首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the optimal administration schedule of a novel epidermal growth factor receptor (EGFR) protein tyrosine kinase inhibitor (PKI), PKI 166 (4-(R)-phenethylamino-6-(hydroxyl)phenyl-7H-pyrrolo[2.3-d]-pyrimidine), alone or in combination with gemcitabine (administered i.p.) for therapy of L3.6pl human pancreatic carcinoma growing in the pancreas of nude mice. Seven days after orthotopic implantation of L3.6pl cells, the mice received daily oral doses of PKI 166. PKI 166 therapy significantly inhibited phosphorylation of the EGFR without affecting EGFR expression. EGFR phosphorylation was restored 72 h after cessation of therapy. Seven days after orthotopic injection of L3.6pl cells, groups of mice received daily or thrice weekly oral doses of PKI 166 alone or in combination with gemcitabine. Treatment with PKI 166 (daily), PKI 166 (3 times/week), or gemcitabine alone produced a 72%, 69%, or 70% reduction in the volume of pancreatic tumors in mice, respectively. Daily oral PKI 166 or thrice weekly oral PKI 166 in combination with injected gemcitabine produced 97% and 95% decreases in volume of pancreatic cancers and significant inhibition of lymph node and liver metastasis. Daily oral PKI 166 produced a 20% decrease in body weight, whereas treatment 3 times/week did not. Decreased microvessel density, decreased proliferating cell nuclear antigen staining, and increased tumor cell and endothelial cell apoptosis correlated with therapeutic success. Collectively, our results demonstrate that three weekly oral administrations of an EGFR tyrosine kinase inhibitor in combination with gemcitabine are sufficient to significantly inhibit primary and metastatic human pancreatic carcinoma.  相似文献   

2.
PURPOSE: Because survival for patients with oral cancer has not improved over the past 25 years, new approaches for treatment are needed. Targeted molecular therapy against epidermal growth factor receptor (EGFR) has shown promise as an adjuvant therapy in preliminary studies in several solid tumors, including head and neck cancer. The objective of this study was to determine the efficacy of paclitaxel and PKI166, a novel inhibitor of EGFR, against oral cavity cancer. Experimental Design and Results: JMAR human oral cancer cells were pretreated for 1 h with PKI166 and then stimulated with epidermal growth factor. EGFR-specific tyrosine kinase autophosphorylation measured by Western immunoblotting was inhibited by PKI166 in a dose-dependent fashion at all doses tested (0.01-1 micro M). Next, the induction of apoptosis in JMAR cells treated with paclitaxel (0.001 to 0.1 micro M) with or without PKI166 (0, 1, or 2 micro M) was determined using a propidium iodide assay. The addition of 2.0 micro M PKI166 significantly increased tumor cell death, shifting the amount of paclitaxel needed to induce apoptosis in 50% of cells from 0.1 to 0.001 micro M. These in vitro findings were confirmed using an orthotopic model of oral cancer. JMAR oral cancer cells were implanted into the tongues of nude mice. After lingual tumors developed, mice were randomized into four groups (n = 10): (a) oral PKI166 (100 mg/kg); (b) i.p. paclitaxel (200 micro g/wk); (c) PKI166 and paclitaxel; or (d) placebo. Mice treated with PKI166/paclitaxel demonstrated a significant increase in survival (P = 0.028). After necropsy, all tongue tumors were evaluated for apoptosis by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. A greater apoptotic fraction of tumor cells was found in tumors of mice treated with paclitaxel and PKI166 as compared with the other treatment groups (136.4 versus 37.8; P = 0.016). CONCLUSIONS: Combination therapy with paclitaxel and PKI166 prolongs survival in an orthotopic preclinical model of tongue cancer by increasing programmed cell death of oral cancer.  相似文献   

3.
PURPOSE: We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. EXPERIMENTAL DESIGN: Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. RESULTS: Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. CONCLUSIONS: These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.  相似文献   

