首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background:

Single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair are good candidates to be tested as phenotypic modifiers for carriers of mutations in the high-risk susceptibility genes BRCA1 and BRCA2. The base excision repair (BER) pathway could be particularly interesting given the relation of synthetic lethality that exists between one of the components of the pathway, PARP1, and both BRCA1 and BRCA2. In this study, we have evaluated the XRCC1 gene that participates in the BER pathway, as phenotypic modifier of BRCA1 and BRCA2.

Methods:

Three common SNPs in the gene, c.-77C>T (rs3213245) p.Arg280His (rs25489) and p.Gln399Arg (rs25487) were analysed in a series of 701 BRCA1 and 576 BRCA2 mutation carriers.

Results:

An association was observed between p.Arg280His-rs25489 and breast cancer risk for BRCA2 mutation carriers, with rare homozygotes at increased risk relative to common homozygotes (hazard ratio: 22.3, 95% confidence interval: 14.3–34, P<0.001). This association was further tested in a second series of 4480 BRCA1 and 3016 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2.

Conclusions and inte

No evidence of association was found when the larger series was analysed which lead us to conclude that none of the three SNPs are significant modifiers of breast cancer risk for mutation carriers.  相似文献   

2.

Background:

Mutations in genes for hereditary non-polyposis colorectal cancer (HNPCC) in ovarian cancer patients remains poorly defined. We sought to estimate the frequency and characteristics of HNPCC gene mutations in a population-based sample of women with epithelial ovarian cancer.

Methods:

The analysis included 1893 women with epithelial ovarian cancer ascertained from three population-based studies. Full-germline DNA sequencing of the coding regions was performed on three HNPCC genes, MLH1, MSH2 and MSH6. Collection of demographic, clinical and family history information was attempted in all women.

Results:

Nine clearly pathogenic mutations were identified, including five in MSH6, two each in MLH1 and MSH2. In addition, 28 unique predicted pathogenic missense variants were identified in 55 patients. Pathogenic mutation carriers had an earlier mean age at diagnosis of ovarian cancer, overrepresentation of cancers with non-serous histologies and a higher number of relatives with HNPCC-related cancers.

Conclusions:

Our findings suggest that fewer than 1% of women with ovarian cancer harbour a germline mutation in the HNPCC genes, with overrepresentation of MSH6 mutations. This represents a lower-range estimate due to the large number of predicted pathogenic variants in which pathogenicity could not definitively be determined. Identification of mismatch repair gene mutations has the potential to impact screening and treatment decisions in these women.  相似文献   

3.

Purpose

To determine the role of autoantibodies to PARP1 and BRCA1/BRCA2 which were involved in the synthetic lethal interaction in cancer.

Methods

Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect autoantibodies to PARP1 and BRCA1/BRCA2 in 618 serum samples including 131 from breast cancer, 94 from lung cancer, 34 from ovarian cancer, 107 from prostate cancer, 76 from liver cancer, 41 from pancreatic cancer and 135 from normal individuals. The positive sera with ELISA were confirmed by Western blot. Immunohistochemistry was used to examine the expression of PARP1 and BRCA1/BRCA2 in breast cancer.

Results

Autoantibody frequency to PARP1, BRCA1, and BRCA2 in cancer varied from 0% to 50%. When the sera from cancer patients were tested for the presence of autoantibodies to PARP1 and BRCA1/BRCA2, the autoantibody responses slightly decreased and the positive autoantibody reactions varied from 0% to 50.0%. This was significantly higher autoantibody responses to PARP1 and BRCA1/BRCA2 (especially to PARP1 and BRCA1) in ovarian cancer and breast cancer compared to normal control sera (P < 0.001 and P < 0.01). Immunohistochemistry indicated that Pathology Grade at diagnosis to PARP1 expression in breast cancer was different (P < 0.05).

Conclusions

Different cancers have different profiles of autoantibodies. The autoantibodies to proteins involving the synthetic lethal interactions would be novel serological biomarker in some selective cancers.  相似文献   

4.

Purpose:

The objective of this study was to estimate the risk of contralateral breast cancer in BRCA1 and BRCA2 carriers; and measure the extent to which host, family history, and cancer treatment-related factors modify the risk.

Patients and methods:

Patients were 810 women, with stage I or II breast cancer, for whom a BRCA1 or BRCA2 mutation had been identified in the family. Patients were followed from the initial diagnosis of cancer until contralateral mastectomy, contralateral breast cancer, death, or last follow-up.

