首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chicken red bloods cells (RBCs) were used as a model for cell survival following hyperthermia of differentiated cells, with rat RBCs serving as controls. The purpose was to investigate whether cells heated at 51·5°C with or without prior heat shock exhibited discernible differences in phosphorus metabolites, intracellular pH or Mg2+ using 31P nuclear magnetic resonance spectroscopy. The biochemical differences that distinguished the heat-shocked from the non-heat-shocked chicken cells were: (1) a decrease in intensity of the low and wide (300 Hz) resonance that underlies the high resolution signals and which arises from the partially mobile membrane phospholipids, suggesting that membrane fluidity was decreased during the induction of thermotolerance; and (2) a time-dependent leftward shift of the peak representing the 4,6P of inositol pentaphosphate together with a broadening of all of the 31P peaks during heat-shock and heat challenge, which persisted after return to the control temperature. This is consistent with significant oxygen consumption in the heat-shocked but not the non-heat-shocked cells. We conclude that chicken RBCs are capable of specific metabolic and physiologic responses to heat shock, as expected in cells known to produce heat-shock proteins and to be capable of thermotolerance induction.  相似文献   

3.
In Vivo 31P NMR spectroscopy was used to study changes in phosphate metabolism that occur after irradiation of the C3H fibrosarcoma, FSaII. Previously, we have shown that small FSaII tumors (less than 250 mm3) have a greater phosphocreatinine/inorganic phosphate (PCr/Pi) ratio and a lower hypoxic cell fraction (HCF) than large FSaII tumors (greater than 250 mm3). Six small tumors (113 +/- 26 mm3) were treated with radiation doses chosen to induce local control in greater than 50% of animals, (70-100 Gy, single fraction). Minimal changes in the tumor 31P NMR spectrum were seen over eight days of monitoring. During this interval, tumor regression began a minimum of 36 hours after radiation. This contrasted with large tumors (650-1000 mm3) wherein a significant increase in the Pcr/Pi ratio was seen 44 hr after irradiation. In tumors of this size range, a tumor growth delay of 4 to 7 days is obtained after a single 70 Gy fraction of radiation. Since small FSaII tumors have a minimal HCF (approximately equal to 4%), radiation induced reoxygenation would not be expected to have a large effect on their average cellular metabolism. Large tumors of this histology have a high HCF (greater than or equal to 40%), and may therefore be expected to have a significant average change in tumor cell metabolism with reoxygenation. The 31P NMR observations of small and large tumors after irradiation are compatible with radiation induced reoxygenation in the larger tumors.  相似文献   

4.
The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively). The NO synthase inhibitors Nomega-nitro-L-arginine (L-NNA) or Nomega-nitro-L-arginine methyl ester (L-NAME), administered to mice immediately after PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to PDT.  相似文献   

5.
The apoptotic response of normal brain and intracranial VX2 tumour following photodynamic therapy (PDT) mediated by 5 different photosensitizers (Photofrin, 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX), chloroaluminium phthalocyanine (AlCIPc), Tin Ethyl Etiopurpurin (SnET(2)), and meta -tetra(hydroxyphenyl)chlorin (m THPC)) was evaluated following a previous analysis which investigated the necrotic tissue response to PDT at 24 h post treatment. Free DNA ends, produced by internucleosomal DNA cleavage in apoptotic cells, were stained using a TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling) assay. Confocal laser scanning microscopy (CLSM) was used to quantify the local incidence of apoptosis and determine its spatial distribution throughout the brain. The incidence of apoptosis was confirmed by histopathology, which demonstrated cell shrinkage, pyknosis and karyorrhexis. At 24 h post PDT, AlClPc did not cause any detectable apoptosis, while the other photosensitizers produced varying numbers of apoptotic cells near the region of coagulative necrosis. The apoptotic response did not appear to be related to photosensitizer dose. These results suggest that at this time point, a minimal and fairly localized apoptotic effect is produced in brain tissues, the extent of which depends largely on the particular photosensitizer.  相似文献   

