首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serial analysis of gene expression (SAGE) is a powerful technique for genome-wide analysis of gene expression. However, two-thirds of SAGE tags cannot be used directly for gene identification for two reasons. First, many SAGE tags match several known expressed sequences, owing to the short length of SAGE tag sequences. Second, many SAGE tags do not match any known expressed sequences, presumably because the sequences corresponding to these SAGE tags have not been identified. These two problems can be solved by extension of the SAGE tags into 3' complementary DNAs (cDNAs) by use of the GLGI technique (generation of longer cDNA fragments from SAGE tags for gene identification). We have improved the original GLGI technique into a high-throughput procedure for simultaneous conversion of a large number of SAGE tags into corresponding 3' cDNAs. The whole process is simple, rapid, low-cost, and highly efficient, as shown by our use of this procedure for analyzing hundreds of SAGE tags. In addition to identifying the correct gene for SAGE tags with multiple matches, GLGI can be used for large-scale identification of novel genes by converting novel SAGE tags into 3' cDNAs. Applying this high-throughput procedure should accelerate the rate of gene identification significantly in the human and other eukaryotic genomes.  相似文献   

2.
3.
The great potential of human embryonic stem cells (hESCs) in basic research, regenerative medicine, and gene therapy is widely recognized. Controlled manipulation of hESC genomes through sequence-specific DNA recombination (SSR) may play a significant role in future hESC applications. However, very little is known about the functionality of SSR systems in hESCs. We demonstrate here that mutant phage lambda integrase, phage P1 Cre recombinase, and mutant gammadelta resolvase displayed distinct activities on episomal recombination substrates. Interestingly, cofactor-independent lambda integrase catalyzed the integrative pathway five times more efficiently than the excisive pathway. Such a degree of directionality in hESCs could be explored for sequential gene insertions into predetermined genomic sequences. We also report an improved, easy-to-use plasmid transfection system that employs silica microspheres and, in combination with SSR, could be applied to hESC genome engineering.  相似文献   

4.
5.
6.
Human embryonic stem cells (hESCs) self-renew indefinitely while maintaining pluripotency. The molecular mechanism underlying hESCs self-renewal and pluripotency is poorly understood. To identify the signaling pathway molecules that maintain the proliferation of hESCs, we performed a microarray analysis comparing an aneuploid H1 hESC line (named H1T) versus euploid H1 hESC line because the H1T hESC line demonstrates a self-renewal advantage while maintaining pluripotency. We find differential gene expression for the Nodal/Activin, fibroblast growth factor (FGF), Wnt, and Hedgehog (Hh) signaling pathways in the H1T line, which implicates each of these molecules in maintaining the undifferentiated state, whereas the bone morphogenic protein (BMP) and Notch pathways could promote hESCs differentiation. Experimentally, we find that Activin A is necessary and sufficient for the maintenance of self-renewal and pluripotency of hESCs and supports long-term feeder and serum-free growth of hESCs. We show that Activin A induces the expression of Oct4, Nanog, Nodal, Wnt3, basic FGF, and FGF8 and suppresses the BMP signal. Our data indicates Activin A as a key regulator in maintenance of the stemness in hESCs. This finding will help elucidate the complex signaling network that maintains the hESC phenotype and function.  相似文献   

7.
8.
The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.  相似文献   

9.
10.
We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.  相似文献   

11.
12.
13.
14.
Human embryonic stem cells (hESCs) hold great potential as a resource for regenerative medicine. Before achieving therapeutic relevancy, methods must be developed to control stem cell differentiation. It is clear that stem cells can respond to genetic signals, such as those imparted by nucleic acids, to promote lineage-specific differentiation. Here we have developed an efficient system for delivering siRNA to hESCs in a 3D culture matrix using lipid-like materials. We show that non-viral siRNA delivery in a 3D scaffolds can efficiently knockdown 90% of GFP expression in GFP-hESCs. We further show that this system can be used as a platform for directing hESC differentiation. Through siRNA silencing of the KDR receptor gene, we achieve concurrent downregulation (60-90%) in genes representative of the endoderm germ layer and significant upregulation of genes representative of the mesoderm germ layer (27-90 fold). This demonstrates that siRNA can direct stem cell differentiation by blocking genes representative of one germ layer and also provides a particularly powerful means to isolate the endoderm germ layer from the mesoderm and ectoderm. This ability to inhibit endoderm germ layer differentiation could allow for improved control over hESC differentiation to desired cell types.  相似文献   

