首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The different molar ratios of collagen/chitosan were used to be immobilized on polypropylene nonwoven fabrics grafted with N-isopropyl acrylamide (abbr. PP-g-NIPAAm-i-Col/Chi). For a controlled immobilizing time and NIPAAm concentration, the collagen/chitosan immobilized values and the antibacterial properties of PP-g-NIPAAm-i-Col/Chi increased with increasing amount of chitosan in the mixture of collagen/chitosan. The crosslinking reaction between the grafted polyNIPAAm and collagen/chitosan molecules was clearly confirmed by the examination of the spectra of the surface reflection infrared spectroscopy (IR). The values of water absorption and water diffusion coefficient of PP-g-NIPAAm-i-Col/Chi decreased with increase of the chitosan in the mixture of collagen/chitosan and the value of immobilized collagen/chitosan at the same pH value of buffering water. The PP-g-NIPAAm-i-Col/Chi have excellent water absorption, water permeability, and antibacterial properties and would be suitable for the healing of wounded skin area.  相似文献   

2.
In this work, hydrogel membranes were developed based on poly vinyl alcohol (PVA), starch (St), and chitosan (Cs) hydrogels with nano Zinc oxide (nZnO). PVA/St/Cs/nZnO hydrogel membranes were prepared by freezing-thawing cycles, and the aqueous PVA/St solutions were prepared by dissolving PVA in distilled water. After the dissolution of PVA, starch was mixed, and the mixture was stirred. Then, chitosan powder was added into acetic acid, and the mixture was stirred to form a chitosan solution. Subsequently, Cs, St and PVA solutions were blended together to form a homogeneous PVA/St/Cs ternary blend solution. Measurement of Equilibrium Swelling Ratio (ESR), Water Vapor Transmission Test (WVTR), mechanical properties, scanning electron microscopy (SEM), MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay, antibacterial studies, in vivo wound healing effect and histopathology of the hydrogel membranes were then performed. The examination revealed that the hydrogel membranes were more effective as a wound dressing in the early stages of wound healing and that the gel could be used in topic applications requiring a large spectrum of antibacterial activity; namely, as a bandage for wound dressing.  相似文献   

3.
基于羧甲基壳聚糖的高生物相容性及聚乙烯醇缩丁醛的快速成膜,构建了一种创面复合液体敷料,并对其应用效果进行评价。首先应用羧甲基壳聚糖 (CMC)、聚乙烯醇缩丁醛 (PVB)和乙醇溶液,按照一定的比例,制备创面复合液体敷料。对其防水、透气、阻菌、细胞毒性进行性能研究及安全性评价。然后选择健康成年Sprague-Dawley(SD)大鼠40只,雌雄各半,构建大鼠创面模型,并将含有不同浓度的羧甲基壳聚糖(1.0、10.0、30.0 mg/mL)应用在其创面上,通过日常观察、HE染色等,研究创面复合液体敷料在皮肤创伤中的治疗效果。结果显示创面复合液体敷料上层膜液在1.8~2.3 mm 之间具有很好的防水透气性、阻菌性及生物兼容性。运用在动物模型上可以看到,第7 d含有10.0、30.0 mg/mL CMC组的大鼠创面愈合率分别为65.42%、67.38%,明显高于对照组且存在显著性差异(P< 0.01),14 d后含有10.0、30.0 mg/mL CMC组的大鼠创面愈合率已达到100%。HE 染色的第七天含有10.0、30.0 mg/mL CMC的创面复合液体敷料组中观察到有复层扁平的表皮和真皮的胶原纤维,第12 d组织开始出现内陷结构,含有厚实、粗糙胶原纤维的正常真皮与较薄的胶原纤维水平连接,表皮的复层鳞状上皮远远大于对照组中的三到四层。而且创面连接真皮结缔组织,它的表皮构成非常接近于正常皮肤组织。构建的创面复合液体敷料(10.0 mg/mL CMC)具备良好的防水、透气、阻菌性以及生物兼容性,随着羧甲基壳聚糖浓度的升高,治疗急性创面的效果越好,创面复合液体敷料能够对创面起到早期保护和促进愈合的效果。.  相似文献   