4.
Renal cell carcinoma (RCC) frequently produces metastases to the musculoskeletal system that are a major source of morbidity in the form of pain, immobilization, fractures, neurological compromise, and a decreased ability to perform activities of daily living. Patients with metastatic RCC therefore have a dismal prognosis because there is no effective adjuvant treatment for this disease. Because the epidermal growth factor receptor (EGF-R) signaling cascade is important in the growth and metastasis of RCC, its blockade has been hypothesized to inhibit tumor growth and hence prevent resultant bone destruction. We determined whether blockade of EGF-R by the tyrosine kinase inhibitor PKI 166 inhibited the growth of RCC in bone. We use a novel cell line, RBM1-IT4, established from a human RCC bone metastasis. Protein and mRNA expression of the ligands and receptors was assessed by Western and Northern blots. The stimulation of RBM1-IT4 cells with epidermal growth factor or transforming growth factor alpha resulted in increased cellular proliferation and tyrosine kinase autophosphorylation. PKI 166 prevented these effects. First, RBM1-IT4 cells were implanted into the tibia of nude mice, where they established lytic, progressively growing lesions, after which the mice were treated with PKI 166 alone or in combination with paclitaxel (Taxol). Immunohistochemical analysis revealed that tumor cells and tumor-associated endothelial cells in control mice expressed activated EGF-R. Treatment of mice with PKI 166 alone or in combination with Taxol produced a significant decrease in the incidence and size of bone lesions as compared with the results in control or Taxol-treated mice (P < 0.001). Treatment with PKI 166 also decreased the expression of phosphorylated EGF-R by tumor cells and tumor-associated endothelial cells, and this was even more pronounced with PKI 166 plus Taxol treatment. The PKI 166 plus Taxol combination produced apoptosis of tumor cells and tumor-associated endothelial cells. Tumor cell proliferation, shown by proliferating cell nuclear antigen positivity, was decreased in all treatment groups. In addition, the integrity of the bone was maintained in mice treated with PKI 166 or PKI 166 plus Taxol, whereas massive bone destruction was seen in control and Taxol-treated mice. These results suggest that blockade of EGF-R signaling inhibits growth of RCC in the bone by its effect on tumor cells and tumor-associated endothelial cells.  相似文献   

5.
Expression of the epidermal growth factor (EGF) and activation of its receptor (EGFR), a tyrosine kinase, are associated with progressive growth of head and neck cancer. Expression of the vascular endothelial growth factor (VEGF) is associated with angiogenesis and progressive growth of tumor. The tyrosine kinase inhibitor NVP-AEE788 (AEE788) blocks the EGF and VEGF signaling pathways. We examined the effects of AEE788 administered alone, or with paclitaxel (Taxol), on the progression of human head and neck cancer implanted orthotopically into nude mice. Cells of two different human oral cancer lines, JMAR and MDA1986, were injected into the tongues of nude mice. Mice with established tumors were randomized to receive three times per week oral AEE788, once weekly injected paclitaxel, AEE788 plus paclitaxel, or placebo. Oral tumors were resected at necropsy. Kinase activity, cell proliferation, apoptosis, and mean vessel density were determined by immunohistochemical immunofluorescent staining. AEE788 inhibited cell growth, induced apoptosis, and reduced the phosphorylation of EGFR, VEGFR-2, AKT, and mitogen-activated protein kinase in both cell lines. Mice treated with AEE788 and AEE788 plus paclitaxel had decreased microvessel density, decreased proliferative index, and increased apoptosis. Hence, AEE788 inhibited tumor vascularization and growth and prolonged survival. Inhibition of EGFR and VEGFR phosphorylation by AEE788 effectively inhibits cellular proliferation of squamous cell carcinoma of the head and neck, induces apoptosis of tumor endothelial cells and tumor cells, and is well tolerated in mice. These data recommend the consideration of patients with head and neck cancer for inclusion in clinical trials of AEE788.  相似文献   

