首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, noradrenergic (NE) terminals in the dorsal raphe were identified by [3H]NE electron microscopic (EM) autoradiography. Lesioning of NE terminals by treatment with the selective catecholamine neurotoxin, 6-hydroxydopamine produced a marked decrease in NE-labelled terminals. [3H]5-HT EM autoradiography of the dorsal raphe produced labelling of cell bodies, dendrites and axons but labelled terminals with synaptic junctions were not observed. Serotonergic (5-HT) neurons were identified at an early stage of degeneration following treatment with the selective 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT). When both [3H]NE autoradiography and 5,7-DHT lesioning were combined, a majority of NE-labelled terminals, which formed synaptic specializations, innervated degenerating dendrites. These findings suggest that NE terminals directly innervate 5-HT cells in the dorsal raphe.  相似文献   

2.
Adult intact, or castrated testosterone propionate (TP, 150 μg/kg) treated male rats, were tested for masculine sexual behavior after having been injected with 5,7-dihydroxytryptamine (5,7-DHT, 4 μg/4 ml) intracerebrally either alone or in combination with systemic treatment with protriptyline, a noradrenaline (NA) re-uptake blocking agent. No changes were found in the sexual behavior of intact rats although the brain 5-HT levels were reduced to about one-third of their normal value. By contrast, there was a marked increase in the proportion of rats showing ejaculation patterns in the castrate + TP group after 5,7-DHT lesion than in the vehicle-injected group.Compared to the control group, the 5,7-DHT group showed a reduced uptake of [3H]5-HT and [3H]NA in the hypothalamus. Also the uptake of [3H]amines in the cerebral cortex was lowered although the difference did not attain statistical significance. A statistically significant relationship was found between the behavioral changes and the reduction of [3H]5-HT uptake in the hypothalamus while no such relationship was found between the NA uptake and the behavioral changes.Tistochemical analysis of the site of the 5,7-DHT injections showed that the unspecific damage (nerve cell loss, glial cell infiltration) involved a somewhat larger area in the 5,7-DHT group than in the controls. These unspecific lesions were, however, located outside the region of the large medial 5-HT bundle.The results support the hypothesis that 5-HT serves as a transmitter in the neural processes underlying masculine sexual behavior and, further, points to one component of the ascending 5-HT projections which innervates inter alia the hypothalamus as being of particular importance in this context.  相似文献   

3.
The relationship between serotonin (5-HT) levels and [3H]5-HT binding in discrete hypothalamic areas was examined in separate groups of animals at various times, following unilateral intrahypothalamic injection of 5,7-dihydroxytryptamine (5,7-DHT). Seven days post-5,7-DHT lesion, 5-HT levels were significantly decreased in both the ipsilateral and contralateral ventromedial and dorsomedial hypothalamic nuclei (VMN, DMN). In the lateral hypothalamic area (LHA), 5-HT levels were significantly decreased only ipsilaterally. Fifty days postlesion, 5-HT levels in the ipsilateral VMN remained significantly below sham, while the DMN and LHA returned to sham values. Seven days after 5,7-DHT there was a significant increase in [3H]5-HT labeling densities in the ipsilateral and contralateral ventromedial hypothalamic area as well as in the ipsilateral LHA. In contrast, in the dorsomedial hypothalamic area there was no increase in [3H]5-HT binding. Fifty days postlesion, no significant differences in [3H]5-HT binding between 5,7-DHT and sham were observed in any areas examined. This data provides further evidence for the regeneration of 5-HT fibers in the hypothalamus and demonstrates that the relationship between [3H]5-HT binding and 5-HT levels varies from one hypothalamic area to another.  相似文献   

4.
5,7-Dihydroxytryptamine (5,7-DHT) injected into the hypothalamus facilitated feminine sexual behavior in ovariectomized, estrogen-treated female rats beginning 9 days post-lesion. 5,7-DHT treatment was associated with decreased [3H]5-HT but not [3H]NE uptake in the whole hypothalamus and with decreased [3H]-imipramine binding in some hypothalamic nuclei. These data provide the first demonstration using chemical lesions that 5-HT neurons may exert tonic inhibition on hormone-mediated feminine sexual behavior.  相似文献   