4.
背景:抗菌敷料是预防创面发生侵袭性感染的重要措施之一,但长期使用抗生素会使细菌产生耐药性;同时,将抗菌材料与棉织物复合制得的抗菌敷料,生物相容性差,不宜用于创面的长期覆盖。 目的:制备一种具有良好的生物相容性、抗菌消炎性的新型抗菌生物敷料,并初步检测该材料的生物学性能。 方法:通过在乙醇/水/NaOH溶液中,构建一个纳米级的吸附相反应器,制得吸附纳米银的纳米SiO2粉末;将载银的SiO2粉末添加到壳聚糖/聚乙烯醇反应溶液中,通过缩醛化反应制得含Ag/SiO2纳米颗粒的壳聚糖/聚乙烯醇海绵。检测材料的各项物理性能、表面形貌、细胞毒性、抗菌性能。 结果与结论:材料呈多孔结构,吸水率、透气性和保湿性良好,具有较高的拉伸强度;材料孔隙率高、空隙致密均匀,孔径大小为0.1~1 mm;MTT法检测材料对小鼠成纤维细胞毒性显示无明显毒性,并且能促进该细胞的生长;材料对金黄色葡萄球菌、大肠杆菌、白色念珠菌、铜绿假单胞菌、伤寒沙门菌均有良好的杀菌效果。以上结果显示材料不但具有良好的物理性能、生物活性和抗菌性能,而且合成工艺简单,可作为创面敷料。  相似文献   

5.
A novel bilayer chitosan membrane was prepared by a combined wet/dry phase inversion method and evaluated as a wound dressing. This new type of bilayer chitosan wound dressing, consisting of a dense upper layer (skin layer) and a sponge-like lower layer (sublayer), is very suitable for use as a topical delivery of silver sulfadiazine (AgSD) for the control of wound infections. Physical characterization of the bilayer wound dressing showed that it has excellent oxygen permeability, that it controls the water vapor transmission rate, and that it promotes water uptake capability. AgSD dissolved from bilayer chitosan dressings to release silver and sulfadiazine. The release of sulfadiazine from the bilayer chitosan dressing displayed a burst release on the first day and then tapered off to a much slower release. However, the release of silver from the bilayer chitosan dressing displayed a slow release profile with a sustained increase of silver concentration. The cultures of Pseudomonas aeruginosa and Staphylococcus aureus in agar plates showed effective antimicrobial activity for 1 week. In vivo antibacterial tests confirmed that this wound dressing is effective for long-term inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus at an infected wound site. The results in this study indicate that the AgSD-incorporated bilayer chitosan wound dressing may be a material with potential antibacterial capability for the treatment of infected wounds.  相似文献   

6.
In this study, a solution chitosan fibroin emulsion with added Silver Nanoparticles (AgNPs) was freeze-dried to be the scaffold, and an asymmetric coating was formed on one side. PRP was loaded onto the composite scaffold using a secondary lyophilization technology to prepare the tissue engineering dressings. AgNPs were characterized using a transmission electron microscope. The morphologies of the composite dressing were examined under a scanning electron microscope. The silver content of the dressing was measured by inductively coupled plasma mass spectrometry. The asymmetric wettability of the composite dressing was demonstrated by water contact angle measurement. Relatively high porosity, favourable moisture retention capability and appropriate tensile strength were observed by measuring the physical and mechanical properties. Satisfactory antibacterial properties against various bacteria and microbial isolation performance were observed by the antibacterial effect analysis in vitro. The total protein slow-release property was measured using the BCA assay. Good biocompatibility and lower sensitization were examined both in vitro and in vivo. In addition, the healing effciency of the composite dressing on infected wound were examined in mice infected wound models. Analysis of wound healing rates, bacterial cultures of wound exudate, whole blood cell analysis and histological examination all showed satisfactory results. These results are demonstrated to provide a potential and possible pathway to promote wound tissue repair and regeneration.  相似文献   

