首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude ('EMG pulse') superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current ('plateau potentials'). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns.  相似文献   

2.
The study aimed to examine firing patterns of low-threshold trapezius motor units, with attention given to motor unit recruitment threshold. Different motor tasks were explored: shoulder elevation, arm movement in typing, and the motor response to mental stress. Contraction amplitudes in the range from 1 to 10% of the surface electromyographic (SEMG) signal at maximal voluntary contraction (1–10% EMGmax) were studied, representing the range of trapezius muscle activity commonly observed in daily living. Single motor unit activity was recorded by a quadrifilar fine-wire electrode. A surface electrode simultaneously recorded the SEMG signal. Low-threshold motor units showed a small increase in mean firing rate, from 10.5 to 12.5 pulses per second (p<0.01), in constant-amplitude contractions when SEMG amplitude increased from <2% to >4% EMGmax. After the first few minutes, firing rates were similar for all motor units in a contraction, despite different recruitment thresholds. Firing rates of motor units with threshold <2% EMGmax were the same in constant-amplitude contractions, contractions with vocational arm movement, and contractions with imposed stress for SEMG amplitude at the same level. High-frequency firing patterns were observed in dynamic contractions, limited to bursts of up to a second duration. We conclude that low-threshold trapezius motor units have similar, stable firing rates in sustained contractions, independent of task and recruitment threshold, but with a small increase for increasing contraction amplitude.  相似文献   

3.
The study aimed to characterize trapezius motor unit firing pattern in low-amplitude contractions, with emphasis on respiratory modulated activity. Constant-amplitude contractions with shoulder elevation, controlled by feedback of the root mean square detected surface electromyographic (SEMG) signal, typing with arm movement and tasks with mental stress were performed. Single motor unit activity was recorded by a quadrifilar fine-wire electrode. A surface electrode simultaneously recorded SEMG activity. Contraction amplitudes ranged from 1 to 10% of the SEMG signal at maximum voluntary contraction (1–10% EMGmax). The majority (∼80%) of motor units recorded during constant-amplitude contractions showed firing rate modulation at the respiratory frequency. Respiratory firing rate modulation was clear for low amplitude contractions (< 3% EMGmax), but was reduced at higher amplitudes (3–5.9% EMGmax). Most motor units had peak firing rate at the transition from inspiration to expiration, but peak firing rate at the transition from expiration to inspiration or at the first harmonic frequency was also observed. The SEMG signal showed little or no respiratory modulation, possibly because respiratory phase varied between motor units. Respiratory modulation of firing rates was significantly reduced in experiments with mental stress and was rarely observed in typing experiments. Both central respiratory drive and peripheral afferent input may contribute to respiratory modulation of firing rates; however, animal studies indicate a central source of the respiratory modulated input. We speculate that the reduction in respiratory modulation of motor activity with mental stress is due to activation of alternative pathways providing excitatory input to trapezius motoneurons.  相似文献   

4.
The paper studies a surface electromyogram (SEMG) decomposition technique suitable for identification of complete motor unit (MU) firing patterns and their motor unit action potentials (MUAPs) during low-level isometric voluntary muscle contractions. The algorithm was based on a correlation matrix of measurements, assumed unsynchronised (uncorrelated) MU firings, exhibited a very low computational complexity and resolved the superimposition of MUAPs. A separation index was defined that identified the time instants of an MU's activation and was eventually used for reconstruction of a complete MU innervation pulse train. In contrast with other decomposition techniques, the proposed approach worked well also when the number of active MUs was slightly underestimated, if the MU firing patterns partly overlapped and if the measurements were noisy. The results on synthetic SEMG show 100% accuracy in the detection of innervation pulses down to a signal-to-noise ratio (SNR) of 10 dB, and 93±4.6% (mean± standard deviation) accuracy with 0 dB additive noise. In the case of real SEMG, recorded with an array of 61 electrodes from biceps brachii of five subjects at 10% maximum voluntary contraction, seven active MUs with a mean firing rate of 14.1 Hz were identified on average.  相似文献   