5.
This study investigated whether serotonergic lesion may affect density, sensitivity, and plasticity of muscarinic receptors in hippocampus and cerebral cortex. Intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) in rats produced a 90% reduction in cortical and hippocampal 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents. In these brain areas, the 5,7-DHT lesion did not affect the overall density of muscarinic receptors or those of M1 and non-M1 muscarinic receptor subtypes as assayed using [3H]N-methylscopolamine ([3H]NMS), [3H]pirenzepine, and [3H]NMS in the presence of pirenzepine, respectively. In addition, the binding of the muscarinic agonist [3H]oxotremorine-M (OXO-M), taken as an indirect index of coupling efficiency of non-M1 receptors with G-proteins, did not change significantly in cortex and hippocampus of 5,7-DHT-lesioned rats. Similarly, carbachol-induced accumulation of [3H]inositol phosphates (InPs) in hippocampal miniprisms showed no significant differences between tissues from 5,7-DHT-lesioned and sham-operated rats. In sham-operated rats, an intraperitoneal (i.p.) injection of scopolamine (10 mg/kg once daily) during 21 days caused an increased density of [3H]NMS binding sites in cortex (+20%) and hippocampus (+26%). This up-regulation was restricted to non-M1 receptors subtypes. In 5,7-DHT-lesioned rats, chronic scopolamine failed to modify significantly the density of cortical or hippocampal M1 or non-M1 receptors. These results suggest 1) that 5-HT denervation did not affect the density and sensitivity of muscarinic receptors and 2) that the ability of cortical and hippocampal non-M1 receptors to up-regulate following repeated injection of scopolamine requires the integrity of 5-HT neurons terminating in these brain structures.  相似文献   

6.
Extracellular levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were monitored by microdialysis in the hippocampal formation previously denervated of its serotonergic input by an intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), and in 5,7-DHT denervated hippocampi reinnervated by grafted fetal rat serotonin neurons. Two weeks after 5,7-DHT lesion, baseline 5-HT release was reduced to levels below detection, and KCl- and p-chloro-amphetamine-evoked release was reduced by 90-95%. In the chronically denervated hippocampus (3 months after lesion), baseline 5-HT release had recovered to near-normal levels, but KCl- and p-chloroamphetamine-evoked release remained severely impaired. Addition of the 5-HT re-uptake blocker indalpine to the perfusion medium induced a 5-6-fold increase in serotonin overflow in the normal hippocampus, while the serotonin overflow in the 5,7-DHT denervated hippocampus remained unaffected. The intrahippocampal fetal raphe transplants restored 5-HT release to near-normal levels, not only under baseline conditions but also in the presence of re-uptake blockade. Both KCl- and p-chloroamphetamine-induced release had recovered in the grafted hippocampus and the responses were even greater than those seen in normal animals. In both normal and grafted hippocampus addition of the sodium channel blocker tetrodotoxin reduced 5-HT overflow to the level seen in the denervated hippocampus. The new hippocampal serotonin innervation, established by the grafts, was markedly denser than normal, and the tissue 5-HT and 5-HIAA levels were 3-4-fold higher than normal in the grafted hippocampi. The 5-HIAA level in the perfusate collected from the grafted hippocampi showed a similar increase above normal, whereas 5-HT release was maintained within the normal range, both under baseline conditions and in the presence of re-uptake blockade. The results indicate that the grafted serotonergic raphe neurons are spontaneously active at the synaptic level, despite their ectopic location. The ability of the grafted neurons to maintain 5-HT release within the normal range suggests that local regulatory mechanisms at the terminal level can compensate for abnormalities in the graft-derived innervation density.  相似文献   