7.
背景:壳聚糖与胶原联合可更有效地止血。 目的:评价胶原/壳聚糖止血敷料的材料学性能及应用于外科伤口的生物相容性。 方法:以“生物材料,止血敷料,纱布,胶原/壳聚糖,生物相容性”为中文关键词,以“biomaterial;hemostatic material;bioresorbable material;hemostasis effect;hemostatic mechanism”为英文关键词,采用计算机检索2000-01/2010-06与生物敷料、胶原/壳聚糖止血材料在伤口或创面止血过程中应用相关的文献。 结果与结论:壳聚糖独特的生物学特性,具有广谱抑菌、促进上皮细胞生长及止血,促进创面愈合的作用,在体内具有良好的生物降解性与组织相容性,可用于指端损伤和肉芽创面的治疗,如制成伤口敷料、可吸收缝线、止血材料、防粘连剂、药物缓释及组织工程支架,用于平战时伤口的处理。  相似文献   

8.
This article is focused on the study of the antibacterial activity of temperature sensitive poly(N-isopropylacrylamide/polyurethane (PNIPAAm/PU) hydrogel grafted nonwoven fabrics with chitosan modification. A series of temperature sensitive hydrogel grafted nonwoven fabrics with different N-isopropylacrylamide/polyurethane (NIPAAm/PU) feeding ratios have been synthesized by using ammonium persulfate (APS) as initiator and N,N,N',N'-tetramethyl-ethane-1,2-diamine (TEMED) as accelerator. FTIR and XPS were used to examine the surface modification of chitosan. The phase transition temperature of hydrogel grafted nonwoven fabrics was about 32 degrees C by DSC. S. aureus and E. coli were used to evaluate the antibacterial efficiency of the fabric composite. After chitosan modification, the hydrogel grafted nonwoven cellulose fabrics demonstrates an antibacterial activity to S. aureus. and E. coli and the antibacterial efficiency is about 80%.  相似文献   

9.
Autologous skin grafts are considered necessary for the treatment of extensive skin defects. However, skin graft by suturing is a time-consuming medical handling and rather stressful event for recipients. To that end, tissue adhesives have been suggested in skin grafts. Chitosan hydrogel is well known as a wound dressing and tissue adhesive material showing biocompatibility, anti-infective activity, and the ability to accelerate wound healing. In this report, we evaluated the application of the chitosan hydrogel as a tissue adhesive in skin grafts. Although chitosan hydrogel shortened the operation time and resulted in a high graft absorption rate in comparison with suturing, wound epithelization was rather retarded. On the other hand, chitosan hydrogel was found more biocompatible than the commonly used tissue adhesive octyl-2-cyanoacrylate. When the chitosan hydrogel was premixed with a serum-free tissue culture medium DMEM/F12, it was found to easily degrade and promote wound epithelization. Histological examination revealed that the medium (DMEM/F12)-containing chitosan hydrogel was associated with the accumulation of polymorphonuclear leukocytes and neovascularization. In addition, immunohistochemical staining showed that the vascular endothelial growth factor (VEGF) was localized in the chitosan hydrogel degraded matrices. And infiltration of leukocytes determined the degradation activity with the D-glucose in the medium (DMEM/F12) suggested to play a central role in chitosan hydrogel degradation. Therefore, the medium (DMEM/F12)-containing chitosan hydrogel may become commonly accepted as a beneficial wound dressing and tissue adhesive in extensive wound management and skin grafts.  相似文献   

10.
Mi FL  Shyu SS  Wu YB  Lee ST  Shyong JY  Huang RN 《Biomaterials》2001,22(2):165-173
A novel asymmetric chitosan membrane has been prepared by immersion-precipitation phase-inversion method and evaluated as wound covering. This new type of chitosan wound dressing which consists of skin surface on top-layer supported by a macroporous sponge-like sublayer was designed. The thickness of the dense skin surface and porosity of sponge-like sublayer could be controlled by the modification of phase-separation process using per-evaporation method. The asymmetric chitosan membrane showed controlled evaporative water loss, excellent oxygen permeability and promoted fluid drainage ability but could inhibit exogenous microorganisms invasion due to the dense skin layer and inherent antimicrobial property of chitosan. Wound covered with the asymmetric chitosan membrane was hemostatic and healed quickly. Histological examination confirmed that epithelialization rate was increased and the deposition of collagen in the dermis was well organized by covering the wound with this asymmetric chitosan membrane. The results in this study indicate that the asymmetric chitosan membrane thus prepared could be adequately employed in the future as a wound dressing.  相似文献   

