首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to examine the role of the benzodiazepine/GABA and N-methyl-d-aspartate (NMDA) systems in the convulsive effect of cocaine in mice. When cocaine (3.5 mg/ml) solution was infused into the tail vein at a rate of 0.3 ml/min, mice showed clonic and tonic convulsions. These seizures were not affected by low doses of bicuculline or picrotoxin, a GABAA receptor antagonist and a Cl ion channel blocker, respectively. Aminooxyacetic acid (AOAA), a GABA deaminase inhibitor, and phenobarbital, a Cl ion channel activator, and baclofen, a GABAB receptor agonist, also had no effect on these convulsions. Benzodiazepine inverse agonist β-DMCM, at a dose which by itself had no convulsive effect lowered the convulsive threshold of cocaine. This lowered convulsive threshold was reversed by flumazenil, a benzodiazepine inverse antagonist, and diazepam, a benzodiazepine full agonist, which by themselves did not inhibit cocaine seizure. It is likely that cocaine seizure involves a benzodiazepine (β-carboline) recognition site other than the benzodiazepine/GABAA receptor–Cl ionophore complex system. CPP and MK-801, competitive and noncompetitive NMDA receptor antagonists, respectively, inhibited cocaine seizures. The inhibitory effects of CPP on cocaine convulsion were reversed by a low dose of NMDA, which by itself did not induce seizure. A dopamine D1 receptor agonist SKF38393 enhanced both clonic and tonic convulsions, while a dopamine D2 receptor agonist bromocriptine inhibited these convulsions. These stimulatory and inhibitory effects were reversed by the D1 and D2 receptor antagonists, SCH23390 and haloperidol, respectively. These results suggest that the cocaine-induced convulsion may involve an activation of the NMDA–Ca ionophore complex system, which is mediated by the dopaminergic system, and a β-carboline recognition site other than the benzodiazepine/GABAA receptor–Cl ionophore complex system.  相似文献   

2.
Excitatory amino acids modulate epileptogenesis in the brain stem   总被引:3,自引:0,他引:3  
Elazar Z  Berchanski A 《Neuroreport》2000,11(8):1777-1780
Activation of cholinergic mechanisms in the pontine reticular formation by local microinjections of carbachol was shown to induce pontine electrographic seizures and clonic convulsions. In this study we found that glutamate microinjections into the pons induced similar electrographic seizures and clonic convulsions. Microinjections into the PRF of glutamate in subconvulsive doses prior to carbachol potentiated the epileptogenic effect of carbachol. The duration of the seizure activity increased and the convulsions became more severe. The NMDA receptor antagonist MK-801 and the non-NMDA receptor antagonists DNQX significantly reduced the potentiating effect of glutamate. These results indicate a possible role of EAA receptors in the generation of epilepsy in the pons. They also suggest the importance of studying the role of synergistic interactions between EAA mechanisms and cholinergic mechanisms in the various pontine functions.  相似文献   

3.
Behavioral sensitization to psychomotor stimulants is accompanied by a number of alterations in the mesoaccumbens dopamine (DA) system, including DA autoreceptor subsensitivity in the ventral tegmental area (VTA) and DA D1 receptor supersensitivity in the nucleus accumbens (NAc). We investigated the role of excitatory amino acid (EAA) transmission in the induction of cocaine sensitization and these accompanying DA receptor alterations. To do so, we used three glutamate receptor antagonists, the noncompetitive NMDA receptor antagonist MK-801 (0.1 mg/kg), the competitive NMDA receptor antagonist CGS 19755 (10.0 mg/kg), and the AMPA receptor antagonist NBQX (12.5 mg/kg). Rats received daily double injections of either one of these antagonists or saline with either cocaine (15.0 mg/kg) or saline for 5 days. Cocaine sensitization was defined as an increase in horizontal locomotor activity in response to cocaine challenge (7.5 mg/kg) on the third day of withdrawal. All three antagonists prevented the induction of cocaine sensitization. Extracellular single cell recordings revealed that these antagonists also prevented the induction of DA autoreceptor subsensitivity in the VTA and DA D1 receptor supersensitivity in the NAc. To determine whether the relevant glutamate receptors were under regulation by medial prefrontal cortex (mPFC) EAA efferents, we next lesioned the mPFC bilaterally with ibotenic acid at least 7 days before repeated cocaine treatment began. These lesions also prevented the induction of cocaine sensitization and the associated neuroadaptations. Our findings indicate that glutamate transmission from mPFC to the mesoaccumbens DA system is critical for the induction of cocaine sensitization and its cellular correlates.  相似文献   