6.
Described herein are the initial findings from an 'in-magnet' 31P NMR compatible hyperthermia system capable of concurrently heating and monitoring the metabolic response of murine tumours; the murine radiation induced fibrosarcoma (RIF-1) was employed for these studies. At thermal doses sufficient to raise tumour temperature to 41.5 and 43 degrees C for a period of 30 min, a marked and rapid decrease in nucleoside triphosphate concentration and in pH was observed during the heating period, while inorganic phosphate concentration increased significantly but more gradually. These 31P NMR determined metabolic indices remained depressed/elevated throughout a 1.5 h post-hyperthermia monitoring period. Importantly, these metabolic indices correlated significantly with specific growth delay. This suggests a possible role for NMR spectroscopy in early assessment, and perhaps control, of therapeutic response to hyperthermia.  相似文献   

7.
Photodynamic therapy (PDT) is a developing approach to the treatment of solid tumours which requires the combined action of light and a photosensitizing drug in the presence of adequate levels of molecular oxygen. We have developed a novel series of photosensitizers based on zinc phthalocyanine which are water-soluble and contain neutral (TDEPC), positive (PPC) and negative (TCPC) side-chains. The PDT effects of these sensitizers have been studied in a mouse model bearing the RIF-1 murine fibrosarcoma line studying tumour regrowth delay, phosphate metabolism by magnetic resonance spectroscopy (MRS) and blood flow, using D2O uptake and MRS. The two main aims of the study were to determine if MRS measurements made at the time of PDT treatment could potentially be predictive of ultimate PDT efficacy and to assess the effects of sensitizer charge on PDT in this model. It was clearly demonstrated that there is a relationship between MRS measurements during and immediately following PDT and the ultimate effect on the tumour. For all three drugs, tumour regrowth delay was greater with a 1-h time interval between drug and light administration than with a 24-h interval. In both cases, the order of tumour regrowth delay was PPC > TDEPC = TCPC (though the data at 24 h were not statistically significant). Correspondingly, there were greater effects on phosphate metabolism (measured at the time of PDT or soon after) for the 1-h than for the 24-h time interval. Again effects were greatest with the cationic PPC, with the sequence being PPC > TDEPC > TCPC. A parallel sequence was observed for the blood flow effects, demonstrating that reduction in blood flow is an important factor in PDT with these sensitizers.  相似文献   

8.
Magnetic resonance spectroscopy in situ was used to study changes in phosphorus 31 metabolism after photodynamic therapy (PDT) of transplanted HeLa cell tumours. Tumours were irradiated 2 h after administration of ATX-S10 (8-formyloximethylidene-7-hydroxy-3-ethenyl-2,7,12,18, tetramethyl-porphyrin-13,17-bispropionil aspartate), a new photosensitizer and chlorin derivative. Nuclear magnetic resonance spectra were measured prior to illumination and 1, 3, 7, 14, 21 and 28 days after PDT on each mouse. A drastic decrease in adenosine triphosphate (ATP) and a concomitant increase in inorganic phosphate (Pi) were evident on the first day after PDT in all cases. The beta-ATP/total phosphate (P) ratio was 0.64 +/- 0.29% (average +/- s.d.) in complete response, 0.67 +/- 0.30% in recurrence and 2.45 +/- 0.93% in partial response. Comparison of this ratio to the histological findings revealed that the beta-ATP/total P ratio reflects the HeLa cell tumours which survived PDT. In other words, partial response on the one hand was distinguished from complete response and recurrence on the other with this ratio 1 day after PDT (P < 0.05). In addition, the ratio of phosphomonoester (PME) to Pi rose beyond 1.0 when macroscopic recurrence occurred, while it stayed under 1.0 in complete response. This finding suggests that the recurrence of HeLa cell tumours can be detected by the PME/Pi ratio.  相似文献   

9.
Described herein are the initial findings from an ‘in-magnet’ 31P NMR compatible hyperthermia system capable of concurrently heating and monitoring the metabolic response of murine tumours; the murine radiation induced fibrosarcoma (RIF-1) was employed for these studies. At thermal doses sufficient to raise tumour temperature to 41.5 and 43°C for a period of 30?min, a marked and rapid decrease in nucleoside triphosphate concentration and in pH was observed during the heating period, while inorganic phosphate concentration increased significantly but more gradually. These 31P NMR determined metabolic indices remained depressed/elevated throughout a 1.5?h post-hyperthermia monitoring period. Importantly, these metabolic indices correlated significantly with specific growth delay. This suggests a possible role for NMR spectroscopy in early assessment, and perhaps control, of therapeutic response to hyperthermia.  相似文献   