7.
Adult rats were subjected to intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT; 150 micro g) and, 15 days later, to intrahippocampal grafts of fetal raphe cell suspensions. About 11 months later, we assessed baseline and electrically evoked release of tritium ([3H]) in hippocampal slices, preloaded with tritiated ([3H])choline or [3H]serotonin (5-HT), in the presence or absence of the 5-HT1B receptor agonist CP-93,129 and the 5-HT receptor antagonist methiothepine. HPLC determinations of monoamine concentrations were also performed. The lesions reduced the concentration of 5-HT (-90%) and the accumulation (-80%) as well as the evoked release (-90%) of [3H]5-HT. They also decreased the inhibitory effects of CP-93,129 on the evoked release of [3H]5-HT. Most interestingly, they facilitated the evoked release of [3H]acetylcholine (+20%). In slices from rats subjected to lesions and grafts, the responsiveness of the serotonergic autoreceptors (presumably located on the terminals of the grafted neurons) and the release of acetylcholine were close to normal. These results confirm that grafts rich in serotonergic neurons may partially compensate for the dramatic effects of 5,7-DHT lesions on serotonergic hippocampal functions. The lesion-induced reduction of the 5-HT1B autoreceptor-mediated inhibition of evoked 5-HT release may be an adaptation enhancing serotonergic transmission in the (few) remaining terminals. The facilitated release of acetylcholine is probably caused by a reduced serotonergic tone on the inhibitory 5-HT1B heteroreceptors of the cholinergic terminals. When related to data in the literature, this facilitation may be of particular interest in terms of transmitter-based strategies developed to tackle cognitive symptoms related to neurodegenerative diseases.  相似文献   

8.
This study utilized a multidisciplinary approach to examine injury-induced compensatory responses in the aging hippocampal serotonin transporter (5-HTT), a membrane protein implicated in a variety of neurodegenerative disorders. Age-dependent cellular, anatomical, and physiological changes of the 5-HTT were evaluated in female Fischer 344 rats (2 and 17 months) following denervation of the serotonergic afferents (fimbria-fornix and cingulum bundle) to the dorsal hippocampus using the neurotoxicant 5,7-dihydroxytryptamine (5,7-DHT). Seven days following 5,7-DHT administration, a uniform loss of the hippocampal 5-HTT immunoreactivity was observed in both age groups. However, at 21 days 5-HTT immunoreactivity in young 5,7-DHT-treated animals was similar to control levels, indicative of recovery, while older animals exposed to 5,7-DHT did not show recovery of hippocampal 5-HTT expression. 5-HTT binding site density, as determined by quantitative autoradiography ([3H]citalopram), supported the immunohistochemical results by demonstrating a recovery of 5-HTT binding sites in young, but not old animals, at 21 days following the lesion (P < 0.001). Furthermore, cellular electrophysiological function of hippocampal CA1 pyramidal neurons in 3- and 18-month-old F344 rats at 21 days following 5,7-DHT or vehicle treatment were assessed using in vivo microiontophoretic application of serotonin (5-HT). Independent of changes in sensitivity to the inhibitory effects of 5-HT application, the time to recovery of cell firing following application of 5-HT was significantly increased in the 18-month 5,7-DHT group compared to the 18-month vehicle and 3-month 5,7-DHT groups (60 and 59% increases, respectively; P < 0.05). Overall, these series of studies comprise a model which can be used to identify cellular events underlying both the formation of injury-induced compensatory processes in younger animals and the lack thereof with advancing age.  相似文献   

9.
Depletion of the forebrain serotonergic system was found in previous studies to induced an increased excitability of the dentate gyrus (DG) granule cells and, when combined with a cholinergic deficiency, to impair spatial learning. We now compared the effects of general forebrain serotonergic lesions induced by intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), to those of a more restricted injection of 5,7-DHT into fornix-fimbria and cingulum, to eliminate hippocampal serotonergic innervation. Control and lesioned rats were injected with atropine and tested in the spatial learning water-maze task. Following the behavioral tests, rats were anesthetized and the responsiveness of the DG to perforant path (PP) stimulation was measured. To assess the lesions functionally, responses to application of the serotonin releasing drug fenfluramine (FFA) were measured. Finally, the reduction, in the hippocampus of serotonergic innervation was evaluated by [3H]imipramine binding. The effects of the lesions on the responsiveness to FFA confirmed that the ICV lesions were functionally more general than the FF lesions. [3H]Imipramine binding indicated that both lesions reduced the sertonergic innervation of the hippocampus significantly. Behaviorally, both lesioned groups were impaired in the water-maze. Electrophysiologically, in both DG excitability was higher than in controls and in both hyperexcitability was associated with an increase in feed-forward inhibition. The results suggest that the serotonergic innervation of the hippocampus proper is involved in cognitive functions associated with the hippocampus.  相似文献   