5.
Aim: To investigate whether global motor unit recruitment to compensate for muscle fatigue during sustained contraction and to regulate force increase during ramp contraction are controlled in similar manners in the upper trapezius muscle. Methods: Fourteen subjects performed a 10‐s ramp contraction from 0% to 90% of maximal voluntary contraction (MVC) and a 3‐min sustained contraction at 25% MVC. Both contractions involved isometric shoulder elevation with a multi‐channel surface electromyographical grid placed on the skin above the muscle. To evaluate the global muscle activation pattern, the changes in spatial amplitude distribution of the sustained and the ramp contraction were examined and compared. Results: In both contraction types, the upper part of the trapezius muscle was spatially non‐uniform (inhomogeneous) activated. Throughout the sustained contraction, the amplitude distribution of the upper trapezius muscle became more similar to the amplitude distribution at higher force levels. Conclusion: These findings support the hypothesis that global motor unit recruitment to compensate for muscle fatigue during a sustained contraction, and to regulate force increase during a ramp contraction is controlled in a similar manner. Consequently, they confirm fundamental principles of motor unit activation based on recordings of limited motor unit samples.  相似文献   

6.
Suppressing inhibition mediated by GABAA receptors induces rhythmic bursts of synchronous firing in the CA3 region of the hippocampus. Extracellular and intracellular records were made from guinea pig hippocampal slices to examine the emergence of this synchrony. We found that application of GABAA receptor antagonists initiated a sequence of changes in the activity of the CA3 neuronal population. First, the frequency of firing detected in multiunit records increased. Then, firing began to oscillate with increases followed by decreases in firing that occurred at intervals of 0.5–2 s. The coherence of the rhythmic activity at a single site increased with time, and discharges at distant sites in the CA3 region became correlated. Fluctuations in firing were associated with extracellular field potentials. Finally, epileptiform events associated with large field potentials began to recur at intervals of 5–10 s. The onset of fully synchronous events was sudden and correlated with a large increase in the amplitude of the field potential. Thus the CA3 population can express states of partial population synchrony preceding the onset of epileptiform discharges. A similar activity was induced and maintained by applying low doses of GABAA receptor antagonists. Intracellular records suggest that inhibitory signalling mediated by GABAB receptors contributes to the emergence of this activity. States of partial synchrony in the CA3 region exposed to GABAA receptor antagonists therefore depend on alternating periods of firing, presumably dependent on excitatory synaptic mechanisms, and silence, mediated in part by the activation of GABAB receptors.  相似文献   

7.
The purpose of the present study was to investigate motor unit (MU) recruitment and firing rate, and the MU action potential (MUAP) characteristics of the human supraspinatus muscle during prolonged static contraction and subsequent recovery. Eight female subjects sustained a 30° shoulder abduction, requiring 11–12% of maximal voluntary contraction (MVC), for 30 min. At 10 and 30 min into the recovery period, the shoulder abduction was repeated for 1 min. The rating of perceived exertion for the shoulder region increased to “close to exhaustion” during the prolonged contraction, and the surface electromyography (EMG) recorded from the deltoid and trapezius muscles showed signs of local muscle fatigue. From the supraspinatus muscle, a total of 23,830 MU firings from 265 MUs were identified using needle electrodes. Of the identified MUs, 95% were continuously active during the 8-s recordings, indicating a low degree of MU rotation. The mean (range) MU firing rate was 11.2 (5.7–14.5) Hz, indicating the relative force contribution of individual MUs to be larger than the overall mean shoulder muscle load. The average MU firing rate remained stable throughout the prolonged abduction, although firing rate variability increased in response to fatigue. The average concentric MUAP amplitude increased by 38% from the beginning (0–6 min) to the end (24–29 min) of the contraction period, indicating recruitment of larger MUs in response to fatigue. In contrast, after 10 min of recovery the average MU amplitude was smaller than seen initially in the prolonged contraction, but not different after 30 min, while the MU firing rate was higher during both tests. In conclusion, MU recruitment plays a significant role during fatigue, whereas rate coding has a major priority during recovery. Furthermore, a low degree of MU rotation in combination with a high relative load at the MU level may imply a risk of overloading certain MUs during prolonged contractions. Accepted: 6 June 2000  相似文献   