Results:

Overall, 149 subjects (18.4%) developed a contralateral breast cancer. The 15-year actuarial risk of contralateral breast cancer was 36.1% for women with a BRCA1 mutation and was 28.5% for women with a BRCA2 mutation. Women younger than 50 years of age at the time of breast cancer diagnosis were significantly more likely to develop a contralateral breast cancer at 15 years, compared with those older than 50 years (37.6 vs 16.8% P=0.003). Women aged <50 years with two or more first-degree relatives with early-onset breast cancer were at high risk of contralateral breast cancer, compared with women with fewer, or no first-degree relatives with breast cancer (50 vs 36% P=0.005). The risk of contralateral breast cancer was reduced with oophorectomy (RR 0.47; 95% CI 0.30–0.76; P=0.002).

Conclusion:

The risk of contralateral breast cancer risk in BRCA mutation carriers declines with the age of diagnosis and increases with the number of first-degree relatives affected with breast cancer. Oophorectomy reduces the risk of contralateral breast cancer in young women with a BRCA mutation.  相似文献   

5.

Background

The risk of breast cancer in carriers of BRCA1 and BRCA2 mutations is influenced by factors other than the genetic mutation itself. Modifying factors include a woman’s reproductive history and family history of cancer. Risk factors are more likely to be present in women with breast cancer than in women without breast cancer, and therefore the risk of cancer in the two breasts should not be independent. It is not clear to what extent modifying factors influence the risk of a first primary or a contralateral breast cancer in BRCA carriers.

Methods

We conducted a matched case–control study of breast cancer among 3920 BRCA1 or BRCA2 mutation carriers. We asked whether a past history of breast cancer in the contralateral breast was a risk factor for breast cancer.

Results

After adjustment for age, country of residence, and cancer treatment, a previous cancer of the right breast was found to be a significant risk factor for cancer of the left breast among BRCA1 or BRCA2 carriers (relative risk: 2.1; 95% confidence interval: 1.4 to 3.0; p < 0.0001).

Conclusions

In a woman with a BRCA1 or BRCA2 mutation who is diagnosed with breast cancer, the risk of cancer in the contralateral breast depends on the first diagnosis. That observation supports the hypothesis that there are important genetic or non-genetic modifiers of cancer risk in BRCA carriers. Discovering risk modifiers might lead to greater personalization of risk assessment and management recommendations for BRCA-positive patients.  相似文献   

6.
《British journal of cancer》2009,101(12):2048-2054

Background:

In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.

Methods:

We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach.

Results:

We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers.

Conclusion:

This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.  相似文献   

7.

Background:

The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity.

Methods:

To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively.

Results:

There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele.

Conclusion:

The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers.  相似文献   

8.

Introduction

Unclassified variants (UVs) in the BRCA1/BRCA2 genes are a frequent problem in counseling breast cancer and/or ovarian cancer families. Information about cancer family history is usually available, but has rarely been used to evaluate UVs. The aim of the present study was to identify which is the best combination of clinical parameters that can predict whether a UV is deleterious, to be used for the classification of UVs.

Methods

We developed logistic regression models with the best combination of clinical features that distinguished a positive control of BRCA pathogenic variants (115 families) from a negative control population of BRCA variants initially classified as UVs and later considered neutral (38 families).

Results

The models included a combination of BRCAPRO scores, Myriad scores, number of ovarian cancers in the family, the age at diagnosis, and the number of persons with ovarian tumors and/or breast tumors. The areas under the receiver operating characteristic curves were respectively 0.935 and 0.836 for the BRCA1 and BRCA2 models. For each model, the minimum receiver operating characteristic distance (respectively 90% and 78% specificity for BRCA1 and BRCA2) was chosen as the cutoff value to predict which UVs are deleterious from a study population of 12 UVs, present in 59 Dutch families. The p.S1655F, p.R1699W, and p.R1699Q variants in BRCA1 and the p.Y2660D, p.R2784Q, and p.R3052W variants in BRCA2 are classified as deleterious according to our models. The predictions of the p.L246V variant in BRCA1 and of the p.Y42C, p.E462G, p.R2888C, and p.R3052Q variants in BRCA2 are in agreement with published information of them being neutral. The p.R2784W variant in BRCA2 remains uncertain.

Conclusions

The present study shows that these developed models are useful to classify UVs in clinical genetic practice.  相似文献   

9.