4.
Phosphinothricin (PPT), the active component of a widely used herbicide, induces convulsions in rodents and humans. PPT shares structural analogy with glutamate, which could explain its powerful inhibitory effect on glutamine synthetase and its probable binding to glutamate receptors. To characterize the epileptogenic effect of PPT, electrographic and behavioural studies were carried out on PPT-treated adult mice. We investigated the role of N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) production in induction of seizures triggered by PPT, by using specific NMDA antagonist and nitric oxide synthase (NOS) inhibitor. The inhibitory effect of PPT on glutamine synthetase of mouse brain was assessed after in vitro and in vivo treatments. The results obtained show that PPT induces tonic-clonic seizures and generalized convulsions in mice. They suggest that these seizures are mediated through an NMDA receptor activation and NO production, without involvement of inhibition of glutamine synthetase.  相似文献   

5.
DNQX blockade of amphetamine behavioral sensitization   总被引:4,自引:0,他引:4  
The role of the N-methyl-D-aspartate (NMDA) and non-NMDA excitatory amino acid (EAA) receptors in the mechanism of behavioral sensitization to amphetamine-induced sterotypy was investigated in mice. The results confirm previous observations that NMDA antagonists can block the induction of the phenomenon but not the expression; in contrast, DNQX, a non-NMDA receptor antagonist, can block both the induction and the expression of the sensitization. The differential effects of the two classes of antagonists suggest that the induction and the expression are the result of different mechanisms, both of which involve the EAA system. The DNQX results differ from those of haloperidol, which can also block both the induction and expression, because haloperidol can completely block the amphetamine-induced responses in naive and in sensitized animals; whereas DNQX is without effect on the amphetamine activity in naive animals and, in the sensitized animal, can block only that portion of the response that is derived from the sensitization phenomenon. The effects of the EAA antagonists support the hypothesis that the enhanced responsiveness in the sensitized animals is derived from the activation of EAA receptors, which, in turn, increases the release of dopamine in the striatum. Finally, the involvement of the non-NMDA receptors in the expression of the behavioral sensitization further substantiates the postulate that the amphetamine-induced sensitization is a behavioral manifestation of long-term potentiation (LTP).  相似文献   

6.
The localization of serotonin-7 (5-HT(7)) receptors and the biological activity of ligands have suggested that 5-HT(7) receptors might be involved in pain, migraine, epilepsy, anxiety, depression, memory, and sleep. In the present study, the potential involvement of 5-HT(7) receptors in epilepsy and other seizure disorders was assessed by comparing the seizures produced by three types of electrical stimulation and three chemical convulsants in 5-HT(7) receptor-deficient (knockout, KO) mice to those seizures observed in wild-type (WT) mice. Thresholds for producing electroshock-induced clonic seizures did not differ between KO versus WT mice. However, thresholds for producing electroshock-induced tonic seizures were significantly lower in KO than in WT mice. Seizures produced by pentylenetetrazole (PTZ, a GABA(A) receptor antagonist), N-methyl-d-aspartate (NMDA, an agonist at NMDA-type glutamate receptors), and cocaine (an inhibitor of monoamine uptake) were also studied. PTZ was more potent in inducing seizures in 5-HT(7) KO mice than in wild-type mice. Likewise, cocaine was more potent in inducing seizures in 5-HT(7) KO than in WT mice; moreover, death resulted from cocaine administration in 5-HT(7) KO mice but not in WT mice. There was a similar trend for NMDA that did not reach statistical significance. The present findings point to the potential for a generalized reduction in seizure threshold with constitutive deletion of the 5-HT(7) receptor gene. Since seizures have not been reported with pharmacological blockade of the receptor, the findings suggest that adaptive changes may play a role in the low seizure thresholds in these mice. In addition, the data suggest that the lower thresholds for seizures produced by diverse mechanisms should be taken into account when interpreting other aspects of the phenotype and behavioral pharmacology of this mouse.  相似文献   

