首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study,we developed a systemic PD model in middle-aged cynomolgus monkeys using individualized low-dose MPTP,to explore effective indicators for the early prediction of clinical outcomes.MPTP was not stopped until the animals showed typical PD motor symptoms on days 10 to 13 after MPTP administration when the Kurlan score reached 10;this abrogated the differences in individual susceptibility to MPTP.The clinical symptoms persisted,peaking on days 3 to 12 after MPTP withdrawal(rapid progress stage),and then the Kurlan score plateaued.A Kurlan score at the end of the rapid progress stage 15 reflected stable or slowly-progressive PD,while a score 15 indicated spontaneous recovery.The entire clinical evolution and outcome of the systemic PD model was characterized in this study,thus providing options for therapeutic and translational research.  相似文献   

2.
The stable 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian (HP) rhesus monkey model of Parkinson's disease (PD) has been frequently used to test preclinical experimental therapeutics targeted to treat patients with advanced PD who suffer from motor fluctuations and drug-induced dyskinesias. We retrospectively analyzed data from 17 stable HP rhesus monkeys treated long-term with chronic intermittent dosing of levodopa (LD) in an attempt to induce choreoathetoid and dystonic dyskinesias. Rhesus monkeys in stable HP state for greater than 6 months as confirmed by multiple blinded behavioral ratings and (18)F-dopa Positron Emission Tomography (PET) were treated with optimal doses of LD to provide maximal amelioration of unilateral clinical parkinsonism without any adverse effects. Thereafter, each animal was given chronic intermittent daily challenge with doses of LD up to 700 mg/day orally or with 300 mg/kg/day parenteral injections. LD treatments failed to induce choreoathetoid and dystonic dyskinesias in these animals despite chronic intermittent high dose administration. These results suggest that the stable strictly unilateral HP rhesus monkey model of PD may not be a suitable animal model to test experimental therapeutics targeted against dyskinesias, and that bilateral parkinsonian rhesus models that readily demonstrate drug-induced dyskinesias and clinically relevant motor fluctuations are more appropriate for preclinical experimental testing of therapies designed to treat patients with advanced PD.  相似文献   

3.
Parkinson’s disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.  相似文献   

4.
Exposure of drug addicts to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) has caused a Parkinsonian syndrome accompanied by a selective destruction of dopamine containing neurones in the pars compacta of the substantia nigra. MPTP in the human causes a severe irreversible state that very closely resembles idiopathic Parkinson's disease both in its clinical features and response to pharmacological treatment. Interest in potential environmental agents that might play a role in the aetiology of idiopathic Parkinson's disease is likely to increase as the result of the discovery of the relatively simple molecule MPTP which is highly toxic to the substantia nigra. Until the discovery of the neurotoxicity of MPTP there was no effective animal model of Parkinson's disease. Administration of PTP to monkeys induces persistent parkinsonism which responds to classical antiparkinsonian therapy. The morphological and biochemical changes in the brains of the animals are more limited and selective than those seen in idiopathic Parkinson's disease. The model of MPTP-treated monkeys appears to provide a useful testbed for the evaluation of future treatments for the disease. The precise mechanism of MPTP toxicity has yet to be determined and may provide the clue to the mechanism of neuronal death in Parkinson's disease. After entering the brain MPTP is oxidized to MPP+ (1-methyl-4-phenylpyridine) at an extraneuronal site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with clinical features of tremor, muscular rigidity and akinesia, occurring as a result of midbrain dopamine loss. The search for treatments has relied heavily on animal models of the disorder. The use of monkey models of PD plays a distinct role in the development and assessment of novel treatments. The common marmoset (Callithrix jacchus) is a popular New World monkey used in the search for new treatments. These monkeys are easy to handle and survive well in captivity. This review examines the advantages of using marmoset monkeys in PD research and examines the different models available with reference to their use in pre-clinical assessment for novel therapeutic treatments. The most common models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA). Recently, selective cerebral transgenic over-expression of alpha-synuclein has also been attempted in marmosets as a potential model for PD. Each model has its advantages. The MPTP-based model in marmosets resembles the disease with regards to the neuroanatomy of neurotransmitter loss; the unilateral application of 6-OHDA allows for the assessment of more complex sensorimotor deficits due to the presence of an intact 'control' side; the over-expression of alpha-synuclein in the midbrain results in the slow onset of behavioural symptoms allowing for a pre-symptomatic time window. The appropriateness of each of these marmoset models for the assessment of treatments depends on several factors including the experimental aim of the study and whether emphasis is placed on the analysis of behavioural deficits.  相似文献   