Background

Lynch syndrome (LS) is associated with a high risk for colorectal cancer (CRC) and extracolonic malignancies, such as endometrial carcinoma (EC). The risk is dependent of the affected mismatch repair gene. The aim of the present study was to calculate the cumulative risk of LS related cancers in proven MLH1, MSH2 and MSH6 mutation carriers.

Methods

The studypopulation consisted out of 67 proven LS families. Clinical information including mutation status and tumour diagnosis was collected. Cumulative risks were calculated and compared using Kaplan Meier survival analysis.

Results

MSH6 mutation carriers, both males and females had the lowest risk for developing CRC at age 70 years, 54% and 30% respectively and the age of onset was delayed by 3-5 years in males. With respect to endometrial carcinoma, female MSH6 mutation carriers had the highest risk at age 70 years (61%) compared to MLH1 (25%) and MSH2 (49%). Also, the age of EC onset was delayed by 5-10 years in comparison with MLH1 and MSH2.

Conclusions

Although the cumulative lifetime risk of LS related cancer is similar, MLH1, MSH2 and MSH6 mutations seem to cause distinguishable cancer risk profiles. Female MSH6 mutation carriers have a lower CRC risk and a higher risk for developing endometrial carcinoma. As a consequence, surveillance colonoscopy starting at age 30 years instead of 20-25 years is more suitable. Also, prophylactic hysterectomy may be more indicated in female MSH6 mutation carriers compared to MLH1 and MSH2 mutation carriers.  相似文献   

10.

Introduction

While it has been reported that the risk of contralateral breast cancer in patients from BRCA1 or BRCA2 positive families is elevated, little is known about contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations.

Methods

A retrospective, multicenter cohort study was performed from 1996 to 2011 and comprised 6,235 women with unilateral breast cancer from 6,230 high risk families that had tested positive for BRCA1 (n = 1,154) or BRCA2 (n = 575) mutations or tested negative (n = 4,501). Cumulative contralateral breast cancer risks were calculated using the Kaplan-Meier product-limit method and were compared between groups using the log-rank test. Cox regression analysis was applied to assess the impact of the age at first breast cancer and the familial history stratified by mutation status.

Results

The cumulative risk of contralateral breast cancer 25 years after first breast cancer was 44.1% (95%CI, 37.6% to 50.6%) for patients from BRCA1 positive families, 33.5% (95%CI, 22.4% to 44.7%) for patients from BRCA2 positive families and 17.2% (95%CI, 14.5% to 19.9%) for patients from families that tested negative for BRCA1/2 mutations. Younger age at first breast cancer was associated with a higher risk of contralateral breast cancer. For women who had their first breast cancer before the age of 40 years, the cumulative risk of contralateral breast cancer after 25 years was 55.1% for BRCA1, 38.4% for BRCA2, and 28.4% for patients from BRCA1/2 negative families. If the first breast cancer was diagnosed at the age of 50 or later, 25-year cumulative risks were 21.6% for BRCA1, 15.5% for BRCA2, and 12.9% for BRCA1/2 negative families.

Conclusions

Contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations is similar to the risk in patients with sporadic breast cancer. Thus, the mutation status should guide decision making for contralateral mastectomy.  相似文献   

11.

Background:

DNA mismatch repair deficiency is present in a significant proportion of a number of solid tumours and is associated with distinct clinical behaviour.

Methods:

To identify the therapeutic agents that might show selectivity for mismatch repair-deficient tumour cells, we screened a pair of isogenic MLH1-deficient and MLH1-proficient tumour cell lines with a library of clinically used drugs. To test the generality of hits in the screen, selective agents were retested in cells deficient in the MSH2 mismatch repair gene.

Results:

We identified cytarabine and other related cytosine-based nucleoside analogues as being selectively toxic to MLH1 and MSH2-deficient tumour cells. The selective cytotoxicity we observed was likely caused by increased levels of cellular oxidative stress, as it could be abrogated by antioxidants.

Conclusion:

We propose that cytarabine-based chemotherapy regimens may represent a tumour-selective treatment strategy for mismatch repair-deficient cancers.  相似文献   

12.

Objective

Lynch syndrome is a hereditary cancer syndrome that increases the risks of colorectal and gynecologic malignancies such as endometrial and ovarian cancer. Studies have shown that mutations in mismatch repair genes (MSH2, MSH6, and MLH1) are associated with Lynch syndrome. The aim of our study was to estimate the value of MSH2, MSH6, and MLH1 immunohistochemistry based on family history in a Korean sample.