8.
The firing pattern of low-threshold motor units was examined in the human trapezius and first dorsal interosseous (FDI) muscles during slowly augmenting, low-amplitude contractions that were intended to mimic contractile activity in postural muscles. The motor unit activity was detected with a special needle electrode and was analyzed with the assistance of computer algorithms. The surface electromyographic (EMG) signal was recorded. Its root-mean-square (RMS) value was calculated and presented to the subject who used it to regulate the muscle force level. In the trapezius, there was minimal, if any, firing rate modulation of early recruited motor units during slow contractions (< or =1% EMG(max)/s), and later recruited motor units consistently presented higher peak firing rates. As the force rate of the contraction increased (3% EMG(max)/s), the firing rates of the motor units in the trapezius approached an orderly hierarchical pattern with the earliest recruited motor units having the greatest firing rate. In contrast, and as reported previously, the firing rates of all motor units in the FDI always presented the previously reported hierarchical "onion-skin" pattern. We conclude that the low-threshold motor units in the postural trapezius muscle, that is the motor units that are most often called on to activate the muscle in postural activities, have different control features in slow and fast contractions. More detailed analysis revealed that, in the low force-rate contractions of the trapezius, recruitment of new motor units inhibited the firing rate of active motor units, providing an explanation for the depressed firing rate of the low-threshold motor units. We speculate that Renshaw cell inhibition contributes to the observed deviation of the low-threshold motor units from the hierarchical onion-skin pattern.  相似文献   

9.
Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.  相似文献   

10.
Declining motor unit discharge rates and H-reflex amplitude have been observed in separate experiments during fatiguing submaximal contractions in humans. The purpose of this experiment was to investigate motor unit discharge rate, H-reflex amplitude, and twitch contractile properties concurrently during a fatiguing submaximal isometric contraction of the ankle plantarflexors. Eleven healthy subjects performed fatiguing contractions of low force (25% maximal voluntary contraction (MVC)) or high force (42–66% MVC). Hoffmann (H)-reflexes, muscle compound action potentials (M-waves), twitch contractile properties, and motor unit discharges were recorded from the soleus muscle. In the low-force fatigue task, motor unit firing rate increased gradually over time, whereas the resting H-reflex was significantly depressed at 15% of endurance time and remained quasiconstant for the rest of the task. This suggests that the processes mediating the resting H-reflex depression are relatively independent of those modulating the motor unit firing rate during a low-force fatigue task. In the high-force fatigue task, a decline in the average motor unit discharge rate was accompanied by a decrease in the resting H-reflex amplitude and a prolongation of the twitch half-relaxation time (HRT) at the completion of the fatigue task. Overall, motor unit firing rate was modulated in parallel with changes in the twitch HRT, consistent with the muscle wisdom hypothesis.  相似文献   

11.
Motor unit firing rates of the triceps brachii muscle have been shown to decline during sustained isometric contractions, but not if the fatiguing contraction incorporates arm movements. The purpose of this study was to determine the impact of the actual physical displacement of the limb on the maintenance of motor unit discharge rate during dynamic muscle fatigue. An isometric force pulse paradigm was used to recreate the motor unit activity patterns that occur during a dynamic contraction. With this paradigm, the variable force output that would occur during a dynamic contraction remained intact, but the movement of the limb was eliminated. Motor unit firing rates declined in the isometric force pulse protocol. Thus, factors related to the actual movement of the limb appear to enable the maintenance of motor unit discharge rates during fatigue.  相似文献   

12.
Summary Motor unit firing behavior in human first dorsal interosseous (FDI) muscle was studied during controlled constant force isometric contractions. The threshold at which motor units were recruited and the mean firing rate at 50% of maximal voluntary contraction (MVC) were evaluated following stimulation of the skin area over the second digit. Stimulation of cutaneous receptors tended to increase the recruitment threshold of most of the motor units recruited under 20% MVC, while high-threshold motor units (those recruited over 30% MVC) generally exhibited a decrease in recruitment threshold. Less dramatic changes in motor unit firing rates were observed, but those motor units recruited over 30% MVC exhibited some increase in firing rate. The relationship between the change in recruitment threshold and change in motor unit firing rate is not rigid and seems to be susceptible to considerable synaptic noise.  相似文献   

13.
The alpha-motoneurone afterhyperpolarization (AHP) duration correlates with a number of its muscle unit properties in animal preparations. In humans, the interval death rate (IDR) analysis has been used to estimate the time course of human motoneurone AHP based on the pattern of motor unit firing. The purpose of this experiment was first, to examine the relationship between estimated AHP time course and the minimal firing rate of the motor unit and second, to examine the relationship between the AHP and motor unit contractile properties in the tibialis anterior (TA) muscle. Motor unit data were obtained from the TA muscle during low force isometric contractions lasting 600 s. Muscle unit twitch characteristics were determined using spike-triggered averaging (STA) and the motoneurone AHP time course was estimated using the IDR analysis. Minimal discharge rate and derecruitment threshold torque were determined for 2 s preceding motor unit derecruitment. The AHP time constant and minimal discharge rate were negatively correlated, whereas the derecruitment threshold torque was not associated with the AHP time constant. The estimated AHP duration, however, is considerably shorter than the mean ISI of the minimal discharge rate suggesting that synaptic noise and AHP duration are important factors in dictating the minimal discharge rate in low force voluntary contractions in humans. The AHP time constant did not vary significantly with motor unit twitch amplitude; however, significant positive relationships were found between the AHP time constant and the temporal properties of the motor unit twitch. The calculated AHP time course using the IDR analysis, therefore, is a reasonable estimate and coupled with motor unit properties attained with STA, it provides a powerful method to describe low-threshold motor units.  相似文献   