6.
Once prostate cancer metastasizes to bone, conventional chemotherapy is largely ineffective. We hypothesized that inhibition of phosphorylation of the epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) expressed on tumor cells and tumor-associated endothelial cells, which is associated with tumor progression, in combination with paclitaxel would inhibit experimental prostate cancer bone metastasis and preserve bone structure. We tested this hypothesis in nude mice, using human PC-3MM2 prostate cancer cells. PC-3MM2 cells growing adjacent to bone tissue and endothelial cells within these lesions expressed phosphorylated EGF-R and PDGF-R alpha and -beta on their surfaces. The percentage of positive endothelial cells and the intensity of receptor expression directly correlated with proximity to bone tissue. Oral administration of PKI166 inhibited the phosphorylation of EGF-R but not PDGF-R, whereas oral administration of STI571 inhibited the phosphorylation of PDGF-R but not EGF-R. Combination therapy using oral PKI166 and STI571 with i.p. injections of paclitaxel induced a high level of apoptosis in tumor vascular endothelial cells and tumor cells in parallel with inhibition of tumor growth in the bone, preservation of bone structure, and reduction of lymph node metastasis. Collectively, these data demonstrate that blockade of phosphorylation of EGF-R and PDGF-R coupled with administration of paclitaxel significantly suppresses experimental human prostate cancer bone metastasis.  相似文献   

7.
8.
We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.  相似文献   

9.
Patients suffering from bone metastases of follicular thyroid carcinoma (FTC) have a poor prognosis because of the lack of effective treatment strategies. The overexpression of epidermal growth factor receptor (EGFR) associated with increased vascularity has been implicated in the pathogenesis of FTC and subsequent bone metastases. We hypothesized that inhibiting the phosphorylation of the EGFR and vascular endothelial growth factor receptor (VEGFR) by AEE788, a dual tyrosine kinase inhibitor of EGFR and VEGFR, in combination with paclitaxel would inhibit experimental FTC bone lesions and preserve bone structure. We tested this hypothesis using the human WRO FTC cell line. In culture, AEE788 inhibited the EGF-mediated phosphorylation of EGFR, VEGFR2, mitogen-activated protein kinase, and Akt in culture. AEE788, alone and in combination with paclitaxel, inhibited cell growth and induced apoptosis. When WRO cells were injected into the tibia of nude mice, tumor and endothelial cells within the lesions expressed phosphorylated EGFR, VEGFR, Akt, and mitogen-activated protein kinase that were inhibited by the oral administration of AEE788. Therapy consisting of orally given AEE788 and i.p. injected paclitaxel induced a high level of apoptosis in tumor-associated endothelial cells and tumor cells with the inhibition of tumor growth in the bone and the preservation of bone structure. Collectively, these data show that blocking the phosphorylation of EGFR and VEGFR with AEE788 combined with paclitaxel can significantly inhibit experimental human FTC in the bone of nude mice.  相似文献   

10.
The epidermal growth factor receptor (EGFR) signaling pathway is often activated in NSCLC, and thus represents a promising therapeutic target. We studied the antitumor activity of gefitinib (Iressa), an orally active EGFR-tyrosine kinase inhibitor, alone and in combination with standard chemotherapy in 5 recently established human NSCLC xenografts with wild-type EGFR. Mice were treated with 2 protocols of chemotherapy based on cisplatin (CDDP) combined with either gemcitabine (GEM) or vinorelbine (VNR). Gefitinib alone significantly inhibited tumor growth (TGI) in 4 of the 5 tumor xenografts (mean TGI of 58%, range: 25-70%). CDDP+VNR alone failed to achieve any significant responses, while CDDP+GEM achieved significant responses in 2 xenografts (TGI of 93 and 47%). Addition of gefitinib to CDDP+GEM potentialized chemotherapy in the 3 CDDP+GEM-resistant xenografts, but did not potentialize the CDDP+VNR combination. The effect of gefitinib treatment on the activity of extra cellular-regulated kinase (Erk), Akt, JNK and p38 kinases was assessed in IC9LC11 and IC1LC131, two NSCLC xenografts selected for their sensitivity and resistance to gefitinib, respectively. In IC9LC11, gefitinib strongly inhibited Erk, Akt and Jnk phosphorylation, but P38 remained active. Inversely, in IC1LC131, Erk and Akt pathways remained active, while Jnk and P38 pathways were inhibited by gefitinib. The data indicate that the antitumor activity of gefitinib in NSCLC, alone or in combination with chemotherapy, is tumor-dependent and is influenced by downstream signaling events independent of EGFR status.  相似文献   