11.
The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.  相似文献   

12.
Drug-impregnated polyelectrolyte complex (PEC) sponge composed of chitosan and sodium alginate was prepared for wound dressing application. The morphological structure of this wound dressing was observed to be composed of a dense skin outer layer and a porous cross-section layer by scanning electron microscopy (SEM). Equilibrium water content and release of silver sulfadiazine (AgSD) could be controlled by the number of repeated in situ PEC reactions between chitosan and sodium alginate. The release of AgSD from AgSD-impregnated PEC wound dressing in PBS buffer (PH = 7.4) was dependent on the number of repeated in situ complex formations for the wound dressing. The antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudomonas aeruginosa and Staphylococcus aureus. From the behavior of antimicrobial release and the suppression of bacterial proliferation, it is thought that the PEC wound dressing containing antimicrobial agents could protect the wound surfaces from bacterial invasion and effectively suppress bacterial proliferation. In the cytotoxicity test, cellular damage was reduced by the controlled released of AgSD from the sponge matrix of AgSD-medicated wound dressing. In vivo tests showed that granulation tissue formation and wound contraction for the AgSD plus dihydroepiandrosterone (DHEA) impregnated PEC wound dressing were faster than any other groups.  相似文献   

13.
Water-soluble chitin as a wound healing accelerator.   总被引:23,自引:0,他引:23  
Y W Cho  Y N Cho  S H Chung  G Yoo  S W Ko 《Biomaterials》1999,20(22):2139-2145
Water-soluble chitin (WSC) was prepared by controlling degree of deacetylation (DD) and molecular weight of chitin through alkaline and ultrasonic treatment. Its accelerating effect on wound healing in rats was compared with those of chitin and chitosan. Full-thickness skin incision was made on the backs of the rats and then three kinds of powders (chitin, chitosan, WSC) and an aqueous solution of WSC were embedded in the wounds. The tensile strength and the hydroxyproline content of the wounded skins were measured and histological examination was performed. The WSC was found to be more efficient than chitin or chitosan as a wound-healing accelerator. The wound treated with WSC solution was completely reepithelialized, granulation tissues in the wound were nearly replaced by fibrosis and hair follicles were almost healed at 7 days after initial wounding. Also, the WSC-solution-treated skin had the highest tensile strength and the arrangement of collagen fibers in the skin was similar to normal skins. The WSC solution is considered to be a suitable wound-healing agent due to its easy application and high effectiveness.  相似文献   

14.
An experimental study was carried out in an animal (New Zealand white rabbit) wound model to evaluate any effects of a hypotonic, bicarbonate-calcium-magnesium mineral water (Comano thermal water) on skin regeneration, comparing the healing rate of split-thickness skin graft donor sites treated with the thermal water wet dressing versus a standard petrolatum gauze dressing versus a saline solution wet dressing. The study was performed in two steps; an overall of 22 animals were enrolled in the study. The wound healing progress was evaluated both by the surgeons and by the histologists. Sixty-four punch biopsies were examined in all. The histological samples were examined after staining with haematoxylin and eosin, Masson's and orcein staining and under a transmission electron microscope. The data were statistically analysed. The Comano thermal water proved to improve skin regeneration, not only by increasing keratinocyte proliferation and migration but also favourably modulating the regenerated collagen and elastic fibres in the dermis. We propose that the results of the topical treatment with the thermal water could be due to the favourable combination of a local wet environment with an anti-inflammatory action and that the regenerative properties of Comano thermal water observed in rabbits could also be applied for human use.  相似文献   