10.
Forty-six patients with recurrent ovarian cancer were reoperated, and cancer samples for the subrenal capsule assay (SRCA) were collected from 23 of them, whereas this test was not done in the remaining 23 control patients. The SRCA was evaluable in 22 cases (96%). Taken together, no significant difference appeared in the 3 years' survival figures between the groups: seven of 22 patients (32%) with the evaluable SRCA and six of 23 control patients (26%) were alive. However, a further analysis of the data revealed that the SRCA guided the selection of chemotherapy only in 15 patients, whereas tumour samples were resistant to all cytostatics tested in six cases and toxic side-effects limited the clinical application of the test results in the remaining one case. Four of the 11 patients (36%) whose further chemotherapy was strictly chosen based on the SRCA and seven of the 24 patients (29%) whose treatment was based on physician's choice survived at least 3 years. Our conclusion is that the SRCA is of limited value in the selection of second-line chemotherapy in recurrent ovarian cancer.  相似文献   

11.
Cell survival was investigated in an intraocular retinoblastoma-like tumour 30 min to 48 h after photodynamic therapy. The survival of the cells was assessed by an in vivo to in vitro colony forming assay, estimated by either the plating efficiency of the treated tumour cells compared to non-treated cells or the number of clonogenic cells per mg excised tumour. Curves showing cell survival as a function of the time between light irradiation and excision of the intraocular tumours were biphasic. This suggests more than one PDT tissue destruction mechanism in vivo (i.e. an early direct cell damage plus a subsequent late damage occurring in the tumour tissue left in situ after treatment). The delayed mechanism may be due to changes in the environment of the tumours probably caused by vascular damage. Tumour cells sensitised by Photofrin II in vivo and excised from the eyes were damaged by light when irradiated in vitro and this was dependent on the light energy dose. This showed that cellular Photofrin II uptake in the eye tumours was sufficient for direct cell damage and thus supports the suggestion that direct and indirect tumour destruction occurs in this eye tumour after photodynamic therapy.  相似文献   

12.
Nuclear magnetic resonance (NMR) non-invasively measures the apparent diffusion coefficient (ADC) of water, which is sensitive to the biophysical characteristics of tissue. Because anti-cancer treatment alters tumour pathophysiology, tumour ADC may be altered by treatment. In order to test this hypothesis, ADC was measured in s.c. implanted murine RIF-1 tumours before and up to 9 days after treatment with cyclophosphamide. A dose-dependent, reversible increase in tumour ADC was observed after cyclophosphamide treatment, which is consistent with an increase in the fraction of interstitial water due to treatment-induced cell death. Because tumour water ADC is increased substantially at a time when there is no change in tumour volume for a dose which produces minimal cell kill, its measurement could provide a novel means for early detection of response to anti-cancer therapy. If the changes in ADC observed in the present study are evident for commonly used anti-cancer therapies in different tumour types and specific to a therapeutic response, the approach could be broadly applicable as a response predictor since magnetic resonance imaging can be used to measure ADC in human tumours.  相似文献   

13.
The aim of this study was to search for possible relationships between the fraction of radiobiologically hypoxic cells in tumors and their 31P NMR spectral parameters and intracapillary HbO2 saturations. Four different tumor lines, two murine sarcomas (KHT, RIF-1) and two human ovarian carcinoma xenografts (MLS, OWI), were used. When tumor volume increased from about 200 mm3 to about 2000 mm3, hypoxic fraction increased from 12 to 23% for the KHT line, from 0.9 to 1.7% for the RIF-1 line, and from 9 to 28% for the MLS line. The OWI line showed similar hypoxic fractions at 200 (17%) and 2000 mm3 (15%). Tumor bioenergetic status decreased, that is, the inorganic phosphate (Pi) resonance increased and the phosphocreatine (PCr) and nucleoside triphosphate beta (NTP beta) resonances decreased, with increasing tumor volume for the KHT, RIF-1, and MLS lines, whereas the OWI line did not show any changes in the 31P NMR spectral parameters during tumor growth. Similarly, tumor HbO2 saturation status, that is, the fraction of vessels with HbO2 saturation above 30%, decreased with increasing tumor volume for the KHT, RIF-1, and MLS lines, but remained unchanged during tumor growth for the OWI line. Although the data indicated a relationship between hypoxic fraction and tumor bioenergetic status as well as tumor HbO2 saturation status within a specific line during tumor growth, there was no correlation between hypoxic fraction and tumor bioenergetic status or tumor HbO2 saturation status across the four tumor lines. This may have occurred because cell survival time under hypoxic stress as well as fraction of non-clonogenic, but metabolically active hypoxic cells differed among the tumor lines. This indicates that 31P NMR spectroscopy and HbO2 cryospectrophotometry data have to be supplemented with other data to be useful in prediction of tumor radioresistance caused by hypoxia.  相似文献   