11.
We determined whether down-regulation of the epidermal growth factor-receptor (EGF-R) signaling pathway by oral administration of a novel EGF-R tyrosine kinase inhibitor (PKI166) alone or in combination with gemcitabine (administered i.p.) can inhibit growth and metastasis of human pancreatic carcinoma cells implanted into the pancreas of nude mice. Therapy beginning 7 days after orthotopic injection of L3.6pl human pancreatic cancer cells reduced the volume of pancreatic tumors by 59% in mice treated with gemcitabine only, by 45% in those treated with PKI166 only, and by 85% in those given both drugs. The combination therapy also significantly inhibited lymph node and liver metastasis, which led to a significant increase in overall survival. EGF-R activation was significantly blocked by therapy with PKI166 and was associated with significant reduction in tumor cell production of VEGF and IL-8, which in turn correlated with a significant decrease in microvessel density and an increase in apoptotic endothelial cells. Collectively, our results demonstrate that oral administration of an EGF-R tyrosine kinase inhibitor decreased growth and metastasis of human pancreatic cancer growing orthotopically in nude mice and increased survival. The therapeutic effects were mediated in part by inhibition of tumor-induced angiogenesis attributable to a decrease in production of proangiogenic molecules by tumor cells and increased apoptosis of tumor-associated endothelial cells.  相似文献   

12.
PURPOSE: Vascular endothelial growth factor (VEGF) is a major mitogen for endothelial cells and enhances vascular permeability. Enhanced VEGF secretion is found in human cancers and correlates with increased tumor neovascularization. ZD6474 is a p.o. bioavailable, VEGF flk-1/KDR receptor (VEGFR-2) tyrosine kinase inhibitor with antitumor activity in many human cancer xenografts and is currently in Phase I clinical development. EXPERIMENTAL DESIGN: We tested the effects of ZD6474 on EGFR phosphorylation in cell expressing functional epidermal growth factor receptor (EGFR) and the antiproliferative and the proapoptotic activity of ZD6474 alone or in combination taxanes in human cancer cell lines with functional EGFR but lacking VEGFR-2. The antitumor activity of this drug was also tested in nude mice bearing established GEO colon cancer xenografts. RESULTS: ZD6474 causes a dose-dependent inhibition of EGFR phosphorylation in mouse NIH-EGFR fibroblasts and human MCF-10A ras breast cancer cells, two cell lines that overexpress the human EGFR. ZD6474 treatment resulted in a dose-dependent inhibition of soft agar growth in seven human cell lines (breast, colon, gastric, and ovarian) with functional EGFR but lacking VEGFR-2. A dose-dependent supra-additive effect in growth inhibition and in apoptosis in vitro was observed by the combined treatment with ZD6474 and paclitaxel or docetaxel. ZD6474 treatment of nude mice bearing palpable GEO colon cancer xenografts (which are sensitive to inhibition of EGFR signaling) induced dose-dependent tumor growth inhibition. Immunohistochemical analysis revealed a significant dose-dependent reduction of neoangiogenesis. The antitumor activity of ZD6474 in GEO tumor xenografts was also found to be enhanced when combined with paclitaxel. Tumor regression was observed in all mice after treatment with ZD6474 plus paclitaxel, and it was accompanied by a significant potentiation in inhibition of angiogenesis. Six of 20 mice had no histological evidence of tumors after treatment with ZD6474 plus paclitaxel. CONCLUSIONS: This study suggests that in addition to inhibiting endothelial cell proliferation by blocking VEGF-induced signaling, ZD6474 may also be able to inhibit cancer cell growth by blocking EGFR autocrine signaling. These results provide also a rationale for the clinical evaluation of ZD6474 combined with taxanes in cancer patients.  相似文献   