Methods

Thirty six women with synchronous gynecologic tumors of endometrial and ovarian cancer were identified among patients being treated at our institution. Among them, 32 patients had tumor blocks (total 62 slides) available for analysis. According to a diagnostic algorithm, we performed immunohistochemistry analyses. Staining was scored based on intensity and proportion (negative or 0: intensity undetectable or minimal, proportion <5%; weak or 1+: intensity mild, proportion 5-30%; strong or 2+: intensity moderate to marked, proportion 30-99%).

Results

Among 32 eligible patients, 9 (28%) had a family history of cancer. Six patients (19%) were negative for MLH1; among them, four (4/6) were negative at both sites. Nine patients (28%) were negative for MSH2 or MSH6 at both sites or negative for both MSH2 and MSH6. Among these three patients showed negative staining for both sites. The three patients showing negative staining for MLH1, MSH2, and MSH6 at both sites with family history were considered to be the screening positive groups of Lynch syndrome.

Conclusion

In this study, the frequency of Lynch syndrome associated immunohistochemical staining (MLH1, MSH2, and MSH6) group was estimated as 9% (3/32) among Korean women with synchronous gynecologic tumors.  相似文献   

13.

Background:

The BRCA1 and BRCA2 genes confer increased susceptibility to breast and ovarian cancer and to a spectrum of other cancers. There is controversy regarding the risk of colorectal cancer conferred by germline mutations in these two genes.

Methods:

We followed 7015 women with a BRCA mutation for new cases of colorectal cancer. Incidence rates in carriers were compared with population-specific incidence rates, and standardised incidence ratios (SIRs) were estimated. The expected numbers of cancers were computed by multiplying person–years at risk by the appropriate age-, sex- and country-specific incidence rates from the five countries.

Results:

Twenty-one incident colorectal cancer cases were observed among all mutation carriers, compared with 23.6 cases expected. The SIR for BRCA1 carriers was 0.92 (95% confidence interval (CI), 0.54–1.40, P=0.7) and for BRCA2 carriers was 0.82 (95% CI, 0.30–1.81, P=0.7). The SIR for colon cancer was 3.81 (95% CI 1.77–7.23) for women below the age of 50 years (both genes combined) and was 0.60 (95% CI 0.33–1.00) for women aged 50 years and above.

Conclusion:

The risk of colorectal cancer is increased in female carriers of BRCA1 mutations below the age of 50 years but not in women with BRCA2 mutations or in older women.  相似文献   

14.

Introduction

Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods

We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results

We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions

This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-015-0567-2) contains supplementary material, which is available to authorized users.  相似文献   

15.

Introduction

Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene approach, based on knowledge of gene functions, or the development of large genome-wide association studies. In this study, we evaluated 24 SNPs tagged to 14 candidate genes derived through a novel approach that analysed gene expression differences to prioritise candidate modifier genes for association studies.

Methods

We successfully genotyped 24 SNPs in a cohort of up to 4,724 BRCA1 and 2,693 BRCA2 female mutation carriers from 15 study groups and assessed whether these variants were associated with risk of breast cancer in BRCA1 and BRCA2 mutation carriers.

Results

SNPs in five of the 14 candidate genes showed evidence of association with breast cancer risk for BRCA1 or BRCA2 carriers (P < 0.05). Notably, the minor alleles of two SNPs (rs7166081 and rs3825977) in high linkage disequilibrium (r2 = 0.77), located at the SMAD3 locus (15q22), were each associated with increased breast cancer risk for BRCA2 mutation carriers (relative risk = 1.25, 95% confidence interval = 1.07 to 1.45, Ptrend = 0.004; and relative risk = 1.20, 95% confidence interval = 1.03 to 1.40, Ptrend = 0.018).

Conclusions

This study provides evidence that the SMAD3 gene, which encodes a key regulatory protein in the transforming growth factor beta signalling pathway and is known to interact directly with BRCA2, may contribute to increased risk of breast cancer in BRCA2 mutation carriers. This finding suggests that genes with expression associated with BRCA1 and BRCA2 mutation status are enriched for the presence of common genetic modifiers of breast cancer risk in these populations.  相似文献   

16.

Introduction

Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.

Methods

We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort approach.

Results

The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17 to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status.