7.
PURPOSE: N-methyl D-aspartate (NMDA) preconditioning has been used to prevent cellular death induced by glutamate or NMDA in cultured neurons. Quinolinic acid (QA)-induced seizures are used to average NMDA receptors-evoked neurotoxicity in animal models. The purpose of this study was to investigate the potential neuroprotective effects of NMDA preconditioning against QA-induced seizures and hippocampal damage in vivo. METHODS: Mice were pretreated with nonconvulsant doses of NMDA for different times before i.c.v. QA infusion and observed for the occurrence of seizures. Hippocampal slices from mice were assayed to measure cellular viability. RESULTS: NMDA preconditioning presented 53% protection against QA-induced seizures, as well as QA-induced cellular death in the hippocampus. The NMDA receptor antagonist, MK-801, prevented the protection evoked by NMDA preconditioning. The adenosine A1 receptor antagonist, CPT, prevented the protection evoked by NMDA preconditioning against QA-induced seizures, but not against QA-induced hippocampal cellular damage. The adenosine A1 receptor agonist, CPA, did not mimic the NMDA preconditioning-evoked protective effects. CONCLUSIONS: These results suggest that in vivo preconditioning with subtoxic doses of NMDA protected mice against seizures and cellular hippocampal death elicited by QA, probably through mechanisms involving NMDA receptors operating with adenosine A1 receptors.  相似文献   

8.
Antagonists of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid (EAA) receptors blocked cocaine-induced stereotypy, locomotor stimulation and convulsions. These effects in general appear to involve selectively NMDA type of receptors. The results suggest that NMDA-activated systems are an integral component in the reaction sequences involved in the expression of several behavioral effects of cocaine.  相似文献   

9.
Alterations of excitant amino acid (EAA) action are implicated in seizure susceptibility in the genetically epilepsy-prone rat (GEPR). The inferior colliculus (IC) is critical for audiogenic seizure (AGS) initiation in the GEPR. The present study observed that bilateral microinjection into the IC of L-canaline, a glutamate synthesis inhibitor, decreased AGS severity in the GEPR and also decreased potassium-evoked release of glutamate from IC slices. Bilateral microinjection of NMDA receptor antagonists, 2-amino-7-phosphonoheptanoate (AP7) or 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) into IC blocked AGS, and an antagonist at non-NMDA EAA receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), also blocked AGS. NMDA receptor antagonists were 5-200 times more effective than CNQX. Microinjection of a non-competitive NMDA receptor antagonist, dizocilpine (MK-801), into IC had little effect except with very high doses. Microinjection of CPP or AP7 into the IC blocked AGS at considerably lower doses as compared to pontine reticular formation (PRF). However, MK-801 attenuated AGS when microinjected into PRF at doses that were ineffective in IC. Systemically administered CPP blocked AGS and significantly reduced IC neuronal firing in the behaving GEPR, suggesting an important action of systemically administered NMDA receptor antagonists on brainstem auditory nuclei critical to AGS. The present results support a critical role for glutamate acting, in part, through NMDA receptors in IC in initiation of AGS.  相似文献   

10.
Administration of 1-methyl-4-phenyl-pyridinium ion (MPP+) into the lateral ventricle of mice induced clonic convulsions and lethality in a dose- and age-dependent manner. MPP+ failed to induce seizures in 4-day-old mice, and the convulsant response to MPP+ was enhanced in aged mice. The seizures triggered by MPP+ in adult mice were blocked by coadministration of L-glutamate antagonists active at kainate/AMPA receptors such as gamma-D-glutamylaminomethylsulphonate and 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline. The N-methyl-D-aspartate (NMDA) antagonist 2-amino-7-phosphonoheptanoate, but not kynurenate, also protected mice against MPP+ convulsions. Similarly, the benzodiazepine midazolam and the adenosine A1 agonist 2-chloroadenosine, but not antiepileptic drugs such as phenobarbital, trimethadione, ethosuximide, or acetazolamide, showed a protective efficacy against seizures. Additionally, the excitatory amino acid antagonists as well as phenobarbital, midazolam and 2-chloroadenosine protected mice against MPP+ lethality. These data suggest that convulsant action of MPP+ and its lethality in rodents may be mediated by excitatory amino acids.  相似文献   

