首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary hyperoxic injury manifests as widespread alveolar-epithelial and microvascular endothelial cell necrosis, resolution of which requires angiogenesis. We investigated the hypothesis that inhaled nitric oxide (iNO) and hyperoxia each decreases lung vascular endothelial growth factor (VEGF) expression but increases endostatin and that concurrent administration of both gases will show a greater effect. Piglets were randomized to breathe for 5 d room air (RA); RA + NO (RA + 50 ppm NO), O(2) (hyperoxia, F(I)O(2) >0.96), O(2) + NO, or O(2) + NO + REC (O(2) + NO plus recovery in 50% O(2) for 72 h. After the piglets were killed, we measured lung capillary leak, VEGF mRNA, VEGF, and endostatin protein in homogenates, plasma, and lavage. VEGF mRNA decreased significantly with O(2) and O(2) + NO compared with breathing RA (p < or = 0.05). VEGF protein declined in the experimental groups with a significant reduction in the recovery group compared with the RA group (p < or = 0.05). Similar but more dramatic, endostatin declined in all groups relative to the RA group (p < 0.001). Lavage fluid VEGF protein and lung capillary leak rose significantly with O(2) and O(2) + NO compared with RA, but endostatin was unchanged. At 72 h of recovery from hyperoxia, VEGF mRNA and lavage fluid VEGF but not lung VEGF protein had normalized. Hyperoxia and iNO suppresses lung endostatin expression, but iNO unlike hyperoxia alone does not alter lung VEGF production. Hyperoxia paradoxically raises lavageable VEGF levels. This latter effect and that on VEGF mRNA level but not protein is abrogated by recovery in reduced F(I)O(2) for 72 h.  相似文献   

2.
PDGF-related gene expression has been well characterized during fetal rat lung development and adult rat lung injury, but not during normal postnatal lung growth or injury. Lung expression of the mRNA for PDGF-A, -B, -alpha R, and -beta R and immunoreactive PDGF-AA, -BB, -alpha R, and -beta R were assessed in rat pups raised in air or 60% O(2) for up to 14 d after birth. Expression of mRNA and immunoreactive ligand did not correlate for pups raised in air. Immunoreactive PDGF-alpha R and -beta R, but not PDGF-AA and -BB, were evident throughout the lung at birth. Both PDGF-AA and -BB were evident in airway epithelium, PDGF-BB in alveolar epithelial cells and PDGF-AA was widely distributed in parenchymal tissue at 4 d. PDGF-alpha R was localized to airway epithelium, and PDGF-beta R to subendothelial perivascular regions and to airway and alveolar epithelium at 4 d. Immunoreactive PDGF ligands all declined after 4 d. Intraperitoneal injection of neutralizing antibodies or truncated soluble receptors to PDGF-BB reduced lung DNA synthesis in air. Exposure to 60% O(2) significantly increased mRNA for PDGF-B, -beta R, and -alpha R, but not PDGF-A, relative to air-exposed lung at various time points after birth. PDGF-A, -B, and -alpha R immunoreactivities in these lungs were reduced and delayed, consistent with a global inhibition of lung growth. Pups exposed to 60% O(2) had a similar distribution of PDGF-beta R to that seen in air, except that at 14 d PDGF-beta R was distributed throughout the lung parenchyma. We conclude that PDGF ligands and receptors are important for normal postnatal lung growth and that their expression is delayed by O(2) exposure.  相似文献   

3.
Monocyte chemoattractant protein-1 (MCP-1), acting through its C-C chemokine receptor 2 (CCR-2), has important roles in inflammation, angiogenesis, and wound repair. The individual and combined effects of inhaled nitric oxide (NO) and hyperoxia on lung MCP-1 and CCR-2 in relation to lung leukocyte dynamics are unknown. Because MCP-1 gene is up-regulated by oxidants, we hypothesized that inhaled NO with hyperoxia will increase MCP-1 production and CCR-2 expression more than either gas alone. We randomly assigned young piglets to breathe room air (RA), RA+50 ppm NO (RA+NO), O(2), or O(2)+NO for 1 or 5 d before sacrifice. Lungs were lavaged and tissues preserved for hybridization studies, Western blotting, histology, and immunohistochemistry. The results show that lung MCP-1 production and alveolar macrophage count were significantly elevated in the 5-d O(2) and O(2)+NO groups relative to the RA group (p < or = 0.05). In contrast, lung CCR-2 abundance was diminished in the O(2) group (p 相似文献   