10.
Serotonergic (5-hydroxytryptamine; 5-HT) neuro-transmission has been implicated in the regulation of cognitive function and this neurotransmitter system may underlie selective neuronal degeneration found in the aging hippocampus. Age-dependent changes in 5-HT function of hippocampal CA3 subfield pyramidal neurons were evaluated in female Fischer 344 rats (2 and 17 months) following denervation of the serotonergic afferents to the dorsal hippocampus using the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). Vehicle (ascorbic saline) or 5,7-DHT was administered bilaterally in the fimbria-fornix/cingulum bundle and dorsal pyramidal cell responses to microiontophoretic application of 5-HT, the 5-HT1A agonist (±)-8-hydroxy-2-(di-N-propylamino) tetralin, the 5-HT1A antagonist WAY 100,135 and N-methyl-D-aspartate were recorded at 3 weeks post-lesion. Independent of changes in sensitivity to the inhibitory effects of 5-HT with aging, the time to recovery of cell firing following application of 5-HT was significantly increased in the 18 month 5,7-DHT group compared to the 18 month Vehicle and 3 month 5,7-DHT groups (3.3- and 2.6-fold, respectively). These results demonstrate that serotonergic neurotransmission is altered with aging following a selective neurotoxic insult to the hippocampus. J. Neurosci. Res. 47:58–67, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Localization of GABAA and GABAB receptor subtypes on serotonergic neurons   总被引:1,自引:0,他引:1  
The effect of selective destruction of serotonin (5-HT)-containing neurons with 5,7-dihydroxytryptamine (5,7-DHT) on [3H] muscimol and (-)-[3H]baclofen binding was investigated in various rat brain regions. Ten days after intracerebroventricular 5,7-DHT, serotonin levels and [3H]imipramine binding were markedly decreased. 5,7-DHT reduced [3H]muscimol binding only in the mesencephalon, and (-)-[3H]baclofen binding was unmodified in all the areas considered. These results suggest that except in the mesencephalon GABA receptors may not be localized on serotonergic nerve terminals.  相似文献   

12.
The time course of the changes of the hippocampal 5-hydroxytryptamine (5-HT) system after a lesion of the dorsal afferents to this brain area was studied by measuring the content of 5-HT and of 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal, medial and ventral hippocampus. Furthermore, the binding sites for [3H]5-HT, [3H]ketanserin, [3H]imipramine and [3H]mianserin and a 5-HT-mediated behavior (head-twitch responses) were studied in controls and in animals bearing such a lesion. The contents of 5-HT and of 5-HIAA are higher in the ventral than in the dorsal hippocampus. Seven days after the lesion the 5-HT content decreases by 78% in the dorsal and by 50% in the ventral hippocampus. However, 60 days later, a partial recovery, possibly due to a collateral sprouting, does occur. The ratios between 5-HIAA and 5-HT are also increased 10, 14 and 21 days after the lesion, suggesting an increased utilization of the amine by the remaining neuronal terminals. The Bmax of the recognition sites for [3H]5-HT and [3H]mianserin, but not those for [3H]ketanserin are increased 10 days after the lesion and this increase lasts at least 30 days. Finally, starting 10 days after surgery and lasting for 40 days, a 5-HT-mediated behavior (head-twitch responses) shows supersensitivity. These results suggest that important changes occur in the 5-HT innervation of the hippocampus after a mechanical lesion: among these we showed a slow collateral sprouting, an increased utilization of the amine and a supersensitivity of 5-HT receptors.  相似文献   

