养液可使BMSCs定向 ,转化为 NSCs,进而分化为神经元和胶质细胞。  相似文献   

8.
大鼠胚胎神经干细胞的分离、培养和鉴定   总被引:1,自引:0,他引:1  
目的 探讨大鼠胚胎神经干细胞体外分离培养增殖及分化,为进一步的实验研究提供基础。方法 原代培养.培养细胞生长状况观察用无血清培养技术进行培养、传代和鉴定。诱导分化后采用SABC法对分化的细胞进行神经元特异性烯醇化酶(NSE)、神经胶质酸性蛋白(GFAP)检测以作细胞鉴定。结果 成功培养出大鼠胚胎神经干细胞,了解其生长规律,并对其进行传代、冻存及复苏,培养的细胞能分化为神经元细胞和神经胶质细胞。结论 大鼠胚胎神经干细胞能在体外适宜的培养条件下进行长期的培养、传代及冻存、复苏,并具有多向分化潜能。  相似文献   

9.
Over the past two decades it became evident that the immune system plays a central role in modulating learning, memory and neural plasticity. Under normal quiescent conditions, immune mechanisms are activated by environmental/psychological stimuli and positively regulate the remodeling of neural circuits, promoting memory consolidation, hippocampal long-term potentiation (LTP) and neurogenesis. These beneficial effects of the immune system are mediated by complex interactions among brain cells with immune functions (particularly microglia and astrocytes), peripheral immune cells (particularly T cells and macrophages), neurons, and neural precursor cells. These interactions involve the responsiveness of non-neuronal cells to classical neurotransmitters (e.g., glutamate and monoamines) and hormones (e.g., glucocorticoids), as well as the secretion and responsiveness of neurons and glia to low levels of inflammatory cytokines, such as interleukin (IL)-1, IL-6, and TNFα, as well as other mediators, such as prostaglandins and neurotrophins. In conditions under which the immune system is strongly activated by infection or injury, as well as by severe or chronic stressful conditions, glia and other brain immune cells change their morphology and functioning and secrete high levels of pro-inflammatory cytokines and prostaglandins. The production of these inflammatory mediators disrupts the delicate balance needed for the neurophysiological actions of immune processes and produces direct detrimental effects on memory, neural plasticity and neurogenesis. These effects are mediated by inflammation-induced neuronal hyper-excitability and adrenocortical stimulation, followed by reduced production of neurotrophins and other plasticity-related molecules, facilitating many forms of neuropathology associated with normal aging as well as neurodegenerative and neuropsychiatric diseases.  相似文献   

10.
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood–brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15 days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP+/GFAP+ quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15 days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.  相似文献   

11.
While neural stem/progenitor cells (NSCs) in the dentate gyrus of the hippocampus have been extensively characterized, the behavior of NSCs in the CA1 and CA3 subfields of the hippocampus is mostly unclear. Therefore, we compared the in vitro behavior of NSCs expanded from the micro-dissected CA1 and CA3 subfields of postnatal day (PND) 4 and 12 Fischer 344 rats. A small fraction (∼1%) of dissociated cells from CA1 and CA3 subfields of both PND 4 and 12 hippocampi formed neurospheres in the presence of EGF and FGF-2. A vast majority of neurosphere cells expressed NSC markers such as nestin, Sox-2 and Musashi-1. Differentiation assays revealed the ability of these NSCs to give rise to neurons, astrocytes, and oligodendrocytes. Interestingly, the overall neuronal differentiation of NSCs from both subfields decreased with age (23–28% at PND4 to 5–10% at PND12) but the extent of oligodendrocyte differentiation from NSCs increased with age (24–32% at PND 4 to 45–55% at PND 12). Differentiation of NSCs into astrocytes was however unchanged (40–48%). Furthermore, NSCs from both subfields gave rise to GABA-ergic neurons including subclasses expressing markers such as calbindin, calretinin, neuropeptide Y and parvalbumin. However, the fraction of neurons that expressed GABA decreased between PND4 (59–67%) and PND 12 (25–38%). Additional analyses revealed the presence of proliferating NSC-like cells (i.e. cells expressing Ki-67 and Sox-2) in different strata of hippocampal CA1 and CA3 subfields of both PND4 and PND 12 animals. Thus, multipotent NSCs persist in both CA1 and CA3 subfields of the hippocampus in the postnatal period. Such NSCs also retain their ability to give rise to both GABA-ergic and non-GABA-ergic neurons. However, their overall neurogenic potential declines considerably in the early postnatal period.  相似文献   

12.
Adult rat hippocampus-derived neural stem cells are incorporated into neural tissues, and differentiate to neuronal and glial cells. However, the cell surface protein molecules are, to date, undefined. RT-PCR, immunoblotting and immunocytochemistry showed the increased expression of N-syndecan, a transmembrane heparan sulfate proteoglycan, in the neural stem cells after the differentiation induced by retinoic acid. Our data indicate that N-syndecan may be involved in the differentiation of neural stem cells.  相似文献   