4.
Nitric oxide (NO), a pro-oxidant gas, is used with hyperoxia (O(2)) to treat neonatal pulmonary hypertension and recently bronchopulmonary dysplasia, but great concerns remain regarding NO's potential toxicity. Based on reports that exposure to oxidant gases results in pulmonary extracellular matrix injury associated with elevated lavage fluid levels of extracellular matrix components, we hypothesized that inhaled NO with or without hyperoxia will have the same effect. We measured alveolar septal width, lung collagen content, lavage fluid hydroxyproline, hyaluronan and laminin levels in neonatal piglets after 5 days' exposure to room air (RA), RA + 50 ppm NO (RA + NO), O(2) (FiO(2) > 0.96) or O(2) + NO. Matrix metalloproteinase (MMP) activity and MMP-2 mRNA were also measured. In recovery experiments, we measured lung collagen content in piglets exposed to RA + NO or O(2) + NO and then allowed to recover for 3 days. The results show that lung collagen increased 4-fold in the RA + NO piglets, the O(2) and O(2) + NO groups had only a 2-fold elevation relative to RA controls. Unlike the RA + NO piglets, the O(2) and O(2) + NO groups had more than 20-fold elevation in lung lavage fluid hydroxyproline compared to the RA group. O(2) and O(2) + NO also had increased lung MMP activity, extravascular water, and lavage fluid proteins. MMP-2 mRNA levels were unchanged. After 3 days' recovery in room air, the RA + NO groups' lung collagen had declined from 4-fold to 2-fold above the RA group values. The O(2) + NO group did not decline. Alveolar septal width increased significantly only in the O(2) and O(2) + NO groups. We conclude that 5 days' exposure to NO does not result in pulmonary matrix degradation but instead significantly increases lung collagen content. This effect appears potentially reversible. In contrast, hyperoxia exposure with or without NO results in pulmonary matrix degradation and increased lung collagen content. The observation that NO increased lung collagen content represents a new finding and suggests NO could potentially induce pulmonary fibrosis.  相似文献   

5.
Qian L  Liu H  Yu W  Wang X  Sun Z  Wang W  Zhu L  Sun B 《Pediatric research》2008,64(1):17-23
We hypothesized that imbalance of proinflammatory cytokines and growth factors (GFs) in immature lungs of early postnatal life may be affected by protective ventilation strategy, and evaluated correlations of these aspects. Preterm neonate piglets were mechanically ventilated with low tidal volume and 5-6 or 10-12 cm H2O positive end-expiratory pressure (PEEP) with or without surfactant and inhaled nitric oxide (iNO) for 6 h, followed by biochemical, biophysical, and histopathological assessment of lung injury severity. Compared with surfactant and the control, iNO combined with lower PEEP exerted better oxygenation, lower activity of myeloperoxidase, lower expression of mRNA of interleukin (IL)-1beta, IL-6, IL-8, and platelet derived growth factor-B (PDGF-B), but higher expression of insulin-like growth factor-I (IGF-I), whereas that of tumor necrosis factor-alpha, keratinocyte GF, hepatocyte GF, vascular endothelial growth factor, and TGF-beta1 had no or modest changes. IL-1beta, IL-6 mRNA were closely correlated to PDGF-B mRNA and myeloperoxidase, but inversely to IGF-I mRNA, Pao2/FiO2 and dynamic lung compliance at 6 h. These results indicate that the association of lower PEEP and iNO may be more protective than surfactant on preventing lung injury and facilitating reparation by affecting the expression of proinflammatory cytokines and GFs.  相似文献   