14.
31P magnetic resonance spectroscopy has been used to compare the effects of the vasoactive agents hydralazine and flunarizine on the oxygenation of the transplantable tumors, SCCVII/Ha and 16C, and a range of spontaneous mammary tumors arising in the breeding stock in the Genetics Division at the Radiobiology Unit. The vasodilator hydralazine, previously shown to increase the radiobiological hypoxic fraction of transplantable murine tumors, increased inorganic phosphate to total phosphate (Pi/total) in SCCVII/Ha and 16C tumors. However, only two spontaneous tumors responded to this agent (2/12). The calcium antagonist flunarizine, which sensitizes the SCCVII tumor to X rays, consistent with a reduction in hypoxic fraction, reduced Pi/total in this and the 16C tumor. Further, most spontaneous tumors tested (8/10) responded to this agent, as measured by a reduction in Pi/total. These results point to fundamental differences between transplantable and spontaneously arising tumors in mice in their response to vasoactive agents.  相似文献   

15.
Phosphorus metabolite levels were measured non-invasively using 31P magnetic resonance spectroscopy (MRS) in SCCVII/SF tumors, subcutaneously transplanted into the legs of unanesthetized C3Hf/Sed mice. Shortly after MRS measurements, tumors were irradiated with a single dose of 20 Gy, and cell survival and radiobiologic hypoxic fraction were determined with an in vitro cloning assay. Significant correlations were found between tumor size and surviving fraction, hypoxic fraction, pH, and phosphorus metabolite ratios. With increase of tumor size, surviving fraction and hypoxic fraction both increased, the ratios of inorganic phosphate and phosphomonoesters to nucleoside triphosphates (Pi/NTP and PME/NTP, respectively) and inorganic phosphate to phosphocreatine (Pi/PCr) increased and pH decreased. However, considerable heterogeneity of MRS spectral parameters, even in tumors of similar size, precluded accurate prediction of hypoxic fraction and cell survival after radiotherapy.  相似文献   

16.
It has been proposed that the generation of O2 during photodynamic therapy (PDT) may lead to photochemical depletion of ambient tumour oxygen, thus causing acute hypoxia and limiting treatment effectiveness. We have studied the effects of fluence rate on pO2, in the murine RIF tumour during and after PDT using 5 mg kg(-1) Photofrin and fluence rates of 30, 75 or 150 mW cm(-2). Median pO2 before PDT ranged from 2.9 to 5.2 mmHg in three treatment groups. Within the first minute of illumination, median tumour pO2 decreased with all fluence rates to values between 0.7 and 1.1 mmHg. These effects were rapidly and completely reversible if illumination was interrupted. During prolonged illumination (20-50 J cm(-2)) pO2 recovered at the 30 mW cm(-2) fluence rate to a median value of 7.4 mmHg, but remained low at the 150 mW cm(-2) fluence rate (median pO2 1.7 mmHg). Fluence rate effects were not found after PDT, and at both 30 and 150 mW cm(-2) median tumour pO2 fell from control levels to 1.0-1.8 mmHg within 1-3 h after treatment conclusion. PDT with 100 J cm(-2) at 30 mW cm(-2) caused significantly (P = 0.0004) longer median tumour regrowth times than PDT at 150 mW cm(-2), indicating that lower fluence rate can improve PDT response. Vascular perfusion studies uncovered significant fluence rate-dependent differences in the responses of the normal and tumour vasculature. These data establish a direct relationship between tumour pO2, the fluence rate applied during PDT and treatment outcome. The findings are of immediate clinical relevance.  相似文献   