13.
PURPOSE: We determined whether the administration of the tyrosine kinase inhibitor, AEE788, which targets the epidermal growth factor receptor and the vascular endothelial growth factor receptor, alone or in combination with paclitaxel, can inhibit progressive growth of human ovarian carcinoma in the peritoneal cavity of female nude mice. EXPERIMENTAL DESIGN: Western blot analysis and immunohistochemical analysis identified the optimal dose and schedule of AEE788 therapy. In several different experiments, paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells were injected into the peritoneal cavity of nude mice. Seven days later, treatment with saline (control), AEE788 alone, paclitaxel alone, or a combination of AEE788 and paclitaxel began and continued for 45 days when the mice were necropsied. In independent survival experiments, the mice were necropsied when they became moribund. RESULTS: Oral administration of AEE788 inhibited phosphorylation of the epidermal growth factor receptor and vascular endothelial growth factor receptor for up to 48 hours. Treatment with AEE788 plus paclitaxel significantly reduced tumor weight and increased survival of mice implanted with paclitaxel-sensitive cell lines compared with control mice or mice treated with AEE788 alone or paclitaxel alone. In mice implanted with paclitaxel-resistant cells, the combination therapy also significantly reduced tumor weight but did not prolong survival. The combination therapy induced apoptosis of both tumor cells and tumor-associated endothelial cells. CONCLUSIONS: The administration of AEE788 and paclitaxel inhibits the progression of human ovarian carcinoma in the peritoneal cavity of female nude mice, in part, by inducing apoptosis of tumor-associated endothelial cells.  相似文献   

14.
RET/PTC rearrangements are one of the genetic hallmarks of papillary thyroid carcinomas. RET/PTC oncoproteins lack extracellular or transmembrane domains, and activation takes place through constitutive dimerization mediated through coiled-coil motifs in the NH(2) terminus of the chimeric protein. Based on the observation that the epidermal growth factor receptor (EGFR) kinase inhibitor PKI166 decreased RET/PTC kinase autophosphorylation and activation of downstream effectors in thyroid cells, despite lacking activity on the purified RET kinase, we proceeded to examine possible functional interactions between RET/PTC and EGFR. Conditional activation of RET/PTC oncoproteins in thyroid PCCL3 cells markedly induced expression and phosphorylation of EGFR, which was mediated in part through mitogen-activated protein kinase signaling. RET and EGFR were found to coimmunoprecipitate. The ability of RET to form a complex with EGFR was not dependent on recruitment of Shc or on their respective kinase activities. Ligand-induced activation of EGFR resulted in phosphorylation of a kinase-dead RET, an effect that was entirely blocked by PKI166. These effects were biologically relevant, as the EGFR kinase inhibitors PKI166, gefitinib, and AEE788 inhibited cell growth induced by various constitutively active mutants of RET in thyroid cancer cells as well as NIH3T3 cells. These data indicate that EGFR contributes to RET kinase activation, signaling, and growth stimulation and may therefore be an attractive therapeutic target in RET-induced neoplasms.  相似文献   

15.
We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor α (TGF-α) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-α shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-d]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-α did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-α by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI.  相似文献   

16.
PURPOSE: Bone is a common site for breast cancer metastasis. Platelet-derived growth factor (PDGF) and PDGF receptors (PDGFR) are involved in the regulation of bone resorption. This study examined the effects of STI571 (imatinib mesylate), which inhibits PDGFR tyrosine kinase signaling, on the growth of human breast cancer cells in the bone of nude mice with consequent osteolysis. EXPERIMENTAL DESIGN: Human breast cancer MDA-MB-435 cells were injected into the tibia of female nude mice. Two weeks later the mice were treated with p.o. and injected water (control), daily p.o. STI571, weekly injection of paclitaxel, or daily STI571, plus weekly paclitaxel, for up to 8 weeks. Growth of tumors in bones and osteolysis were monitored by digital radiography and tumors were collected for histochemical analysis. RESULTS: Mice treated with STI571 or STI571 plus paclitaxel had smaller bone tumors with less lytic bone destruction than did mice treated with water or paclitaxel alone. The results of treatment with paclitaxel plus STI571 did not differ from those with STI571 alone. Immunohistochemistry showed that PDGF-A, PDGF-B, PDGFRalpha, and PDGFRbeta were expressed in the bone tumors. STI571 treatment inhibited PDGFR phosphorylation in tumor cells and tumor-associated endothelial cells, coincident with increased apoptosis, reduced proliferation, and lower microvessel density in the tumors. CONCLUSIONS: Activated PDGFRs are expressed by endothelial and tumor cells in breast cancer tumors growing in the bone of nude mice. Interfering with PDGFR signaling may be an approach to control the progressive growth of breast cancer cells and thus reduce bone lysis.  相似文献   