6.
Clinical use of nitric oxide (NO) is usually in conjunction with high oxygen concentrations, the effects of which may include lung neutrophil accumulation, apoptosis and upregulation of antioxidant enzyme activity. To define the effects of NO on neutrophils from young piglets and its relationship to lung neutrophil dynamics during hyperoxia we exposed thirty piglets to room air (RA), RA+NO (50 ppm NO), O2 (FiO2> or =0.96) or O2+NO for 5 days. Ten additional animals breathed RA+NO or O2+NO, then recovered in RA for 3 days before sacrifice. Neutrophil CD18 and intracellular oxidant production were measured by flow cytometry. Lung apoptosis were assessed by TUNEL assay. Lung myeloperoxidase, SOD and catalase were measured biochemically. When compared to RA group, there was significant reduction in neutrophil CD18 and intracellular oxidant production in the RA+NO group, but lung MPO was unchanged. The O2 and O2+NO groups did not differ in CD18 expression or in intracellular oxidant production, but had significant increase in lung myeloperoxidase compared to the RA group. Apoptosis increased significantly only in the O2+NO group. The O2 group showed significantly increased lung SOD and catalase activity compared to the RA group, whereas the RA+NO and O2+NO groups did not. We conclude that inhaled NO at 50 ppm decreases neutrophil CD18 expression as well as intracellular oxidant production. However, this effect does not impact lung neutrophil accumulation during concurrent hyperoxia. The combination of NO and O2 exposure produces an increase in lung apoptosis. Finally, NO may prevent upregulation of SOD and catalase activity during hyperoxia, potentially increasing injury.  相似文献   

7.
Inhaled nitric oxide (iNO) is used as a selective pulmonary vasodilator, and often under conditions when a high fraction of inspired oxygen is indicated. However, little is known about the potential toxicity of iNO therapy with or without concomitant oxygen therapy. NO can combine with superoxide (O2-) to form peroxynitrite (ONOO-), which can in turn decompose to form hydroxyl radical (OH.). Both OH. and ONOO- are involved in various forms of lung injury. To begin evaluation of the effect of iNO under either normoxic or hyperoxic conditions on OH. and/or ONOO- formation, rats were exposed for 58 h to either 21% O2, 21% O2 + 10 parts per million (ppm) NO, 21% O2 + 100 ppm NO, 50% O2, 90% O2, 90% O2 + 10 ppm NO, or 90% O2 + 100 ppm NO. We used a salicylate hydroxylation assay to detect the effects of these exposures on lung OH. and/or ONOO- formation measured as the appearance of 2,3-dihydroxybenzoic acid (2,3-DHBA). Exposure to 90% O2 and 90% O2 + 100 ppm NO resulted in significantly (p < 0.05) greater lung wet weight (1.99 +/- 0.14 g and 3.14 +/- 0.30 g, respectively) compared with 21% O2 (1.23 +/- 0.01 g). Exposure to 21% O2 + 100 ppm NO led to 2.5 times the control (21% O2 alone) 2,3 DHBA formation (p < 0.05) and exposure to 90% O2 led to 2.4 times the control 2,3-DHBA formation (p < 0.05). However, with exposure to both 90% O2 and 100 ppm NO, the 2,3-DHBA formation was no greater than the control condition (21% O2). Thus, these results indicate that, individually, both the hyperoxia and the 100 ppm NO led to greater salicylate hydroxylation, but that the combination of hyperoxia and 100 ppm NO led to less salicylate hydroxylation than either did individually. The production of OH. and/or ONOO- in the lung during iNO therapy may depend on the ratio of NO to O2.  相似文献   

8.
目的:探讨维甲酸(RA)对高氧肺损伤保护作用的机制。方法:90 只Sprague Dawley新生鼠随机平分为空气组、高氧组和高氧+RA 组。高氧组、高氧+RA 组置于 85% 氧浓度的氧箱中,高氧+RA 组每日腹腔注射RA 500 μg/kg。分别于实验第 4天、7天、14天行开胸术取新生鼠肺组织,苏木精-伊红染色光镜下行辐射状肺泡计数,逆转录聚合酶链反应(RT-PCR)、免疫组化检测肺组织结缔组织生长因子(CTGF)表达。结果:与空气组相比,高氧组和高氧+RA 组肺组织随氧暴露时间延长,出现炎性细胞浸润,肺泡结构紊乱,肺泡数量减少,肺间隔增厚,其中高氧+RA 组病理改变明显轻于高氧组;在第7天和第14天,高氧组和高氧+RA组肺组织 CTGF 的 mRNA 和蛋白表达比空气组增加(P<0.05);且高氧+RA组中 CTGF 的 mRNA 和蛋白表达在第 14 d 比高氧组减少(P<0.05)。结论:高氧暴露下新生鼠肺组织 CTGF 表达增加,RA 保护高氧肺损伤可能是通过下调 CTGF 表达。  相似文献   