17.
In vivo 31P nuclear magnetic resonance spectroscopy has been used to examine the RIF-1 fibrosarcoma in mice during untreated growth and following chemotherapy with cyclophosphamide. Levels of inorganic phosphate increase relative to phosphocreatine or nucleoside triphosphates during early untreated growth. After the tumor reaches a volume of approximately 1 g, no further decrease in energy level is observed. Following treatment with cyclophosphamide, tumor phosphorus metabolite ratios and pH are significantly altered, compared to untreated age-matched controls. During the growth delay period following chemotherapy there is a significant reduction in the ratio of inorganic phosphate to other phosphate metabolites, compared to age-matched controls. In addition, a more alkaline pH is observed in the tumors of treated animals. When the growth delay period ends, nuclear magnetic resonance spectra return to pretreatment patterns. The magnitude of the differences in 31P nuclear magnetic resonance spectral parameters between treated animals and untreated controls is dose dependent. However, doses of cyclophosphamide above 200 mg/kg do not result in earlier spectroscopic alterations, nor in larger effects by Day 3 after treatment, even though clonogenic cell killing and growth delay are greater at these higher doses.  相似文献   

18.
Serum activity of alpha-N-acetylgalactosaminidase (NaGalase), the extracellular matrix-degrading enzyme that appears to be produced exclusively by cancer cells, was measured in mice bearing SCCVII tumours (squamous cell carcinoma). The NaGalase levels in these mice increased with time of tumour growth and were directly proportional to tumour burden. After exposure of SCCVII tumours to a single X-ray dose of 20 Gy, the serum NaGalase levels gradually decreased during the first 10 days after treatment (to approximately one-third of the initial value) and then began to increase. The decrease in serum NaGalase activity was more rapid after the treatment of SCCVII and EMT6 tumours by photodynamic therapy (PDT) and was dependent on the PDT dose. The treatments (based on photosensitizers Photofrin or mTHPC) that were fully curative resulted in the reduction of NaGalase activity to background levels within 2 or 3 days after PDT. A slower decrease in NaGalase activity was found after PDT treatments that attain an initial tumour ablation but are not fully curative. The regrowth of PDT-treated SCCVII tumours was preceded by an increase in serum NaGalase levels, which was detected as early as 8 days before the visible tumour reappearance. These findings ascertain the validity of serum NaGalase measurement for the assessment of tumour response to different treatments and support the concept that the NaGalase measurement could serve as a diagnostic and prognostic index that might allow oncologists to design the dosage or nature of treatment.  相似文献   

19.
31P NMR spectroscopy was used to study lipid and energy metabolism as well as tumour pH in three human ovarian carcinoma xenograft lines with widely differing growth rate, necrotic fraction and differentiation status. Two of the lines showed decreasing PCr (phosphocreatine) and NTP beta (nucleoside triphosphates beta) resonances and an increasing Pi (inorganic phosphate) resonance with increasing tumour volume range 100-4000 mm (3). This decrease in bioenergetic status was accompanied by a decrease in tumour pH from 7.15 to about 6.95. The volume-dependence of these spectral parameters probably reflected increased nutritional deprivation and development of hypoxia and necrosis during tumour growth. The phosphomonoesters (PME) and phosphodiesters (PDE) resonances did not change significantly with tumour volume. The third xenograft line did not show changes in the intensity of any of the resonances during tumour growth, in agreement with the observation that necrotic fraction and tumour pH (about 7.0) remained constant over the entire volume range. The spectral parameters differed significantly among the xenograft lines at given tumour volumes, but no correlations with volume-doubling time, necrotic fraction or differentiation status were found. The xenograft lines showed less extensive volume-dependence of the spectral parameters than did the KHT and RIF-1 murine tumour lines under identical experimental conditions.  相似文献   

20.
The energy metabolism of tumors in rats was investigated by in vivo 31P-NMR spectroscopy. The effects of radiotherapy, chemotherapy or radiotherapy combined with 5-fluorouracil (5-FU) chemotherapy were evaluated by observing the changes of these spectra in chemically induced subcutaneous fibrosarcoma in rats. Two milligrams of DMBA in solution in olive oil were administered subcutaneously in the flank of 20 Wistar rats and 17 fibrosarcoma occurred. 31P NMR spectra were recorded with a Brüker Medspec 30/47 spectrometer using a surface coil positioned over the tumor. We did not observe significant changes in the spectra during tumor growth. Radiotherapy and 5-FU chemotherapy alone did not induce major changes in the 31P spectra. But the situation was completely different for animals receiving the therapeutic combination. A clear increase in the ratio of inorganic phosphate to total phosphorus signal was observed 48 h after the first irradiation session. The pH shifted concurrently to the acidic range. No effect on tumor regression was observed in the rats from the chemotherapy group, while regression was less than 50% in rats treated by irradiation only, and at least 80% in the combined group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号