13.
The autoradiographic distribution of the selective NK-3 tachykinin agonist [3H]senktide was investigated in rat brain. [3H]Senktide bound with high affinity (KD less than 2.5 nM) and high specificity (greater than 75%) to cerebral cortex and numerous subcortical sites, including the substantia nigra pars compacta. In addition, moderately dense binding was seen in the median but not the dorsal raphe nucleus, and this was disrupted by 5,7-dihydroxytryptamine (5,7-DHT)-induced destruction of 5-HT neurons. 5,7-DHT lesions did not affect the binding of [3H]senktide to forebrain regions, suggesting that 5-HT terminals are devoid of NK-3 receptors.  相似文献   

14.
We used quantitative autoradiography to measure the contribution of the 5-hydroxytryptamine (5-HT, serotonin) innervation of rat telencephalon to the synthesis of dopamine (DA) from exogenous l-DOPA. One week after stereotaxic infusions of 5,7-dihydroxytryptamine (5,7-DHT, 1.6 μg) into the right medial forebrain bundle (MFB), rats received [3H]DOPA (200 μCi, i.v.), which circulated for 90 min. The specific bindings in vitro of the 5-HT uptake site ligand [3H]citalopram and the DA uptake site ligand [125I]RTI-55 were measured in cryostat sections from the prosencephalon. In most structures ipsilateral to the lesion, [3H]citalopram specific binding was substantially reduced (50–90%). In the lateral habenula specific binding declined by only 30–40%, reflecting the presence of a 5-HT pathway deviating from the MFB at the mesencephalic flexure. [125I]RTI-55 binding in the basal ganglia was reduced by 50% on the side of the 5,7-DHT lesion, but was unperturbed in rats pretreated with desmethylimipramine (DMI). 5,7-DHT infusions decreased the synthesis of [3H]DA from [3H]DOPA in vivo in the basal ganglia by (40–90%). Pretreatment with DMI protected [3H]DA synthesis in the basal ganglia, but not in the olfactory tubercle and amygdala ipsilateral to the lesion. Whereas the 5-HT innervation does not contribute greatly to [3H]DA synthesis in the basal ganglia, a substantial proportion of [3H]DA synthesis in olfactory tubercle and amygdala requires an intact 5-HT innervation.  相似文献   

15.
《Brain research》1997,747(1):60-69
We used quantitative autoradiography to measure the contribution of the 5-hydroxytryptamine (5-HT, serotonin) innervation of rat telencephalon to the synthesis of dopamine (DA) from exogenous l-DOPA. One week after stereotaxic infusions of 5,7-dihydroxytryptamine (5,7-DHT, 1.6 μg) into the right medial forebrain bundle (MFB), rats received [3H]DOPA (200 μCi, i.v.), which circulated for 90 min. The specific bindings in vitro of the 5-HT uptake site ligand [3H]citalopram and the DA uptake site ligand [125I]RTI-55 were measured in cryostat sections from the prosencephalon. In most structures ipsilateral to the lesion, [3H]citalopram specific binding was substantially reduced (50–90%). In the lateral habenula specific binding declined by only 30–40%, reflecting the presence of a 5-HT pathway deviating from the MFB at the mesencephalic flexure. [125I]RTI-55 binding in the basal ganglia was reduced by 50% on the side of the 5,7-DHT lesion, but was unperturbed in rats pretreated with desmethylimipramine (DMI). 5,7-DHT infusions decreased the synthesis of [3H]DA from [3H]DOPA in vivo in the basal ganglia by (40–90%). Pretreatment with DMI protected [3H]DA synthesis in the basal ganglia, but not in the olfactory tubercle and amygdala ipsilateral to the lesion. Whereas the 5-HT innervation does not contribute greatly to [3H]DA synthesis in the basal ganglia, a substantial proportion of [3H]DA synthesis in olfactory tubercle and amygdala requires an intact 5-HT innervation.  相似文献   