11.
Glycine potentiates strychnine-induced convulsions: role of NMDA receptors   总被引:5,自引:0,他引:5  
Strychnine poisoning leads to seizures that have traditionally been attributed to competitive antagonism of glycine receptors in the spinal cord. Although glycine is thought to act as an inhibitory neurotransmitter, a strychnine-insensitive glycine (Gly2) receptor has been recently described in cultured mouse neurons that is thought to be allosterically linked to the excitatory amino acid NMDA receptor. The present study demonstrates that intrathecally administered glycine, in contrast to other putative inhibitory transmitters, potentiates rather than inhibits strychnine-induced convulsions in mice. The seizure-potentiating effects of glycine are blocked by aminophosphonovaleric acid, an NMDA antagonist. In addition, in animals pretreated with a subconvulsive dose of strychnine to block strychnine-sensitive glycine receptors (Gly1), glycine enhances, rather than inhibits, NMDA-induced convulsions. Together, these results indicate that the seizure-potentiating effects of glycine involve activation of NMDA receptors. This study provides the first evidence that glycine is capable of modulating the activity of NMDA receptors in the spinal cords of adult animals. In light of the elevated concentrations of glycine found in epileptogenic brain foci, these data also suggest that glycine may be a positive modulator in the production of epileptic seizures.  相似文献   

12.
Excitatory amino acid pathways in brain-stimulation reward   总被引:1,自引:0,他引:1  
A range of agonists and antagonists active at different glutamate/aspartate (Glu/Asp) receptor subtypes were injected into rat ventral tegmental (VTA) sites downstream from self-stimulation electrodes in the medial forebrain bundle. Control injections were made into the contralateral tegmentum. Variable-interval (VI 10 s) self-stimulation was not significantly affected by a specific antagonist of N-methyl-D-aspartate (NMDA)-type receptors (D,L-2-amino-5-phosphonovaleric acid (2-AP5), 10 and 50 nmol). Broad-spectrum excitatory amino acid (EAA) antagonists viz cis-2,3-piperidine dicarboxylate (cPDA) (10 and 50 nmol), gamma-D-glutamylaminomethyl sulphonic acid (GAMS) (10 nmol) and p-chlorobenzoyl-2,3-piperazine dicarboxylic acid (pCB PzDA) (2.0 and 10 nmol), active at kainate, quisqualate, as well as NMDA receptors, all produced significant depression of responding when injected into the ipsilateral, but not the contralateral, tegmentum. Compounds inhibiting Glu/Asp reuptake had variable effects: strong depression with dihydrokainic acid (7.5 nmol), or no significant effect (L-threo-3-hydroxyaspartic acid, 2.0 and 10 nmol). The receptor agonist, NMDA (10 nmol), depressed responding regardless of injection side; kainic and responding regardless of injection side; kainic and quisqualic acid elicited myoclonic and other non-specific responses in preliminary tests, and were not examined further; enhanced responding was not seen. The side-specific blockade of responding by non-NMDA antagonists indicates the existence of non-NMDA EAA terminals in the VTA, signalling the receipt of hypothalamic brain-stimulation reward. Caudally directed EAA projections terminating on A10 dopamine cell bodies may account for depression of self-stimulation by EAA antagonists.  相似文献   

13.
The hypothesis that excitatory retinotectal transmission is mediated primarily by a glutamate or glutamate-related transmitter-receptor system was examined by recording extracellular field potentials in isolated sections of goldfish tectum while stimulating the optic tract and applying antagonists of excitatory amino acid (EAA) neurotransmission via the tissue bath. Three antagonists of EAA receptors produced greater than 90% reduction in the postsynaptic components of these evoked potentials. In order of potency, these were (with the concentrations that produced 50% block): kyurenic acid (0.15 mM), γ- -glutamyglycine (0.33 mM), and cis-2,3-piperidine dicarboxylic acid (0.47 mM). All 3 log concentration-effect curves were parallel, symmetrically sigmoidal, and somewhat steeper than non-cooperative single-site binding isotherms. All antagonist actions stabilized within 15 min and were completely reversible. An EAA antagonist potent and selective for the N-methyl- -aspartate (NMDA) subtype of receptor, 2-amino-5-phosphonovalerate, had little or no effect in either normal, low [Ca2+]/high [Mg2+], or Mg2+-free media. These data indicate that an excitatory amino acid receptor not of the NMDA subtype plays an essential role in fast excitatory retinotectal transmission, and would be most consistent with the mediation of most or all excitatory retinotectal transmission by a single class and subtype of glutamate receptor.  相似文献   