Conclusions

The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.  相似文献   

17.

Background

Pathogenic BRCA1 founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers. Identifying germline pathogenic gene variants in patients with primary breast and ovarian cancer could significantly impact the medical management of patients. The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population.

Methods

Fifteen female probands and 1 male proband that met National Comprehensive Cancer Network (NCCN) criteria for BRCA1/2 testing were included in the study and underwent 26-gene panel testing. Fourteen probands had breast cancer, one proband had ovarian cancer, and one proband had both breast and ovarian cancer. In a 26-gene panel, the following breast and/or ovarian cancer susceptibility genes were included: ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. All patients previously tested negative for BRCA1 founder mutations.

Results

In 44% (7 out of 16) of tested probands, pathogenic mutations were identified. Six probands carried pathogenic mutations in BRCA1, and one proband carried pathogenic mutations in BRCA2. In patients, a variant of uncertain significance was found in BRCA2, RAD50, MRE11A and CDH1. The Manchester scoring system showed a high accuracy (87.5%), high sensitivity (85.7%) and high specificity (88.9%) for the prediction of pathogenic non-founder BRCA1/2 mutations.

Conclusion

A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.
  相似文献   

18.

Background

Conventional Sanger sequencing reliably detects the majority of genetic mutations associated with hereditary cancers, such as single-base changes and small insertions or deletions. However, detection of genomic rearrangements, such as large deletions and duplications, requires special technologies. Microarray analysis has been successfully used to detect large rearrangements (LRs) in genetic disorders.

Methods

We designed and validated a high-density oligonucleotide microarray for the detection of gene-level genomic rearrangements associated with hereditary breast and ovarian cancer (HBOC), Lynch, and polyposis syndromes. The microarray consisted of probes corresponding to the exons and flanking introns of BRCA1 and BRCA2 (≈1,700) and Lynch syndrome/polyposis genes MLH1, MSH2, MSH6, APC, MUTYH, and EPCAM (≈2,200). We validated the microarray with 990 samples previously tested for LR status in BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, MUTYH, or EPCAM. Microarray results were 100% concordant with previous results in the validation studies. Subsequently, clinical microarray analysis was performed on samples from patients with a high likelihood of HBOC mutations (13,124), Lynch syndrome mutations (18,498), and polyposis syndrome mutations (2,739) to determine the proportion of LRs.

Results

Our results demonstrate that LRs constitute a substantial proportion of genetic mutations found in patients referred for hereditary cancer genetic testing.

Conclusion

The use of microarray comparative genomic hybridization (CGH) for the detection of LRs is well-suited as an adjunct technology for both single syndrome (by Sanger sequencing analysis) and extended gene panel testing by next generation sequencing analysis. Genetic testing strategies using microarray analysis will help identify additional patients carrying LRs, who are predisposed to various hereditary cancers.  相似文献   

19.

Introduction

Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2).

Methods

To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework.

Results

Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049).

Conclusions

The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.  相似文献   

20.

Background:

Little is known regarding cancer risks for relatives of women with very early-onset breast cancer.

Methods:

We studied 2208 parents and siblings of 504 unselected population-based Caucasian women with breast cancer diagnosed before age 35 years (103 from USA, 124 from Canada and 277 from Australia), 41 known to carry a mutation (24 in BRCA1, 16 in BRCA2 and one in both genes). Cancer-specific standardised incidence ratios (SIRs) were estimated by comparing the number of affected relatives (50% verified overall) with that expected based on incidences specific for country, sex, age and year of birth.

Results:

For relatives of carriers, the female breast cancer SIRs were 13.13 (95% CI 6.57–26.26) and 12.52 (5.21–30.07) for BRCA1 and BRCA2, respectively. The ovarian cancer SIR was 12.38 (3.1–49.51) for BRCA1 and the prostate cancer SIR was 18.55 (4.64–74.17) for BRCA2. For relatives of non-carriers, the SIRs for female breast, prostate, lung, brain and urinary cancers were 4.03 (2.91–5.93), 5.25 (2.50–11.01), 7.73 (4.74–12.62), 5.19 (2.33–11.54) and 4.35 (1.81–10.46), respectively. For non-carriers, the SIRs remained elevated and were statistically significant for breast and prostate cancer when based on verified cancers.

Conclusion:

First-degree relatives of women with very early-onset breast cancer are at increased risk of cancers not explained by BRCA1 and BRCA2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号