15.
目的:本研究旨在评估羧甲基壳聚糖膜取代异体皮作为微粒皮移植载体促进创面愈合的作用。方法28只大鼠中,每次随机抽取2只大鼠配对同时手术,在大鼠背部两侧制作直径25 mm、对称圆形全层皮肤缺损创面各1个,两侧创面分别设为实验组和对照组,均移植自体微粒皮,对照组创面覆盖相互配对大鼠的异体皮,实验组创面覆盖羧甲基壳聚糖膜。于术后7、11、14 d 观察记录各组创面愈合时间,并于术后7、14、19 d 采集创面组织行组织病理学检查。结果实验组的羧甲基壳聚糖膜覆盖下微粒皮能够成活,且能修复创面。实验组创面平均愈合时间为(15.6±2.0)d,短于对照组创面平均愈合时间为(18.8±1.9)d,两组比较,差异有统计学意义(t =8.987,P〈0.05)。组织切片结果显示:羧甲基壳聚糖膜覆盖下微粒皮修复的新生表皮层生长较异体皮覆盖下新生表皮厚。结论羧甲基壳聚糖膜作为生物敷料,能够有效地保护创面,提供微粒皮修复创面的微环境。可用于取代异体皮覆盖微粒皮移植的创面。  相似文献   

16.
Hong HJ  Jin SE  Park JS  Ahn WS  Kim CK 《Biomaterials》2008,29(36):4831-4837
Smad3 mediates the intracellular signaling of TGF-beta1 superfamily and plays a critical role in the cellular proliferation, differentiation and elaboration of matrix pivotal to cutaneous wound healing. Smad3 antisense oligonucleotides (ASOs) impregnated polyelectrolyte complex (PEC) containing chitosan and sodium alginate was prepared for accelerated wound healing. Physicochemical properties of PEC were characterized by zeta potential, scanning electron microscopy and bioadhesive test. Full-thickness, excisional wounds were made on the dorsum of C57BL6 mice. Then, smad3 ASOs-PEC, PEC alone, smad3 ASOs and gauze dressing were applied to determine concentration of TGF-beta1 and collagen in tissues and observe the wound contraction and histology of tissues. Zeta potentials and bioadhesive strengths of ASOs-PEC were increased as the chitosan ratio in PEC. In smad3 ASOs-PEC, the healing process suggested by wound closure and histological observation was faster than other groups because collagen contents increased and level of TGF-beta1 decreased. These results demonstrate that the smad3 ASOs-PEC composed of chitosan and sodium alginate could be applied for accelerated wound healing.  相似文献   

17.
Abstract

This study investigated the effect of a wound dressing composed of hyaluronic acid (HA) and collagen (Col) sponge containing epidermal growth factor (EGF) on wound healing in diabetic mice. High-molecular-weight (HMW) HA aqueous solution, hydrolyzed low-molecular-weight (LMW) HA aqueous solution and heat-denatured Col aqueous solution were mixed, followed by freeze-drying to obtain a spongy sheet. Cross-linkage between Col molecules was induced by UV irradiation to the spongy sheet (Type-I wound dressing). In a similar manner, a spongy sheet containing EGF (Type-II wound dressing) was prepared by freeze-drying the mixed solution of HMW-HA, LMW-HA and Col containing EGF. The efficacy of these products was evaluated in type-II diabetic BKS.Cg-+Leprdb/+Leprdb (db/db) mice. Wound dressings were applied to a full-thickness, dorsal skin defect measuring 1.5 cm × 2.0 cm, showing adipose tissue. In the control group, a commercially available artificial dermis composed of collagen spongy sheet (TERUDERMIS®) was used. A commercially available polyurethane film dressing (Bioclusive®) was applied over each wound dressing. After 1 week of application, wound conditions were evaluated based on their gross and histological appearances. Type-I and -II wound dressings promoted a decrease in wound size associated with angiogenesis and granulation tissue formation, compared with the artificial dermis. In particular, Type-II wound dressings promoted sufficient re-epithelialization. These findings indicate that the combination of HA, Col and EGF promotes wound healing by stimulating cell activity including cell migration and proliferation on the adipose tissue in a diabetic wound. Type-I and -II wound dressings would be useful to prepare a well-vascularized wound bed acceptable for split-thickness auto-skin grafting.  相似文献   