14.
Excitatory amino acid transmitters are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using N -methyl-d-aspartate (NMDA) receptors, although more recent evidence indicates potential roles for the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as well. In the present experiments in amygdala-kindled rats, i.e. a model of partial epilepsy, competitive and uncompetitive NMDA antagonists exerted only weak anticonvulsant effects, whereas the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX) potently increased focal seizure threshold and inhibited seizure spread from the focus. These effects of NBQX were dramatically increased by pretreatment with low doses of NMDA antagonists, whereas adverse effects of NBQX were not potentiated. These data suggest that both non-NMDA and NMDA receptors are critically involved in the kindled state, and that combinations of AMPA and NMDA receptor antagonists provide a new strategy for treatment of epileptic seizures.  相似文献   

15.
Converging evidence suggests that dopamine (DA) transmission in nucleus accumbens (NAcc) is modulated locally by an excitatory amino acid (EAA)-containing input possibly originating in medial prefrontal cortex (PFC). In the present study, we examined the effects of intra-NAcc administration of EAA receptor antagonists on stress-induced increases of NAcc DA levels and of dendritically released DA in the ventral tegmental area (VTA). Local injection of the NMDA receptor antagonist—AP-5 (0.05, 0.5, and 5.0 nmoles)—dose-dependently potentiated increases in NAcc DA levels elicited by 15 min of restraint stress. In contrast, local application of equivalent doses of the kainate/AMPA receptor antagonist—DNQX—failed to alter the NAcc DA stress response reliably. In a separate experiment, we found that intra-NAcc injection of AP-5 also potentiated stress-induced increases in VTA DA levels. These results indicate that EAAs acting at NMDA receptors in NAcc can modulate stress-induced DA release in this region. Our data indicate, however, that this action exerts an inhibitory influence on the NAcc DA stress response, suggesting that the relevant population of NMDA receptors are not located on NAcc DA terminals. The fact that intra-NAcc AP-5 injections also potentiated the DA stress response in VTA suggests instead an action mediated by NMDA receptors located on NAcc neurons that feedback, directly or indirectly, to cell bodies of the mesocorticolimbic DA system. Synapse 26:225–234, 1997. © 1997 Wiley-Liss Inc.  相似文献   

16.
Neuronal damage during acute viral encephalomyelitis can result directly from virus infection or indirectly from the host immune response to infection. In neurodegenerative diseases and stroke, neuronal death also can result from excess release of excitatory amino acid neurotransmitters, such as glutamate. To determine the role of glutamate excitotoxicity in fatal alphavirus-induced paralytic encephalomyelitis, we treated mice infected with neuroadapted Sindbis virus (NSV) with antagonists of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtypes of glutamate receptors. Both apoptotic and necrotic neurons in the hippocampus were decreased in animals treated with MK-801, an NMDA receptor antagonist, or GYKI-52466, an AMPA receptor antagonist. However, only AMPA receptor blockade prevented damage to spinal cord motor neurons and protected mice from paralysis and death due to NSV infection. Protection was not caused by altered virus replication because treatment did not affect virus distribution and actually delayed virus clearance. These results provide evidence that NSV infection activates neurotoxic pathways that result in aberrant glutamate receptor stimulation and neuronal damage. Furthermore, AMPA receptor-mediated motor neuron death is an important contributor to paralysis and mortality in acute alphavirus-induced encephalomyelitis.  相似文献   

17.
The effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPP-ene; SDZ EAA 494) upon ischemic brain damage have been examined in anesthetized cats. Focal cerebral ischemia was produced by permanent occlusion of the middle cerebral artery (MCA) and the animals were killed 6 h later. The amount of early ischemic brain damage was assessed in coronal sections at 16 predetermined stereotaxic planes. Pretreatment with D-CPP-ene (15 mg/kg i.v. followed by continuous infusion at 0.17 mg/kg/min until death), 15 min prior to MCA occlusion, significantly reduced the volume of ischemic brain damage (from 20.6 +/- 9.9% of the cerebral hemisphere in vehicle-treated cats to 7.2 +/- 4.4% in drug-treated cats; p less than 0.01). The competitive NMDA receptor antagonist D-CPP-ene is as effective as noncompetitive NMDA antagonists in reducing the amount of ischemic brain damage in this model of focal cerebral ischemia in a gyrencephalic species.  相似文献   