15.
The realization of human embryonic stem cells (hESC) as a model for human developmental hematopoiesis and in potential cell replacement strategies relies on an improved understanding of the extrinsic and intrinsic factors regulating hematopoietic-specific hESC differentiation. Human mesenchymal stem cells (hMSCs) are multipotent cells of mesodermal origin that form a part of hematopoietic stem cell niches and have an important role in the regulation of hematopoiesis through production of secreted factors and/or cell-to-cell interactions. We have previously shown that hESCs may be successfully maintained feeder free using hMSC-conditioned media (MSC-CM). Here, we hypothesized that hESCs maintained in MSC-CM may be more prone to differentiation toward hematopoietic lineage than hESCs grown in standard human foreskin fibroblast-conditioned media. We report that specification into hemogenic progenitors and subsequent hematopoietic differentiation and clonogenic progenitor capacity is robustly enhanced in hESC lines maintained in MSC-CM. Interestingly, co-culture of hESCs on hMSCs fully abrogates hematopoietic specification of hESCs, thus suggesting that the improved hematopoietic differentiation is mediated by MSC-secreted factors rather than by MSC-hESC physical interactions. To investigate the molecular mechanism involved in this process, we analyzed global (LINE-1) methylation and genome-wide promoter DNA methylation. hESCs grown in MSC-CM showed a decrease of 17% in global DNA methylation and a promoter DNA methylation signature consisting of 45 genes commonly hypomethylated and 102 genes frequently hypermethylated. Our data indicate that maintenance of hESCs in MSC-CM robustly augments hematopoietic specification and that the process seems mediated by MSC-secreted factors conferring a DNA methylation signature to undifferentiated hESCs which may influence further predisposition toward hematopoietic specification.  相似文献   

16.
17.
Human embryonic stem cells (hESCs) require specific niches for adhesion, expansion, and lineage-specific differentiation. In this study, we showed that a membrane substrate offers better tissue niches for hESC attachment, spreading, proliferation, and differentiation. The cell doubling time was shortened from 46.3±5.7?h for hESCs grown on solid substrates to 25.6±2.6?h for those on polyester (PE) membrane substrates with pore size of 0.4?μm. In addition, we observed an increase of approximately five- to ninefold of definitive endoderm marker gene expression in hESCs differentiated on PE or polyethylene terephthalate membrane substrates. Global gene expression analysis revealed upregulated expressions of a number of extracellular matrix and cell adhesion molecules in hESCs grown on membrane substrates. Further, an enhanced nuclear translocation of β-catenin was detected in these cells. These observations suggested the augmentation of Wnt signaling in hESCs grown on membrane substrates. These results also demonstrated that a membrane substrate can offer better physicochemical cues for enhancing in vitro hESC attachment, proliferation, and differentiation.  相似文献   

18.
19.
Human embryonic stem cells (hESCs) have been derived from the inner cell mass (ICM) of day 5-7 blastocysts and hold great promise for research into human developmental biology and the development of cell therapies for the treatment of human diseases. We report here that our novel three-step culture conditions successfully support the development of day-8 human blastocysts, which possess significantly (p <.01) more ICM cells than day-6 blastocysts. Plating of ICMs isolated from day-8 blastocysts resulted in the formation of a colony with hESC morphology from which a new hESC line (hES-NCL1) was derived. Our stem cell line is characterized by the expression of specific cell surface and gene markers: GTCM-2, TG343, TRA1-60, SSEA-4, alkaline phosphatase, OCT-4, NANOG, and REX-1. Cytogenetic analysis of the hESCs revealed that hES-NCL1 line has a normal female (46, XX) karyotype. The pluripotency of the cell line was confirmed by the formation of teratomas after injection into severely combined immunodeficient mice and spontaneous differentiation under in vitro conditions.  相似文献   

20.
One of the most frequently used matrices for feeder-free growth of undifferentiated human embryonic stem cells (hESCs) is Matrigel, which supports attachment and growth of undifferentiated hESCs in the presence of mouse embryonic fibroblast-conditioned medium. Unfortunately, application of Matrigel or medium conditioned by mouse embryonic feeder cells is not ideal for potential medical application of hESCs because xenogeneic pathogens can be transmitted through culture conditions. We demonstrate here that human serum as matrix and medium conditioned by differentiated hESCs reduce exposure of hESCs to animal ingredients and provide a safer direction toward completely animal-free conditions for application, handling, and understanding of hESC biology. At the same time, hESCs grown under these conditions maintain all hESC features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号