17.
BACKGROUND: Expression of platelet-derived growth factor (PDGF) and activation (by autophosphorylation) of its receptor (PDGF-R), a tyrosine kinase, are associated with the growth of metastatic prostate tumor cells in the bone parenchyma. The tyrosine kinase inhibitor STI571 blocks the PDGF signaling pathway by inhibiting PDGF-R autophosphorylation. We examined the effects of STI571, given alone or with paclitaxel (Taxol), on tumor growth in a mouse model of prostate cancer metastasis. METHODS: Human prostate cancer PC-3MM2 cells were injected into the tibias of male nude mice. Three days later the mice (20 per group) were randomly assigned to 5 weeks of treatment with oral and injected water (control), daily oral STI571, weekly injected paclitaxel, or STI571 plus paclitaxel. Lesions in bone and the surrounding muscles were then harvested and analyzed by histology, western blotting (for PDGF-R phosphorylation), immunohistochemistry (for expression of proangiogenic molecules), and double immunofluorescence (to identify endothelial cells and apoptotic tumor cells). Growth of bone lesions was monitored by digital radiography. Bone lesions from control mice were used to establish short-term cell cultures for analysis of PDGF-R phosphorylation. All statistical tests were two-sided. RESULTS: PC-3MM2 cells cultured from bone lesions and treated in vitro with STI571 had less phosphorylated PDGF-R than untreated cells. In control mice, bone lesions expressed high levels of PDGF and activated (i.e., phosphorylated) PDGF-R, whereas lesions in the adjacent musculature did not. Activated PDGF-R was present on the surface of endothelial cells within the bone lesions but not in endothelial cells of uninjected bone. Mice treated with STI571 or STI571 plus paclitaxel had a lower tumor incidence, smaller tumors, and less bone lysis and lymph node metastasis than mice treated with water or paclitaxel alone (P<.001 for all). Mice treated with STI571 or STI571 plus paclitaxel had less phosphorylated PDGF-R on tumor cells and tumor-associated endothelial cells, less tumor cell proliferation, statistically significantly more apoptotic tumor cells (all P<.001), and fewer tumor-associated endothelial cells (P<.001) than control mice. CONCLUSIONS: Endothelial cells appear to express phosphorylated PDGF-R when they are exposed to tumor cells that express PDGF. Using STI571 to inhibit PDGF-R phosphorylation may, especially in combination with paclitaxel, produce substantial therapeutic effects against prostate cancer bone metastasis.  相似文献   

18.
PURPOSE: Up to now, there have been no established predictive markers for response to epidermal growth factor receptor (EGFR/HER1/erbB1) inhibitors alone and in combination with chemotherapy in colorectal cancer. To identify markers that predict response to EGFR-based chemotherapy regimens, we analyzed the response of human colorectal cancer cell lines to the EGFR-tyrosine kinase inhibitor, gefitinib (Iressa, AstraZeneca, Wilmington, DE), as a single agent and in combination with oxaliplatin and 5-fluorouracil (5-FU). EXPERIMENTAL DESIGN: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays and analyzed by ANOVA. Apoptosis was measured by flow cytometry, poly(ADP-ribose) polymerase, and caspase 3 cleavage. EGFR protein phosphorylation was detected by Western blotting. RESULTS: Cell lines displaying high constitutive EGFR phosphorylation (a surrogate marker for EGFR activity) were more sensitive to gefitinib. Furthermore, in cell lines exhibiting low constitutive EGFR phosphorylation, an antagonistic interaction between gefitinib and oxaliplatin was observed, whereas in cell lines with high basal EGFR phosphorylation, the interaction was synergistic. In addition, oxaliplatin treatment increased EGFR phosphorylation in those cell lines in which oxaliplatin and gefitinib were synergistic but down-regulated EGFR phosphorylation in those lines in which oxaliplatin and gefitinib were antagonistic. In contrast to oxaliplatin, 5-FU treatment increased EGFR phosphorylation in all cell lines and this correlated with synergistic decreases in cell viability when 5-FU was combined with gefitinib. CONCLUSIONS: These results suggest that phospho-EGFR levels determine the sensitivity of colorectal cancer cells to gefitinib alone and that chemotherapy-mediated changes in phospho-EGFR levels determine the nature of interaction between gefitinib and chemotherapy.  相似文献   