6.
Positron emission tomography (PET) and the dopamine (DA) metabolism tracer, 6-fluoro- -m-tyrosine (FMT) were used to evaluate the relationship between DA metabolism and the clinical stage of parkinsonism monkeys following either unilateral ICA MPTP infusion or unilateral ICA MPTP infusion and subsequent varying sequential systemic doses of MPTP. Clinical stage corresponded to PET measures of striatal DA metabolism, showing the usefulness of the overlesioned hemiparkinsonian monkey as a stable model of various stages of Parkinson's disease (PD).  相似文献   

7.
In monkeys, intracarotid infusion of a single low dose of MPTP reliably induces a hemiparkinsonian syndrome that is stable over time. This model has been widely used to assess novel anti-parkinsonian therapies. Here, we report the exceptional finding of severe necrotic lesions that were observed in the basal ganglia (but not in the substantia nigra) of monkeys that received a single intracarotid injection of MPTP followed by gene therapy treatments. Although extensive unilateral dopaminergic nigrostriatal loss was found in all the animals, partial behavioral recovery was observed in the subjects that presented pallidal necrotic lesions. This report discusses possible causes and effects of the necrotic lesions and their locations and the value of the intracarotid MPTP model. Testing novel therapies in monkey models has become an essential step before clinical trials. These results indicate that evaluation of any treatment should consider possible confounding factors that may affect the results.  相似文献   

8.
目的探讨经颈内动脉注射MPTP制作偏侧恒河猴帕金森病模型的稳定技术和方法。方法对10只健康恒河猴注射MPTP,其中5只行颈外动脉夹闭,颈总动脉注射;5只行颈总动脉穿刺插管颈内动脉给药。其中1只模型动物在造模前后行正电子发射断层显像(PET)检查,观察脑代谢改变情况。对模型动物脑标本行快速冷冻切片,采用免疫组织化学方法检测多巴胺能细胞变化。结果采用颈总动脉插管颈内动脉注药建模均一次成功;2只颈外动脉夹闭颈总动脉注射药物建模一次成功,不成功的3只采用颈总动脉插管至颈内动脉再次注入相同剂量MPTP后建模成功。PET显示模型侧基底核区低代谢,与术前相比明显不同。免疫组化检测示模型侧中脑黑质酪氨酸羟化酶(TH)阳性细胞形态改变,数量减少,与对照侧有明显差异。结论与颈外动脉夹闭颈总动脉注射相比,颈总动脉插管颈内动脉注射MPTP制作偏侧恒河猴帕金森病模型更为简单有效。  相似文献   

9.
Following the discovery of inhibition of electron transport complex I by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a parkinsonian syndrome in humans, monkeys, and mice, several laboratories have reported abnormalities of complex I and other electron transport complexes (ETCs) in various tissues from patients with Parkinson's disease (PD). Criticism of the significance of these findings in the etiology of PD has centered on whether drug treatments or the debilitation of the disease process itself produced the low ETC activities. We present results from a blinded study of platelet mitochondrial ETC activities in 18 early untreated PD patients and 18 age- and sex-matched controls and in 13 spousal controls. Lower complex I activity in platelet mitochondria of PD patients was seen in early untreated disease and thus cannot be due to debilitation or drug therapy. Home environmental factors seem an unlikely explanation for the reduced complex I activity in PD patients but have not been excluded. Complex II/III activity was also reduced by 20% in PD compared with age-/sex-matched controls. The low complex I and II/III activities in platelet mitochondria appear to be related to the etiology of PD.  相似文献   

10.
11.
Chronic administration of low doses of the neurotoxin MPTP to nonhuman primates induces cognitive deficits similar to those seen in early Parkinson's disease (PD) patients, without the confounding effect of significant motor impairment. The present study assessed the extent to which specific attentional and central executive deficits in chronic low dose (CLD) MPTP-treated monkeys could be modified by nicotinic therapies. Four adult male rhesus monkeys were trained to perform attention and executive function tasks and were then administered low doses of MPTP (dose range: 0.025-0.1 mg/kg, i.v.) over 98-158 days until stable cognitive deficits appeared. Results showed that both nicotine and the alpha4beta4 subtype-selective nAChR agonist SIB-1553A could improve certain aspects of attentional and central executive functioning in this model of early Parkinsonism. Nicotine failed to improve performance of CLD-MPTP-treated animals on an attention set-shifting task while SIB-1553A significantly improved at least some aspects of performance, suggesting that the compound increased the animals' ability to maintain a previously formed response set and restored cognitive flexibility. Both nicotine and SIB-1553A caused a dose-dependent enhancement of performance on the focused attention (cued reaction time) task, decreasing reaction times on both cued and noncued trials. Nicotine caused a significant reduction in reaction times but did not alter the error profile on an impulse (motor readiness) task. SIB-1553A reduced reaction times but caused an increase in bar release (i.e. impulsivity) errors. These data suggest that nicotinic drugs may have therapeutic potential for treating cognitive dysfunction in PD.  相似文献   