14.
The main purpose of this study was to estimate the contribution of intrinsic activation of human motoneurons (e.g., by plateau potentials) during voluntary and reflexive muscle contractions. Pairs of motor units were recorded from either the tibialis anterior or soleus muscle during three different conditions: 1) during a brief muscle vibration followed by a slow relaxation of a steady isometric contraction; 2) during a triangular isometric torque contraction; and 3) during passive sinusoidal muscle stretch superimposed on a steady isometric contraction. In each case, the firing rate of a tonically firing control motor unit was used as a measure of the effective synaptic excitation (i.e., synaptic drive) to a slightly higher-threshold test motor unit that was recruited and de-recruited during a contraction trial. The firing rate of the control unit was compared at recruitment and de-recruitment of the test unit. This was done to determine whether the estimated synaptic drive needed to recruit a motor unit was less than the amount needed to sustain firing as a result of an added depolarization produced from intrinsic sources. After test unit recruitment, the firing rate of the control unit could be decreased significantly (on average by 3.6 Hz from an initial recruitment rate of 9.8 Hz) before the test unit was de-recruited during a descending synaptic drive. Similar decreases in control unit rate occurred in all three experimental conditions. This represents a possible 40% reduction in the estimated synaptic drive needed to maintain firing of a motor unit compared with the estimated amount needed to recruit the unit initially. The firing rates of both the control and test units were modulated together in a highly parallel fashion, suggesting that the unit pairs were driven by common synaptic inputs. This tight correlation further validated the use of the control unit firing rate as a monitor of synaptic drive to the test motor unit. The estimates of intrinsically mediated depolarization of human motoneurons ( approximately 40% during moderate contractions) are consistent with values obtained for plateau potentials obtained from intracellular recordings of motoneurons in reduced animal preparations, although various alternative mechanisms are discussed. This suggests that similar intrinsic conductances provide a substantial activation of human motoneurons during moderate physiological activity.  相似文献   

15.
Transcranial magnetic stimulation (TMS) can produce effects not only at the site of stimulation but also at distant sites to which it projects. Here we examined the connection between supplementary motor area (SMA) and the hand area of the primary motor cortex (M1Hand) by testing whether prolonged repetitive TMS (rTMS) over the SMA can produce changes in excitability of the M1Hand after the end of the stimulus train. We evaluated motor-evoked potentials (MEPs) and the cortical silent period (CSP) evoked by a single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) produced by a paired-pulse TMS, and forearm flexor H reflexes before and after 750 pulses of 5 Hz rTMS over SMA at an intensity of 110% active motor threshold (AMT) for the first dorsal interosseous (FDI) muscle. The amplitude of MEPs recorded from the right FDI muscle at rest as well as during voluntary contraction increased for at least 10 min after the end of rTMS, although the duration of the CSP, SICI and ICF did not change. There was no effect on H reflexes in the flexor carpi radialis muscle, even though the amplitude of the MEP obtained from the same muscle increased after rTMS. The effects on MEPs depended on the intensity of rTMS and were spatially specific to the SMA proper. We suggest that 5 Hz rTMS over SMA can induce a short-lasting facilitation in excitability of the M1Hand compatible with the anatomical connections between SMA and the M1Hand.  相似文献   

16.
The paper reviews the fundamental components of stochastic and motorunit-based models of the surface electromyogram (SEMG). Stochastic models used in ergonomics and kinesiology consider the SEMG to be a stochastic process whose amplitude is related to the level of muscle activation and whose power spectral density reflects muscle conduction velocity. Motor-unit-based models for describing the spatio-temporal distribution of individual motor-unit action potentials throughout the limb are quite robust, making it possible to extract precise information about motor-unit architecture from SEMG signals recorded by multi-electrode arrays. Motor-unit-based models have not yet been proven as successful, however, for extracting information about recruitment and firing rates throughout the full range of contraction. The relationship between SEMG and force during natural dynamic movements is much too complex to model in terms of single motor units.  相似文献   