13.
目的探讨Wnt3a对胚胎大鼠海马神经干细胞(NSCs)体外分化的影响。方法采用机械分离、无血清传代培养法从胎鼠海马中获得NSCs,使用免疫荧光法对其干细胞特性及其受体Fzd3蛋白表达进行鉴定,观察Wnt3a对NSCs体外分化的影响。结果海马NSCs表达特异性标志物巢蛋白及胞膜蛋白Fzd3;体外诱导分化,Wnt3a处理组神经元及星形胶质细胞分化的比例分别为11.25%±0.62%和56.26%±4.82%,而对照组则为8.54%±0.48%和168.42%±5.54%;组间分化差异具有统计学意义(P〈0.05)。结论体外环境下Wnt3a能够促进NSCs向神经元分化,并抑制其向星形胶质细胞分化。  相似文献   

14.
人神经干细胞体外培养、鉴定及电镜观察   总被引:6,自引:9,他引:6  
目的 探讨体外人神经干细胞培养及鉴定。方法 用无血清培养与单细胞克隆技术对人胚胎脑组织进行分离、培养。用光镜、免疫组织化学及电镜对其进行鉴定与观察?结果 人胚胎分离的细胞具有连续分化及克隆能力,克隆球与早期的原始细胞神经上皮干细胞蛋白(nestin)抗原呈阳性。成熟分化后胶质纤维酸性蛋白(GFAP)及神经丝-200(NF-200)抗原呈阳性。电镜下观察较原始的神经干细胞核大、胞浆少、细胞器不发达。诱导分化后,较成熟神经干细胞内可见到发达的细胞器,粗面内质网尤其丰富。并观察到神经微管微丝、胶样丝等结构。结论 胚胎脑组织在体外培养并克隆成神经球,具有很强的增殖能力,是多分化潜能干细胞。  相似文献   

15.
目的比较分析体外诱导小鼠胚胎干细胞分化为神经干细胞的方法并观察神经干细胞移植后对脊髓损伤小鼠的治疗作用。方法采用维甲酸(retinoic acid, RA)方案及音猬因子(sonihedgehog,SHH)方案进行体外诱导培养,然后用抗Nestin、NeuN、GFAP、O1抗体进行免疫细胞化学染色鉴定。脂质体转染法将LacZ基因导入小鼠胚胎干细胞,继而在SHH方案诱导后移植进入脊髓横断小鼠体内,分别于移植后1个月、2个月冰冻切片进行X-gal染色追踪ES细胞并对X-gal阳性细胞行免疫荧光组织化学染色鉴定细胞类型;BBB评分分析了小鼠后肢运动功能的恢复。结果RA与SHH方案得到的Nestin阳性细胞的比例分别为32.54%和68.51%。细胞移植后1个月、2个月均可在脊髓横断小鼠体内检测到大量的X-gal阳性细胞,它们与宿主的脊髓组织相整合。免疫荧光组织化学染色显示X-gal阳性细胞主要表达ChAT和MBP。细胞移植组BBB评分高于对照组。结论与RA相比,SHH是一种较为高效的诱导剂,经SHH诱导得到的神经干细胞移植到脊髓横断的小鼠体内至少可存活2个月,表达成熟用胆碱能神经元的标志及髓鞘碱性蛋白,并且可以促进脊髓损伤小鼠运动功能的恢复。  相似文献   

16.
Wistar大鼠胚胎脑源性神经干细胞分离、培养及其鉴定   总被引:2,自引:0,他引:2  
目的 分离培养、鉴定Wistar大鼠胚胎脑源性神经干细胞.方法 从Wistar大鼠胚胎脑组织中分离胚胎脑源性神经干细胞,采用无血清培养技术进行培养、传代,应用免疫细胞化学染色对培养的细胞及其分化的细胞进行鉴定.结果 分离培养获得大量悬浮生长的细胞团,该细胞具有连续增殖的能力,并能分化为神经元和神经胶质细胞,经传代培养8代后仍具干细胞特性.结论 Wistar大鼠胚胎脑组织中可成功分离培养神经干细胞,该细胞在体外适宜的条件下能够大量增殖,并具有多向分化潜能.
Abstract:
Objective To isolate and culture the brain-derived neural stem cells (NSCs) from Wistar rat embryos and identify the ability of proliferation and differentiation of NSCs. Methods The neural stem cells were obtained from the brain of Wistar rat embryos. They were cuhured and passaged with serum-free medium. Cultured and differentiated cells were identified with immunocytochemistry staining. Results Clusters of neural stem cells were obtained in suspension and these cells could be continuously proliferated. And the cells could be differentiated into neurons and astrocytes which maintaining the main characteristics of NSCs after 8 passages of culture. Conclusions The neural stem ceils derived from rat embryonic brains are able to proliferate and multiple potent for differentiation.  相似文献   