12.
Levodopa‐induced dyskinesias (LIDs) are abnormal involuntary movements induced by the chronic use of levodopa (l ‐Dopa) limiting the quality of life of Parkinson’s disease (PD) patients. We evaluated changes of the serotonin 5‐HT2A receptors in control monkeys, in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐lesioned monkeys and in l ‐Dopa‐treated MPTP monkeys, without or with adjunct treatments to inhibit the expression of LID: CI‐1041, a selective NR1A/2B subunit antagonist of glutamate N‐methyl‐d ‐aspartic acid (NMDA) receptor, or Cabergoline, a long‐acting dopamine D2 receptor agonist. All treatments were administered for 1 month and animals were killed 24 h after the last dose of l ‐Dopa. Striatal concentrations of serotonin were decreased in all MPTP monkeys investigated, as measured by high‐performance liquid chromatography. [3H]Ketanserin‐specific binding to 5‐HT2A receptors was measured by autoradiography. l ‐Dopa treatment that induced dyskinesias increased 5‐HT2A receptor‐specific binding in the caudate nucleus and the anterior cingulate gyrus (AcgG) compared with control monkeys. Moreover, [3H]Ketanserin‐specific binding was increased in the dorsomedial caudate nucleus in l ‐Dopa‐treated MPTP monkeys compared with saline‐treated MPTP monkeys. Nondyskinetic monkeys treated with CI‐1041 or Cabergoline showed low 5‐HT2A‐specific binding in the posterior dorsomedial caudate nucleus and the anterior AcgG compared with dyskinetic monkeys. No significant difference in 5‐HT2A receptor binding was observed in any brain regions examined in saline‐treated MPTP monkeys compared with control monkeys. These results confirm the involvement of serotonergic pathways and the glutamate/serotonin interactions in LID. They also support targeting 5‐HT2A receptors as a potential treatment for LID.  相似文献   

13.
Parkinson's disease (PD) is a complex disorder consisting of motor deficits coupled with dysfunction in cognitive domains that are dependent upon the integrity of the frontal lobes and/or the fronto-striatal axis. Although it is increasingly acknowledged that PD patients have attentional and executive function deficits, it has been difficult to model these in nonhuman primates because of the nature of the cognitive tasks that have been used previously. The present studies were conducted to further define the nature of the cognitive impairment in a nonhuman primate model of early parkinsonism consequent to chronic low dose MPTP exposure and to further validate this model in monkeys trained to perform a battery of attentional and executive function tasks. Following chronic low dose MPTP exposure, monkeys developed deficits in maintenance of a response set as well problems in shifting attentional sets, suggesting decreased mental flexibility. On other tasks inattentiveness, an impaired ability to sustain spatial attention or to focus attention, a deficit in motor readiness and planning, and impaired time estimation were also observed. These results provide direct evidence of attention and executive function deficits in a nonhuman primate model of early parkinsonism. Based on these findings, we suggest that in addition to being useful for studying the cognitive deficits related to early PD and for developing new therapeutics for these problems, this model and these testing procedures may also provide a useful large animal model for studying attention deficit disorder and for developing new therapeutics for that condition as well.  相似文献   

14.
Much evidence indicates that abnormal GABA neurotransmission may be implicated in the pathophysiology of Parkinson's disease (PD) and dopaminomimetic-induced dyskinesias (DID). In this study, autoradiography using (125)I-CGP 64213 was performed to investigate GABA(B) receptor density in the brain of control monkeys as well as monkeys with MPTP-induced nigrostriatal depletion. Three MPTP monkeys received pulsatile administrations of the D1 dopamine (DA) receptor agonist (SKF 82958) whereas a long-acting D2 DA receptor agonist (cabergoline) was given to another three animals. SKF 82958 treatment relieved parkinsonian symptoms but two of three animals developed DID. Cabergoline induced a comparable motor benefit effect without persistent DID. (125)I-CGP 64213 binding to GABA(B) receptors was heterogeneous throughout the brain with the highest levels in the medial habenula of the thalamus. MPTP induced a decrease (-40%) of (125)I-CGP 64213 binding to GABA(B) receptors in the substantia nigra pars compacta (SNpc) and an increase (+29%) in the internal segment of the globus pallidus (GPi). This increase in the GPi was not affected by SKF 82958 but partly reversed by cabergoline. No change was seen in the striatum, the thalamus, the external segment of the globus pallidus, and the substantia nigra pars reticulata following MPTP and dopaminomimetic treatments. The changes of GABA(B) receptors observed in the SNpc and in the GPi suggest that alteration of GABA(B) receptors may play a role in the pathophysiology of PD and DID.  相似文献   