9.
Inhaled nitric oxide (iNO), with supplemental oxygen, is used in the treatment of hypoxic respiratory failure of the newborn. In this study, we tested the hypothesis that exposure of newborn rats to iNO, hyperoxia, or iNO + hyperoxia would modulate the expression of pulmonary cytochrome P450 (CYP)1A1 in relation to acute lung injury. Newborn Fischer 344 rats were maintained in room air, or exposed to iNO, hyperoxia (>95%), or iNO (20 or 40 ppm) + hyperoxia for up to 168 h, and lung injury parameters and CYP1A1 expression were studied. Animals given iNO (40 ppm) + hyperoxia were more susceptible to lung injury than those exposed to hyperoxia or iNO alone. On the other hand, animals exposed to iNO (20 ppm) + hyperoxia did not elicit lung damage. Pulmonary CYP1A1 protein and mRNA expression were induced by hyperoxia, iNO (20 or 40 ppm), or iNO (20 ppm) + hyperoxia for up to 168 h, compared with air-breathing controls. In animals given iNO (40 ppm) + hyperoxia, pulmonary CYP1A1 was enhanced at 48 h, followed by down-regulation at later time points. Immunohistochemistry experiments showed localization of CYP1A1 in the pulmonary epithelial and endothelial cells. In conclusion, because previous studies have shown beneficial effects of CYP1A1 induction in hyperoxic lung injury, our current observations showing maintenance of pulmonary CYP1A1 induction by iNO (20 ppm) + hyperoxia through the 168-h period support the hypothesis that this phenomenon may contribute to the protective effects of iNO against hyperoxic injury.  相似文献   

10.
目的:探讨小潮气量常规机械通气对发育肺生长因子(GFs)和炎症因子表达的影响。方法:分别将早产猪(85%孕龄)、足月新生猪及幼猪(4~5周龄)随机分为机械通气组(MV组)和自主呼吸对照组(NMV组)。调节呼吸机参数,使呼出气潮气量维持在6~8 mL/kg,机械通气6 h(早产猪)或24 h(新生猪、幼猪)后检测肺组织GFs(PDGF-B,IGF-I,KGF,HGF,VEGF,TGF-β1)及炎症因子(IL-1β,IL-6,IL-8,TNF-α)mRNA表达,免疫组化方法观察GFs蛋白表达与分布。多组间比较用单因素方差分析或Kruskal-Wallis检验,两组间比较用t检验或Mann-Whitney U检验。结果:①在早产组,MV组PDGF-B,IL-1β,IL-6,IL-8 mRNA水平较NMV组增高(5.11±0.10 vs 4.88±0.01, 4.95±0.27 vs 4.08±0.37, 4.76±0.27 vs 4.00±0.28, 5.31±0.57 vs 4.15±0.46; P<0.01或0.05),IGF-I mRNA水平降低(3.54±0.13 vs 3.80±0.11; P<0.01);②在足月新生组及幼年组,MV组GFs及炎症因子mRNA水平较NMV组差异均无显著性。结论: 生后早期机械通气干扰了早产肺GFs的表达,并诱发促炎因子表达,促进了肺损伤的发生;但对足月和幼年肺GFs和炎症因子表达无明显影响。  相似文献   

11.
BACKGROUND: Hyperoxia and tidal volume mechanical ventilation are independent factors in the genesis of lung injury, but it remains unclear the extent to which each is responsible or contributes to this process in newborns. OBJECTIVES: To study the independent and combined effects of hyperoxia and tidal volume mechanical ventilation on the induction of lung inflammation in a newborn piglet model of ventilator-induced lung injury. METHODS: Following exposure to either ambient air or F(I)O2 = 1.0 for a period of 3 days, newborn piglets were randomized to receive mechanical ventilation with either high tidal volume (20 ml/kg) or low tidal volume (6 ml/kg) for 4 h while controlling for pH. RESULTS: Monocyte chemoattractant protein-1 level in the lungs of animals randomized to hyperoxia with high tidal volume ventilation was significantly elevated, compared to all other groups (p < 0.05). Myeloperoxidase assayed in lung homogenate was found to be significantly higher in nonventilated animals exposed to hyperoxia (p < 0.01). Only in animals previously exposed to hyperoxia did the addition of high tidal volume ventilation further increase the level of myeloperoxidase present (p < 0.05). Pulmonary vascular resistance was significantly elevated after 4 h of mechanical ventilation compared to 1 h (p < 0.001). CONCLUSIONS: We conclude that in neonatal piglets undergoing hyperoxic stress, superimposition of high tidal volume ventilation exacerbates the lung inflammation as assessed by lung monocyte chemoattractant protein-1 and level of myeloperoxidase.  相似文献   