17.
大鼠胚胎神经干细胞的培养与鉴定   总被引:3,自引:0,他引:3  
目的体外培养大鼠胚胎神经干细胞(NSCs),观察其生长、增殖特点。方法取孕15d的大鼠,采用机械分离法获取海马区细胞,以106个细胞/m l的密度接种到无血清NSCs培养基中培养,分离纯化至第5代。以10%胎牛血清(FBS)和2%多聚赖氨酸诱导分化,免疫细胞化学鉴定。结果取NSCs的细胞球及诱导分化后的细胞作免疫细胞化学染色鉴定,细胞分别呈小鼠抗巢蛋白(nestin)、小鼠抗微管蛋白(-βtubu lin)、豚鼠抗胶质纤维酸性蛋白(GFAP)及小鼠抗O4免疫化学反应阳性。结论大鼠胚胎脑海马区有NSCs存在,离体培养时能分裂增殖,并能被诱导分化。  相似文献   

18.
Alzheimer’s disease cannot be cured as of yet.Our current understanding on the causes of Alzheimer’s disease is limited.To develop treatments,experimental models that represent a particular cellular phase of the disease and more rigorous scrutiny of the cellular pathological mechanisms are crucial.In recent years,Alzheimer’s disease research underwent a paradigm shift.According to this tendency,Alzheimer’s disease is increasingly being conceived of a disease where not only neurons but also multiple cell types synchronously partake to manifest the pathology.Knowledge on every cell type adds an alternative approach and hope for the efforts towards the treatment.Neural stem cells and their neurogenic ability are making an appearance as a new aspect of the disease manifestation based on the recent findings that neurogenesis reduces dramatically in Alzheimer’s disease patients compared to healthy individuals.Therefore,understanding how neural stem cells can form new neurons in Alzheimer’s disease brains holds an immense potential for clinics.However,this provocative idea requires further evidence and tools for investigation.Recently,single cell sequencing appeared as a revolutionary tool to understand cellular programs in unprecedented resolution and it will undoubtedly facilitate comprehensive investigation of different cell types in Alzheimer’s disease.In this mini-review,we will touch upon recent studies that use single cell sequencing for investigating cellular response in Alzheimer’s disease and some consideration pertaining to the utilization of neural regeneration for Alzheimer’s disease research.  相似文献   

19.
Huang F  Schneider JS 《Neurotoxicology》2004,25(6):1001-1012
Lead is a potent neurotoxin, causing brain damage and cognitive deficits in children even at low exposure levels. Although lead neurotoxicity can occur after prenatal or postnatal exposure, little is known of the effects of lead on embryonic neural stem cells (NSCs) or the extent to which NSCs originating in different brain regions may be differentially sensitive to the effects of lead exposure. The present study examined the effects of lead on proliferation and differentiation of neural stem cells (NSCs) originating from E15 rat cortex (CX), striatum (ST) or ventral mesencephalon (VM). Free-floating neurospheres were grown under standard conditions or in lead (0.01-100 microM)-containing conditioned media for 5 days and proliferation assessed by 3H-thymidine uptake. In other studies, control and lead-exposed neurospheres were collected, dissociated and re-plated in control or lead-containing differentiation media for 7 days. Cells were immunostained for visualization of mature neural and glial markers and counted. Lead exposure (0.01-10 microM) had no effect on neurosphere viability but caused a significant dose-dependent inhibition of proliferation in VM and ST but not CX neurospheres. The number of MAP2 positive neurons differentiated from lead-exposed neurospheres of VM and ST origin (but not CX) was significantly decreased from control as were the number of oligodendrocytes obtained, regardless of their region of origin. In contrast, lead exposure significantly increased the number of astrocytes obtained regardless of site of origin. These data suggest that even low levels of lead can differentially affect proliferation and differentiation of embryonic NSCs originating from different brain regions and supports the need for prevention of prenatal lead exposure.  相似文献   

20.
目的研究神经干细胞(NSC)移植到慢性海人酸癫疒间鼠海马CA3区后细胞的存活、迁移、分化及与宿主细胞的整合情况。方法将增强型绿色荧光(EGFP)标记的原代培养NSC移植到慢性癫疒间鼠的海马CA3区。分别在移植后第2、4、8、12周4个时间点取脑冷冻切片,在倒置荧光显微镜下观察移植细胞的存活和迁移。采用免疫荧光染色观察移植细胞的分化和整合情况。结果NSC在移植后2周未见迁移;移植后4周,可见移植细胞迁移到距移植区最近的齿状回;8周和12周,移植细胞可迁移到齿状回和海马各区。12周仍有大量移植细胞(65 045.00±881.72)存活。NSC在移植区以分化为胶质细胞为主,在齿状回和海马各区以分化为神经元为主;-γ氨基丁酸(GABA)能神经元在齿状回门区和海马CA3区分化比例较高。突触素免疫荧光染色示移植细胞与宿主细胞间产生了有机的整合。结论NSC移植于慢性癫疒间鼠的海马CA3区后,能够迁移到齿状回和海马各区并长期存活,且可分化为神经元,特别是GABA能神经元,并能与宿主细胞有机整合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号