15.
Li H  He Z  Su T  Ma Y  Lu S  Dai C  Sun M 《Neurological research》2003,25(3):263-267
Parkinson's disease (PD) is a neurodegenerative disease characterized by muscular trembling palsy due to lack of dopamine (DA) in the substantia nigra-striatum (nigrostriatal) system resulting from the degeneration and necrosis of dopaminergic neurons. No effective cure has been found. Neurturin (NTN) has been demonstrated to act specifically on midbrain (mesencephalic) dopaminergic neurons with protective actions specifically. In the present study, we induced rhesus monkey model of Parkinson's disease by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Rhesus monkeys were randomly divided into a PD model group, NTN treatment group and normal control groups. In the NTN treatment group, 1 mg of E. coli-derived recombinant human NTN was injected into the cerebral ventricles 48 h before the injection of MPTP. Results indicated that Rhesus monkeys in the PD model group acquired PD symptoms that increasingly aggravated over time, while monkeys treated with NTN had less apparent or no symptoms. Using fluorospectrophotometry, the dopamine (DA), 5, 5-hydroxytrytamine (5-HT) and the 5-hydroxyindoleacetic acid (5-HIAA) contents of DA, 5-HT and 5-HIAA in substantia nigra, putamen and caudate nucleus in monkeys from the model group was found to be significantly lower than in the normal control group. While no significant differences were found between monkeys treated with NTN and normal control groups, the contents of DA, 5-HT and 5-HIAA in the NTN treatment group were higher than those observed in the PD model group. A dramatic loss of neurons in the substantia nigra in monkeys in the PD model group was observed by light microscopy, while no obvious loss was observed in the NTN treatment group in which the numbers of neurons were similar to those in normal controls. These results indicate that recombinant human NTN can prevent PD symptoms as well as protect dopaminergic neurons and preserve DA content in midbrain substantia nigra in rhesus monkeys exposed to MPTP.  相似文献   

16.
Levodopa-induced dyskinesias (LIDs) present a major problem for the long-term management of Parkinson's disease (PD) patients. Due to the interdependence of risk factors in clinical populations, it is difficult to independently examine factors that may influence the development of LIDs. Using macaque monkeys with different types of MPTP-induced parkinsonism, the current study evaluated the degree to which rate of symptom progression, symptom severity, and response to and duration of levodopa therapy may be involved in the development of LIDs. Monkeys with acute (short-term) MPTP exposure, rapid symptom onset and short symptom duration prior to initiation of levodopa therapy developed dyskinesia between 11 and 24 days of daily levodopa administration. In contrast, monkeys with long-term MPTP exposure, slow symptom progression and/or long symptom duration prior to initiation of levodopa therapy were more resistant to developing LIDs (e.g., dyskinesia developed no sooner than 146 days of chronic levodopa administration). All animals were similarly symptomatic at the start of levodopa treatment and had similar therapeutic responses to the drug. These data suggest distinct differences in the propensity to develop LIDs in monkeys with different rates of symptom progression or symptom durations prior to levodopa and demonstrate the value of these models for further studying the pathophysiology of LIDs.  相似文献   