12.
目的探讨基质金属原蛋白-2(MMP-2)、MMP-9、基质金属蛋白酶特异性组织抑制物-1(TIMP-1)和TIMP-2在高氧肺损伤中的作用及维甲酸(RA)的保护作用机制。方法建立高氧(FiO285%)暴露早产SD大鼠肺损伤模型,应用RT-PCR法检测MMP-2、MMP-9、TIMP-1和TIMP-2mRNA表达,采用明胶酶谱检测MMP-2和MMP-9酶原及活酶表达,采用Western blot技术检测TIMP-1和TIMP-2蛋白表达。结果与空气组比较,高氧暴露4、7、14d,MMP-2、MMP-9和TIMP-1 mRNA的表达均显著升高(P均<0.01),MMP-2活酶、MMP-9酶原及活酶和TIMP-1蛋白的表达明显上调(P<0.05);RA对空气暴露下它们的表达均无明显影响(P均>0.05),但不同程度下调高氧暴露后MMP-2、MMP-9、TIMP-1mRNA的表达和MMP-2活酶、MMP-9酶原及活酶的表达,进一步提高TIMP-1蛋白表达;高氧、RA对TIMP-2 mRNA和蛋白的表达均无明显影响(P均>0.05)。结论高氧暴露明显改变MMPs/TIMPs的表达,在肺泡形成关键时期,MMPs/TIMPs之间平衡关系的破坏是造成肺发育受阻和纤维化的重要因素;通过协调MMPs/TIMPs之间的表达,改善肺泡结构,降低肺纤维化程度,从而逆转高氧所致肺损伤,是RA发挥保护作用的重要机制之一。  相似文献   

13.
14.
目的探讨产前给盐酸氨溴索、地塞米松对大鼠胎肺血小板源性生长因子-A(PDGF-A)表达的影响。方法9只孕鼠随机分为盐酸氨溴索治疗组、地塞米松治疗组和9g/L盐水对照组,每组3只。分别于孕16、17、18d连续腹腔注射给药,孕19d每只孕鼠取4只胎鼠肺组织用反转录酶-聚合酶链反应(RT-PCR)检测PDGF-AmRNA表达水平,每只孕鼠取5只胎鼠肺组织用免疫组织化学法检测PDGF-A蛋白水平表达。结果1.盐酸氨溴索治疗组、地塞米松治疗组PDGF-AmRNA和蛋白表达水平均显著高于对照组(Pa〈0.01)。2.盐酸氨溴索治疗组PDGF-AmRNA和蛋白表达水平显著低于地塞米松治疗组(Pa〈0.01)。结论PDGF-A表达于胎肺组织。产前给盐酸氨溴索、地塞米松均能显著促进PDGF-A表达,PDGF-A高表达可能是盐酸氨溴索、地塞米松促胎肺成熟重要机制之一。  相似文献   

15.
All-trans retinoic acid (ATRA) stimulates platelet-derived growth factor (PDGF)-A expression and enhances alveolarization in rat lungs. On d 16 of gestation, pregnant Sprague-Dawley rats were randomly assigned to either a retinoic acid group (intragastric ATRA at 10 mg/kg body weight) or a vehicle group. We punctured each amniotic sac, and fetuses in the opposite uterine horn served as controls. On d 21 of gestation, the fetuses were delivered by cesarean section. Rats subjected to oligohydramnios exhibited significantly lower lung weights and lung/body weight ratios, and ATRA had no effects on the body or lung weights of oligohydramnios-exposed rats. Lung PDGF-A and -B mRNA expression was significantly lower in oligohydramnios-exposed rats compared with control littermates of maternal vehicle-treated dams. Maternal retinoic acid treatment significantly increased PDGF-A and -B mRNA expression in control and oligohydramnios-exposed rats compared with all rats and oligohydramnios-exposed rats of maternal vehicle-treated dams, respectively. Rats exposed to oligohydramnios exhibited a significantly lower generation of alveolar saccules than did control rats in the maternal retinoic acid- and vehicle-treated groups. In this model, maternal retinoic acid treatment showed no positive effects on oligohydramnios-induced pulmonary hypoplasia in the pseudoglandular stage.  相似文献   