19.
Selective inhibition of repopulation of clonogenic tumor cells between courses of chemotherapy has potential to improve the effectiveness of treatment. Here we study arzoxifene, a short-acting selective estrogen receptor modulator, for its potential to inhibit repopulation in estrogen-dependent human breast cancer MCF-7 xenografts between courses of chemotherapy. Proliferation of tumor cells was evaluated by cyclin D1 expression and uptake of 5-bromo-2'-deoxyuridine. Arzoxifene decreased cell proliferation in xenografts. To model adjuvant treatment of human breast cancer, MCF-7 cells were injected s.c. into nude mice and four groups of mice received the following treatments beginning after implantation: (a) control (vehicle solution); (b) arzoxifene alone, 5 days per week by oral gavage for 3 weeks; (c) 5-fluorouracil (5-FU) or paclitaxel i.p. weekly, for 3 doses; and (d) arzoxifene following each cycle of chemotherapy. The incidence of tumors with volume > or =50 mm(3) was determined as a function of time. MCF-7 xenografts developed in 100% of control mice by 4 weeks after implantation. Paclitaxel or 5-FU alone had minor effects to delay the appearance of xenografts whereas arzoxifene alone caused longer delay. Combined treatment with arzoxifene given between cycles of 5-FU or paclitaxel had substantial effects, with approximately 50% tumor incidence by 5 weeks. Our results indicate that arzoxifene can inhibit repopulation of hormone-responsive MCF-7 breast cancer xenografts when given between courses of chemotherapy. The scheduling of short-acting hormonal agents between courses of adjuvant chemotherapy for human breast cancer has potential to improve the outcome of treatment.  相似文献   

20.
PURPOSE: Insulin-like growth factor type I receptor (IGF-IR) plays critical roles in epithelial cancer cell development, proliferation, motility, and survival, and new therapeutic agents targeting IGF-IR are in development. Another receptor tyrosine kinase, the epidermal growth factor receptor (EGFR), is an established therapeutic target in head and neck cancer and IGF-IR/EGFR heterodimerization has been reported in other epithelial cancers. The present study was undertaken to determine the effects of anti-IGF-IR therapeutic targeting on cell signaling and cancer cell phenotypes in squamous cell carcinomas of the head and neck (SCCHN). EXPERIMENTAL DESIGN: The therapeutic efficacy of the human anti-IGF-IR antibody IMC-A12 alone and in combination with the EGFR blocking antibody cetuximab (C225) was tested in SCCHN cell lines and in tumor xenografts. RESULTS: IGF-IR was overexpressed in human head and neck cancer cell lines and tumors. Pretreatment of serum-starved 183A or TU159 SCCHN cell lines with A12 (10 microg/mL) blocked IGF-stimulated activation of IGF-IR, insulin receptor substrate (IRS)-1 and IRS-2, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. A12 induced G(0)-G(1) cell cycle arrest and blocked cell growth, motility, and anchorage-independent growth. Stimulation of head and neck cancer cells with either IGF or EGF resulted in IGF-IR and EGFR heterodimerization, but only IGF caused activating phosphorylation of both receptors. Combined treatment with A12 and the EGFR blocking antibody C225 was more effective at reducing cell proliferation and migration than either agent alone. Finally, TU159 tongue cancer cell xenografts grown in athymic nude mice were treated thrice weekly for 4 weeks with vehicle, A12 (40 mg/kg i.p.), C225 (40 mg/kg i.p.), or both agents (n=8 mice per group; 2 tumors per mouse). Linear regression slope analysis showed significant differences in median tumor volume over time between all three treatment groups and the control group. Complete regression was seen in 31% (A12), 31% (C225), and 44% (A12 + C225) of tumors. CONCLUSION: Here we found the overexpression of IGF-IR, the functional heterodimerization of IGF-IR and EGFR, and effective therapeutic targeting of these receptors in human head and neck cancer xenografts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号