17.
Dyskinesia is an important complication of treatment in Parkinson's disease (PD). Sarizotan, a 5-HT1A agonist with high affinity for D3 and D4 receptors was investigated on l-Dopa-induced dyskinesia (LID) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. Five MPTP female cynomolgus monkeys (Macaca fascicularis) with a moderate to severe parkinsonian syndrome and LID were used. Sarizotan 0.2, 1, and 2 mg/kg administered alone did not worsen parkinsonian symptoms; there were no effect on locomotor counts or on normal behavior of the monkeys. Sarizotan 0.2, 1, and 2 mg/kg administered 30 min before a fixed dose of l-Dopa (25–30 mg/kg s.c.) + benserazide (50 mg) did not affect the antiparkinsonian response to l-Dopa. However, mean dyskinetic scores were significantly reduced with sarizotan 1 and 2 mg/kg but not at 0.2 mg/kg. Higher doses of sarizotan (4 and 8 mg/kg, administered immediately before l-Dopa) reduced l-Dopa-induced locomotor response in all monkeys. A pharmacokinetic investigation in these monkeys showed a dose-dependent increase in mean plasma sarizotan concentrations with similar mean plasma concentrations for sarizotan 1 mg/kg alone or with l-Dopa, indicating a lack of sarizotan/l-Dopa interaction. The time course of plasma sarizotan concentrations was associated with time of maximal reduction of dyskinesias. When administered daily for two weeks in combination with l-Dopa in the same MPTP monkeys, sarizotan 1 mg/kg had a sustained antidyskinetic effect while maintaining the antiparkinsonian and locomotor effect of l-Dopa. This detailed sarizotan investigation in MPTP monkeys supports the antidyskinetic activity of this drug and for 5-HT1A agonists.  相似文献   

18.
Standard MPTP treatment regimens in primates result in > 85% destruction of nigral dopaminergic neurons and the onset of marked motor deficits that respond to known symptomatic treatments for Parkinson's disease (PD). The extent of nigral degeneration reflects the late stages of PD rather than events occurring at its onset. We report on a modified MPTP treatment regimen that causes nigral dopaminergic degeneration in common marmosets equivalent to that occurring at the time of initiation of motor symptoms in man. Subcutaneous administration of MPTP 1 mg/kg for 3 consecutive days caused a reproducible 60% loss of nigral tyrosine hydroxylase (TH)-positive cells, which occurred mainly in the calbindin-D(28k)-poor nigrosomes with a similar loss of TH-immunoreactivity (TH-ir) in the caudate nucleus and the putamen. The animals showed obvious motor abnormalities with reduced bursts of activity and the onset of motor disability. However, the loss of striatal terminals did not reflect early PD because a greater loss of TH-ir occurred in the caudate nucleus than in the putamen and a marked reduction in TH-ir occurred in striatal patches compared to the matrix. Examination of striatal fibres following a partial MPTP lesion showed a conspicuous increase in the number and the diameter of large branching fibres in the putaminal and to some extent caudatal matrix, pointing to a possible compensatory sprouting of dopaminergic terminals. In addition, these partially lesioned animals did not respond to acute treatment with L-DOPA. This primate partial lesions model may be useful for examining potential neuroprotective or neurorestorative agents for PD.  相似文献   

19.
Parkinson's disease (PD) is associated with a characteristic regional metabolic covariance pattern that is modulated by treatment. To determine whether a homologous metabolic pattern is also present in nonhuman primate models of parkinsonism, 11 adult macaque monkeys with parkinsonism secondary to chronic systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 12 age-matched healthy animals were scanned with [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET). A subgroup comprising five parkinsonian and six control animals was used to identify a parkinsonism-related pattern (PRP). For validation, analogous topographies were derived from other subsets of parkinsonian and control animals. The PRP topography was characterized by metabolic increases in putamen/pallidum, thalamus, pons, and sensorimotor cortex, as well as reductions in the posterior parietal-occipital region. Pattern expression was significantly elevated in parkinsonian relative to healthy animals (P<0.00001). Parkinsonism-related topographies identified in the other derivation sets were very similar, with significant pairwise correlations of region weights (r>0.88; P<0.0001) and subject scores (r>0.74; P<0.01). Moreover, pattern expression in parkinsonian animals correlated with motor ratings (r>0.71; P<0.05). Thus, homologous parkinsonism-related metabolic networks are demonstrable in PD patients and in monkeys with experimental parkinsonism. Network quantification may provide a useful biomarker for the evaluation of new therapeutic agents in preclinical models of PD.  相似文献   

20.
Levodopa‐induced dyskinesia (LID) is a major limitation of long‐term management of Parkinson's disease. The roadblocks that have hindered the development of new treatments for levodopa‐induced dyskinesia were discussed at a meeting organized by the Michael J. Fox Foundation for Parkinson's research (New York, NY, March 2011). Among these, the lack of consensus methodology and clinical applicability for eliciting and rating LID in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)–treated monkeys was highlighted as a particular concern. Here we present an update on the practical use of rating scales for evaluating LID in MPTP‐lesioned primate models of PD, with a focus on macaques, and present specifics on the Non‐Human Primate Dyskinesia Rating Scale. © 2012 Movement Disorder Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号