16.
C T Fischette  B Nock  K Renner 《Brain research》1987,421(1-2):263-279
The effects of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), on serotonin1 (5-HT1) and 5-HT2 receptors were investigated using the high degree of resolution provided by quantitative autoradiography in an effort to determine the synaptic location of these receptors. 5,7-DHT treatment resulted in a decrease in 5-HT1 binding in the dentate gyrus and CA3c/4 of the anterior hippocampus and in the dorsal raphe nucleus, whereas no changes were observed in the posterior hippocampus nor in many other brain structures. 5-HT2 receptors exhibited no changes in any brain area examined in response to 5,7-DHT treatment, despite over 90% serotonin depletion in most of the forebrain nuclei examined. The results indicate that at least some of the 5-HT1 sites labelled by [3H]5-HT in the hippocampus and dorsal raphe nucleus are presynaptic, whereas 5-HT2 receptors are probably postsynaptic. In addition, the distribution profiles of 5-HT1 and 5-HT2 binding sites were compared in the rat central nervous system at various anatomical levels. 5-HT1 binding sites were identified using [3H]5-HT, while 5-HT2 binding sites were labelled with [3H]ketanserin. Both receptor subtypes displayed distinctly different localization patterns, which, in most cases was the inverse of the other pattern. In the brainstem it is significant that 5-HT2 receptors are concentrated in the facial nucleus and the motor nucleus of the trigeminal nerve, areas known to influence head and facial movement. The serotonin-mediated head-shake response occurs when 5-HT2 receptors are activated. In contrast, 5-HT1 receptors are distributed throughout the brainstem and in specific portions of the spinal cord. These areas are thought to control the serotonin behavioral syndrome and this behavior is 5-HT1A-mediated. All raphe nuclei were devoid of 5-HT2 receptors; only 5-HT1 receptor were found in these nuclei. Correlations with serotonin terminal distribution patterns are discussed. The pattern of 5-HT2 receptor distribution was also compared with the pattern of alpha 1 receptors, using [3H]prazosin in order to determine whether [3H]ketanserin significantly labels alpha 1 receptors. Although some similarities exist, overlap of binding did not occur in other nuclei, indicating that alpha 1 contamination of this system is probably negligible.  相似文献   

17.
The in vivo relationship between the amounts of tryptophan hydroxylase (TPH) protein and its intrinsic synthetic activity, measured by quantifying the amounts of α-[3H]methyl-5-hydroxytryptamine (α-[3H]M5-HT), is reported in cell body and terminal areas of intact and disturbed serotonergic neurons following a unilateral 5,7-dihydroxytryptamine (5,7-DHT) lesion of the dorsolateral hypothalamus. Five days after the lesion, the relationships between TPH and its synthetic product 5-HT were evaluated on adjacent brain sections in serotonergic cells bodies of the dorsal raphe nucleus (DRN) and nerve fibres of the medial forebrain bundle (MFB). On the side contralateral to the lesion, TPH and α-[3H]M5-HT levels in the intact hemi-DRN exhibited a caudo-rostral distribution and were positively and significantly correlated (P 0.001); the calculated TPH-specific activity was 0.76 nCi of α-[3H]M5-HT formed per U TPH. In the MFB, quantitative measurements of TPH and α-[3H]M5-HT showed no correlation between enzyme and product and no specific activity for TPH could be determined. On the side ipsilateral to the lesion, the density of TPH-immunoreactive fibers was drastically decreased in the dorsolateral hypothalamus where a significant reduction in TPH content (45.5% of control side,P < 0.001) was found. In the overall ipsilateral hemi-DRN, TPH and α-[3H]M5-HT levels, their correlation as well as TPH-specific activity were unaltered by the lesion but a significant increase in α-[3H]M5-HT and TPH contents was observed in the lateral wings of the DRN. The lesion also induced a significant increase in α-[3H]M5-HT and TPH levels (136% and 93.8%,P < 0.001, respectively) in the ipsilateral MFB, which resulted in a positive and significant correlation between these two markers and yielded a TPH-specific activity of 1.0 nCi of α-[3H]M5-HT formed per U TPH. TPH topological area was also significantly increased in the lateral aspect of the ipsilateral MFB 5 days post lesion. These results show that 5-HT synthesis in the intact DRN is proportional to and dependent on TPH activity while in the MFB, 5-HT accumulation appears unrelated to TPH content which is most likely in an inactive enzymatic form. Moreover, the data show that a local disruption of serotonergic terminals in the dorsolateral hypothalamus does not affect 5-HT synthesis in the overall ipsilateral DRN neurons but results in local activation of TPH within the serotonergic projection neurons and the ipsilateral MFB, as evidenced by active de novo synthesis of 5-HT. Altogether the results point to circumscribed activation of compensatory mechanisms in 5-HT synthesis after selective destruction of serotonergic terminals.  相似文献   