18.
This study evaluated the role of excitatory amino acid (EAA) receptor activation in spreading depression (SD), using the in vitro turtle cerebellum as a model system. SD was triggered by electrical stimulation or by elevated K+ after the cerebellum had been conditioned for at least 30 min with physiological saline in which most of the chloride had been replaced by propionate. SD was recognized as a transient (1-3 min) negative shift of extracellular potential accompanied by depression of evoked potentials (15-30 min) and an increase of extracellular K+ up to 60 mM, which spread across the cerebellum at rates of 1-7 mm/min. SD usually commenced in the granular layer, which apparently contains the 3 major EAA receptor subtypes, quisqualate, kainate and N-methyl-D-aspartate (NMDA), then subsequently spread to the molecular layer, which is largely free of NMDA receptors. Glutamate, aspartate, NMDA, kainate and quisqualate all triggered SD. Kynurenic acid and 2-aminophosphonovaleric acid (APV) inhibited SD under certain conditions further suggesting involvement of EAA receptors. The initiation of SD was blocked by high Mg2+ and facilitated in low extracellular Mg2+, which also eliminated the delay in molecular layer SD onset. Our data suggest that no one EAA receptor subtype is singly responsible for SD.  相似文献   

19.
Beta-N-methylamino-L-alanine (BMAA) and beta-N-oxalylamino-L-alanine (BOAA) are chemically related amino acids present in the seeds of Cycas circinalis and Lathyrus sativus, respectively. Consumption of these seeds has been linked to Guam amyotrophic lateral sclerosis (BMAA) and lathyrism (BOAA; a form of primary lateral sclerosis). A single large dose of BOAA or BMAA causes seizures in newborn mice and postsynaptic neuronal edema and degeneration in CNS explants. We report that the acute neurotoxic actions of these amino acids are blocked selectively by specific glutamate-receptor antagonists (administered intracerebroventricularly) (i.c.v.) prior to the amino acid. Administration of BOAA i.c.v. to neonatal mice (ED100 = 50 micrograms) elicits a spectrum of time-dependent behavioral states including arm and leg rigidity, convulsions, and resting tremor. These are blocked in a dose-dependent manner by cis-2,3-piperidine dicarboxylic acid (PDA), an antagonist of quisqualate (QA)-preferring (A2) and kainate (KA)-preferring (A3) glutamate receptors (ED50s; 2.8 micrograms, rigidity; 1.4 micrograms, convulsions; 2.4 micrograms, resting tremor). BMAA induces a transitory hyperexcitable state followed by a long-lasting whole-body shake/wobble (ED100 = 1,000 micrograms, i.c.v.). These responses are antagonized selectively and dose-dependently by 2-amino-7-phosphonoheptanoic acid (AP7), an N-methyl-D-aspartate (NMDA) or A1 glutamate-receptor antagonist (ED50 = 0.45 microgram). Taken collectively, our data indicate that the acute neuronotoxic actions of BOAA and BMAA (or a metabolite) operate through different glutamate-receptor species. BMAA likely exerts most of its action indirectly via the A1 glutamate receptor, while BOAA acts principally at the A2 and/or A3 receptor.  相似文献   

20.
Pregnenolone sulfate (PS) is an endogenous neurosteroid known to antagonize GABA(A) receptor-mediated inhibitory responses and potentiate NMDA receptor-mediated excitatory responses in vitro. To assess the actions of the steroid as a modulator of seizure susceptibility in vivo, PS (30-300 nmol) was administered intracerebroventricularly in mice. At doses of 50 to 150 nmol, PS elicited seizures characterized by head jerks, rearing and falling, severe forelimb and hindlimb clonus, opisthotonos and explosive running. The seizures increased in severity and frequency with time and eventually progressed to status epilepticus, tonic hindlimb extension and death. The doses producing convulsions in 50% (CD(50)) and 97% (CD(97)) of animals were 92 and 205 nmol, respectively. A subconvulsant dose of PS (50 nmol) significantly increased the convulsant potencies of systemically administered pentylenetetrazol (30-50 mg/kg) and NMDA (50-100 mg/kg). Systemically administered PS at doses as high as 100 mg/kg failed to induce seizures or alter the convulsant potencies of pentylenetetrazol and NMDA. Protection against PS (205 nmol)-induced seizures and lethality was conferred by the GABA(A) receptor positive allosteric modulators clonazepam and allopregnanolone, and by the NMDA receptor antagonists dizocilpine and (R)-CPP. The overall pharmacological profile suggests that the convulsant actions of PS are mediated predominantly via its effects on GABA(A) receptors, and also possibly by effects on NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号