16.
Inhaled nitric oxide (iNO) is a specific pulmonary vasodilator. By serving as a pro-oxidant or antioxidant, iNO may influence other pulmonary functions as well. This study was designed to test the hypothesis that iNO affects the alveolar lining after premature birth. Preterm rabbits (gestation 29 d, term 31 d) were nose-only exposed NO (14 ppm) and 98% O2, for 20 h. The others were exposed to either 98% O2 or air. In another experiment, premature rabbits were exposed to either NO in air or to air. After the exposure, bronchoalveolar lavage (BAL) was performed and the surfactant aggregates were isolated. The surfactant components and surface activity were analyzed. In total, 144 animals were studied. There were no significant differences in the number, distribution, or respiratory burst activity of cells recovered by BAL. Neither brief hyperoxia nor iNO increased plasma-derived proteins in BAL. Exposure to O2 decreased large surfactant aggregates, surface activity, and the content of surfactant protein B in BAL, whereas iNO prevented completely or partially these effects of acute hyperoxia on surfactant. Hyperoxia increased the content of malondialdehyde and decreased glutathione in epithelial lining fluid. iNO decreased malondialdehyde (p < 0.05) and tended to increase glutathione (p = 0.06) in animals breathing O2. Nitrotyrosine was not detectable in BAL, and NO2 was low in the breathing area. In room air, iNO had no significant effect on surfactant. According to the present results, a brief period of hyperoxia causes an oxidant stress and decreases the surface activity of alveolar surfactant in premature rabbits. In contrast, a low dosage of iNO decreased or prevented the O2-induced detrimental effects on alveolar surfactant and alleviated the oxidant stress.  相似文献   

17.
Li YX  Luo XP  Liao LJ  Liu WJ  Ning Q 《中华儿科杂志》2005,43(8):585-590
目的探讨高氧对新生大鼠肺caspase3和p53基因表达及肺细胞凋亡的影响。方法采用SpraqueDawley新生大鼠95%氧气暴露建立高氧肺损伤模型。应用RTPCR技术检测肺组织caspase3mRNA和p53mRNA水平,凝胶电泳条带用成像系统照相分析结果。计算目的基因PCR产物条带与内参照βactin条带光密度值的比值,作为p53基因的相对表达量,结果以x±s标记,而caspase3mRNA表达量则以阳性表达或阴性表达为标记。应用脱氧核糖核酸转移酶介导的细胞凋亡标记技术(TUNEL)原位检测细胞凋亡。光镜下随机计算5个视野中500个肺细胞中的阳性细胞数,结果以x±s标记。结果新生大鼠暴露于95%氧浓度环境中24h后肺组织中p53mRNA表达中度增加(q=3.2305,P>0.05),48h后表达显著增加,与空气对照组相比差异有统计学意义(q=7.2941,P<0.05)。新生鼠高氧处理72h、96h后,肺组织p53mRNA表达又恢复到正常水平。在各空气对照组和各高氧处理组中个别新生鼠肺的caspase3mRNA有微量表达,绝大多数新生鼠肺的caspase3mRNA没有表达,差异无统计学意义。95%氧暴露7天的新生鼠肺细胞凋亡水平明显高于空气暴露组新生鼠肺细胞凋亡水平,两者比较差异有极显著的统计学意义(F=100,P<0.001)。结论在高浓度供氧下,肺组织通过暂时上调p53基因的表达,介导细胞周期停滞,阻止G0/G1期细胞进入S期,抑制细胞分裂、增殖,同时p53促进细胞凋亡,从而导致肺生长发育受阻和肺损伤。新生鼠暴露于95%氧环境中,肺组织caspase3基因基本上不表达,因此推测高氧肺细胞凋亡可能存在不经过caspase3的凋亡途径。  相似文献   