17.
The synaptic efficacy of muscle and cutaneous afferents on single tibialis anterior motoneurones in man was derived from changes in the firing probability of single, voluntarily activated, motor units in response to electrical stimulation of peripheral nerves or skin. The motor units were recorded with a Macro EMG electrode. The Macro motor unit potential (Macro MUP) recorded with this electrode reflects the electrical activity of all of the muscle fibres in a single motor unit. The amplitude of the Macro MUP is positively correlated with the recruitment threshold of the unit. Motor units with different Macro MUP amplitudes were examined at approximately the same level of voluntary contraction (less than 20% of maximum). The synaptic efficacy of muscle and cutaneous afferents was similar for units with small and with large Macro MUP amplitudes. Single motor units were examined at several different levels of muscle contraction. There was no consistent change in the facilitation from muscle afferents but there was less facilitation from cutaneous afferents during stronger contractions. This was not simply a consequence of the units faster firing rate. It is concluded that, with increasing voluntary drive to tibialis anterior motoneurones in man, there is a reduction in transmission in the pathways from cutaneous afferents to tibialis anterior motoneurones. There is no evidence that low and high threshold units (judging from their Macro MUP amplitudes) have different afferent connections.  相似文献   

18.
Peak-to-peak amplitudes and total areas of surface macro motor unit potentials (S-MMUPs) were measured in 19 healthy volunteers. While participants maintained minimal isometric muscle contraction of the left biceps brachii, motor unit potentials (MUPs) were recorded from a needle and surface electrodes. The largest MUP recorded by the needle electrode was designated the trigger source. Electrical activities from the surface electrodes, which emerged synchronously with the trigger-potential, were averaged by the spike-triggered averaging (STA) technique. When the surface electrodes were placed over the muscle belly at a right angle to the muscle fibers, the S-MMUP amplitude and area decreased gradually with the distance of the electrodes from the point of insertion of the needle electrode. In contrast, when the surface electrodes were arranged parallel to the muscle fibers, the S-MMUP amplitude and area did not always decrease. In addition, negative peak positions in individual S-MMUPs showed a time delay along the muscle fibers. The placement and size of the surface electrodes, as well as the depth of the needle electrode, must be carefully considered when MUPs are analyzed by the STA technique. Muscle fiber conduction velocity (MFCV) is measurable by the STA technique combined with surface electrodes.  相似文献   

19.
The purpose of this study was to investigate the occurrence of motor unit doublet discharges in young and older individuals at different rates of increasing force. Participants included eight young (21.9 +/- 3.56 yr) and eight older (74.1 +/- 8.79 yr) individuals, with equal numbers of males and females in each group. Motor unit activity was recorded from the tibialis anterior during isometric dorsiflexion using a four-wire needle electrode. Subjects performed three ramp contractions from zero to 50% maximal voluntary contraction (MVC) force at each of three rates: 10, 30, and 50% MVC/s. Overall, the occurrence of doublets was significantly higher in the young than in the older individuals. However, neither group showed differences in the occurrence of doublets across the three rates of force production. Doublet firings were observed in 45.6 (young) and 35.1% (old) of motor units at 10% MVC/s; 48.6 (young) and 22.5% (old) of motor units at 30% MVC/s; and 48.4 (young) and 31.4% (old) at 50% MVC/s. The maximal firing rate was significantly higher and the force at which the motor units were recruited was significantly lower for those units that fired doublets than those that did not. The force at which doublets occurred ranged from 3.42 to 50% MVC in the young subjects and from 0 (force onset) to 50% MVC in the older subjects. The results of this study suggest that the occurrence of doublets is dependent on both motor unit firing rate and force level. The lower incidence of doublets in older individuals may be attributable to changes in the intrinsic properties of the motoneurons with aging, which appear to play a role in doublet discharges.  相似文献   

20.
通过模型研究肌肉生理参数对表面肌电信号的影响。根据肌肉的形态结构和生理特征,从肌电信号的信号源-细胞内动作电位开始,仿真了单肌纤维动作电位,由此合成了运动单位动作电位,再利用运动单位的募集发放模型,进一步仿真了运动单位动作电位序列,并最终完成了对表面肌电信号的仿真。在此基础上研究了极化区域宽度、跨膜电流密度分布和肌肉组织各向异性3个重要的模型生理参数对表面肌电信号统计特征的影响,得到了一些有价值的结果。实验结果表明,仿真肌电信号能够有效表征肌肉电生理变化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号