18.
The high-affinity binding of [3H]paroxetine to membranes was measured in different regions of the rat and rabbit brain: cingulate, frontal, parietal, piriform, entorhinal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum (rat) or caudate nucleus and putamen (rabbit); ventral mesencephalic tegmentum; and midbrain raphe nuclei region. The tissue concentrations of serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA) and 5-hydroxy-l-tryptophan (5-HTP) were also determined by high-performance liquid chromatography (HPLC) in the same brain samples. The regional density of [3H]paroxetine binding varied in both species; the highest values (Bmax) were found in the midbrain raphe region and ventral mesencephalic tegmentum. The cortical values ranged from moderate to low, with a significantly higher density in the cingulate cortex of the rat compared with rabbit. In the rat, there was also a higher density in the ventral than dorsal hippocampus, and the caudal than rostral neostriatum. In the rabbit, the hippocampal and neostriatal values were generally lower and more uniform. In both species, there was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding (r = 0.87 in the rat and 0.96 in the rabbit). Considering the available quantitative data on the number of 5-HT nerve cell bodies and axon terminals in different regions of the rat brain, it appears likely that the high amount of [3H]paroxetine binding in the midbrain raphe region and ventral mesencephalic tegmentum reflects the presence of 5-HT uptake sites on 5-HT nerve cell bodies and dendrites as well as axon terminals. In other brain regions, the heterogeneous distribution of [3H]paroxetine binding parallels that of the number of 5-HT axon terminals, emphasizing the potential usefulness of this radioligand as a marker of 5-HT innervation density.  相似文献   

19.
Male Long-Evans rats sustained injections of 5,7-dihydroxytryptamine (5,7-DHT) into the fimbria-fornix and the cingular bundle or/and intraseptal injections of 192 IgG-saporin to induce serotonergic or/and cholinergic hippocampal denervations; Sham-operated rats served as controls. Four to ten weeks after lesioning, we measured (i). the electrically evoked release of acetylcholine ([3H]ACh), noradrenaline ([3H]NA) and serotonin ([3H]5-HT) in hippocampal slices in the presence of drugs acting on auto- or heteroreceptors, (ii). the nicotine-evoked release of NA and (iii). the choline acetyltransferase (ChAT) activity and the concentration of monoamines in homogenates. Saporin lesions reduced the accumulation of [3H]choline, the release of [3H]ACh and the ChAT activity, but increased the concentration of NA and facilitated the release of [3H]NA evoked by nicotine. 5,7-DHT lesions reduced the accumulation and the release of [3H]5-HT, the concentration of 5-HT, and also facilitated the release of [3H]NA evoked by nicotine. Accumulation and electrically evoked release of [3H]NA were not altered by either lesion. The combination of both toxins resulted in an addition of their particular effects. The 5-HT(1B) receptor agonist, CP 93129, and the muscarinic agonist, oxotremorine, reduced the release of [3H]ACh in control and 5,7-DHT-lesioned rats; in rats injected with saporin, their effects could not be measured reliably. CP 93129 and the alpha(2)-adrenoceptor agonist, UK 14304, reduced the release of [3H]5-HT in all groups by about 65%. In conclusion: (i). selective neurotoxins can be combined to enable controlled and selective damage of hippocampal transmitter systems; (ii). 5-HT exerts an inhibitory influence on the nicotine-evoked release of NA, but partial serotonergic lesions do not influence the release of ACh at a presynaptic level and (iii). presynaptic modulatory mechanisms involving auto- and heteroreceptors may be conserved on fibres spared by the lesions.  相似文献   

20.
As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H3 receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 μg icv) or saline vehicle (10 μl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83–91% and 69–83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[3H]-D-glucose (500 μCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [3H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47–56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [3H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [3H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号