18.
Wang W  Wei W  Ning Q  Luo XP 《中华儿科杂志》2007,45(7):533-538
目的观察宫内炎性预敏及生后高氧暴露对早产大鼠肺血管内皮生长因子(VEGF)及其受体表达的影响,探讨其与新型支气管肺发育不良(BPD)发病机制之间的关系。方法早产大鼠随机分为生理盐水+高氧组、LPS+高氧组、LPS组和正常对照组,于生后第1、7和14天随机取8只,行HE染色,观察肺组织形态学结构,做辐射状肺泡计数(RAC)采用Western blot和RT-PCR方法检测各组肺组织VEGF及其受体Fit-1和Flk-1蛋白及mRNA表达水平。结果(1)正常对照组和LPS组在生后1~14d随鼠龄增加,RAC逐渐增多,但LPS组在生后第1~14天RAC均低于对照组(P分别=0.029,0.013,0.009);生理盐水+高氧组和LPS+高氧组则随鼠龄增加RAC逐渐下降,LPS+高氧组至生后14dRAC低于其他三组(P分别=0.000,0.002,0.012)。(2)VEGF及其受体Flk-1蛋白的表达与其相应肺组织RAC变化规律基本一致。而Fit-1表达在四组中均随鼠龄增加而呈增高趋势。(3)VEGF及其受体mRNA表达规律与其蛋白表达强度变化规律基本一致。结论宫内炎性预敏及生后高氧暴露可能是导致新型BPD发生的重要因素。  相似文献   

19.
Exposure of newborn rats to hyperoxia impairs alveolarization and vessel growth, causing abnormal lung structure that persists during infancy. Recent studies have shown that impaired angiogenesis due to inhibition of vascular endothelial growth factor (VEGF) signaling decreases alveolar and vessel growth in the developing lung, and that nitric oxide (NO) mediates VEGF-dependent angiogenesis. The purpose of this study was to determine whether hyperoxia causes sustained reduction of lung VEGF, VEGF receptor, or endothelial NO synthase (eNOS) expression during recovery, and whether inhaled NO improves lung structure in infant rats after neonatal exposure to hyperoxia. Newborn rat pups were randomized to hyperoxia [fraction of inspired oxygen (Fio(2)), 1.00] or room air exposure for 6 d, and then placed in room air with or without inhaled NO (10 ppm) for 2 wk. Rats were then killed for studies, which included measurements of body weight, lung weight, right ventricular hypertrophy (RVH), morphometric analysis of alveolarization (by mean linear intercept (MLI), radial alveolar counts (RAC), and vascular volume (Vv), and immunostaining and Western blot analysis. In comparison with controls, neonatal hyperoxia reduced body weight, increased MLI, and reduced RAC in infant rats. Lung VEGF, VEGFR-2, and eNOS protein expression were reduced after hyperoxia. Inhaled NO treatment after hyperoxia increased body weight and improved distal lung growth, as demonstrated by increased RAC and Vv and decreased MLI. We conclude that neonatal hyperoxia reduced lung VEGF expression, which persisted during recovery in room air, and that inhaled NO restored distal lung growth in infant rats after neonatal hyperoxia.  相似文献   

20.
目的:研究孕期维生素 D(VitD)缺乏对子代大鼠肺形态发育及血小板源性生长因子-A(PDGF-A)表达的影响。方法:雌性Sprague-Dawley (SD) 大鼠随机分为对照组、VitD 缺乏模型组(每组6只)。对照组正常饲养;模型组予以避光、不含 VitD 的饲料喂养,2周后与成熟 SD 雄性大鼠交配,每组取孕20 d的胎肺及生后1 d 新生鼠肺,光镜及电镜下观察肺形态结构, RT-PCR 及 Western blot 分别检测肺组织PDGF-A mRNA及蛋白水平的表达。结果:光镜下,模型组子鼠肺泡平均表面积、平均呼吸膜周径均小于对照组(P<0.05),平均肺泡间隔厚度大于对照组(P<0.05);电镜下,模型组子鼠的板层小体数量明显少于对照组,成熟细胞器较少见。RT-PCR 及 Western blot结果显示模型组子鼠肺组织PDGF-A mRNA和蛋白表达水平均低于对照组(P<0.05)。结论:孕期 VitD 缺乏抑制孕晚期胎鼠及新生大鼠的肺形态发育。VitD 缺乏能显著抑制肺组织 PDGF-A 表达;PDGF-A表达减低可能是VitD缺乏抑制大鼠肺发育的重要机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号