18.
Hyaluronic acid (HA) has the ability to promote wound healing. Epidermal growth factor (EGF) is able to promote the proliferation of various cell types, in addition to epidermal cells. A novel wound dressing was designed using high-molecular-weight hyaluronic acid (HMW-HA) and low-molecular-weight hyaluronic acid (LMW-HA). Spongy sheets composed of cross-linked high-molecular-weight hyaluronic acid (c-HMW-HA) were prepared by freeze-drying an aqueous solution of HMW-HA containing a crosslinking agent. Each spongy sheet was immersed into an aqueous solution of LMW-HA containing arginine (Arg) alone or both Arg and epidermal growth factor (EGF), and were then freeze-dried to prepare two types of product. One was a wound dressing composed of c-HMW-HA sponge containing LMW-HA and Arg (c-HMW-HA/LMW-HA + Arg; Group I). The other was a wound dressing composed of c-HMW-HA sponge containing LMW-HA, Arg and EGF (c-HMW-HA/LMW-HA + Arg + EGF; Group II). The efficacy of these products was evaluated in animal tests using rats. In the first experiment, each wound dressing was applied to a full-thickness skin defect with a diameter of 35 mm in the abdominal region of Sprague–Dawley (SD) rats, leaving an intact skin island measuring 15 mm in diameter in the central area of this skin defect. Commercially available polyurethane film dressing was then applied to each wound dressing as a covering material. In the control group, the wound surface was covered with polyurethane film dressing alone. Both wound dressings (Group I and Group II) potently decreased the size of the full-thickness skin defect and increased the size of the intact skin island, when compared with the control group. The wound dressing in Group II showed particularly potent activity in increasing the distance of epithelization from the intact skin island. This suggests that EGF release from the spongy sheet serves to promote epithelization. The wound dressing in Group II enhanced early-stage inflammation after 1 week, as compared with the other two groups. In the second experiment, each wound dressing was applied to a full-thickness skin defect measuring 35 mm in diameter in the abdominal region of SD rats, after removing necrotic skin caused by dermal burns. Polyurethane film dressing was applied to each wound dressing as a covering material. In the control group, the wound surface was covered with polyurethane film dressing alone. Both wound dressings (Group I and Group II) potently decreased the size of the full-thickness skin defect and increased epithelization from the wound margin, as compared with the control group. The wound dressing in Group II was found to enhance early-stage inflammation after 1 week, as compared with the other two groups. The findings in both experiments indicate that the wound dressing composed of HA-based spongy sheets containing Arg and EGF potently promotes wound healing by inducing moderate inflammation. The release of EGF in the early stages of wound healing induces moderate inflammation. This suggests that wound healing is facilitated directly by topical application of EGF, and indirectly by cytokines derived from inflammatory cells stimulated by EGF.  相似文献   

19.
糖尿病慢性皮肤伤口的愈合,是临床治疗中的难点和基础研究中的热点。传统治疗方法效果并不理想,而组织工程技术的发展,为其治疗提供了新途径。现今已有将壳寡糖作为伤口敷料的研究,并引起越来越多的关注,但关于壳寡糖用于糖尿病难愈性创面的研究并不多。本篇综述将概述壳寡糖促进伤口愈合的生物学机制及特点,以及糖尿病皮肤创面的病理学改变,总结壳寡糖在糖尿病皮肤伤口愈合中的研究进展。  相似文献   

20.
Application of ultraviolet light (UV-) irradiation to a photocrosslinkable chitosan (Az-CH-LA) aqueous solution resulted in an insoluble, flexible hydrogel like soft rubber within 60 s. The chitosan hydrogel could completely stop bleeding from a cut mouse tail within 30 s of UV-irradiation and could firmly adhere two pieces of sliced skins of mouse to each other. In order to evaluate its accelerating effect on wound healing, full thickness-skin incisions were made on the back of mice and subsequently an Az-CH-LA aqueous solution was added into the wound and irradiated with UV light for 90 s. Application of the chitosan hydrogel significantly induced wound contraction and accelerated wound closure and healing. Histological examinations also have demonstrated an advanced granulation tissue formation and epithelialization in the chitosan hydrogel treated wounds. The chitosan hydrogel due to its accelerating healing ability is considered to become an excellent dressing for wound occlusion and tissue adhesive in urgent hemostasis situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号