首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined presynaptic cholinergic markers and beta-secretase activity during progressive central nervous system amyloidogenesis in Tg2576 Alzheimer mice (transgenic for human amyloid precursor protein Swedish mutation; hAPPswe). At 14, 18, and 23 months of age there were no significant differences between wild-type and transgenic mice in four distinct central nervous system cholinergic indices--choline acetyltransferase and acetylcholinesterase activities, and binding to vesicular acetylcholine transporter and Na(+)-dependent high-affinity choline uptake sites. A novel enzyme-linked immunosorbent assay measuring only the secreted human beta-secretase cleavage product (APPsbetaswe) of APPswe also revealed no change with aging in Tg2576 mouse brain. In contrast, transgenic but not wild-type mice exhibited an age-dependent increase in soluble Abeta40 and Abeta42 levels and progressive amyloid deposition in brain. Thus, aging Tg2576 mice exhibited presynaptic cholinergic integrity despite progressively increased soluble Abeta40 and Abeta42 levels and amyloid plaque density in brain. Older Tg2576 mice may best resemble preclinical or early stages of human Alzheimer's disease with preserved presynaptic cholinergic innervation. Homeostatic APPsbetaswe levels with aging suggest that progressive amyloid deposition in brain results not from increased beta-secretase cleavage of APP but from impaired Abeta/amyloid clearance mechanisms.  相似文献   

2.
Vaccinations with Abeta1-42 have been shown to reduce amyloid burden in transgenic models of Alzheimer's disease (AD). We have further tested the efficacy of Abeta1-42 immunization in the Tg2576 mouse model of AD by immunizing one group of mice with minimal Abeta deposition, one group of mice with modest Abeta deposition, and one group with significant Abeta deposition. The effects of immunization on Abeta deposition were examined using biochemical and immunohistochemical methods. In Tg2576 mice immunized prior to significant amyloid deposition, Abeta1-42 immunization was highly effective. Biochemically extracted Abeta40 and Abeta42 levels were significantly reduced and immunohistochemical plaque load was also reduced. Immunization of mice with modest amounts of pre-existing Abeta deposits selectively reduced Abeta42 without altering Abeta40, although plaque load was reduced. In contrast, in Tg2576 mice with significant pre-existing Abeta loads, Abeta1-42 immunization only minimally decreased Abeta42 levels, whereas no alteration in Abeta40 levels or in plaque load was observed. These results indicate that in Tg2576 mice, Abeta1-42 immunization is more effective at preventing additional Abeta accumulation and does not result in significant clearance of pre-existing Abeta deposits.  相似文献   

3.
The principal enzyme responsible for the beta-site cleavage of amyloid precursor protein (APP) in the brain is a membrane-bound aspartyl protease beta-site APP cleaving enzyme (BACE). We examined human APP (hAPP) and BACE mRNA expression by in situ hybridization in young and old hAPP transgenic mice from two lines: Tg2576, hAPP KM670-671NL (hAPP(Sw)) at 4 and 15 months; and PDAPP, hAPP V717F, at 4 and 11 months. In transgene-positive mice from both lines, hAPP expression was most prominent in cortical, cerebellar, and hippocampal neuronal populations. Cingulate, entorhinal, and hippocampal amyloid burden in transgene-positive 16-month Tg2576 mice was 4 to 8%, and in 12-month PDAPP mice, 2 to 4%; there was no cerebellar amyloid deposition. BACE expression in transgenic and nontransgenic mice was highest in the cerebellar granule cell layer and hippocampal neuronal layers, intermediate in cortex, lower in subcortical regions, and minimal or absent in white matter of the cerebellum. Emulsion-dipped sections confirmed a predominantly neuronal pattern of expression. The amount of hybridization signal did not differ between transgenic and nontransgenic mice, or young and old mice, within each line. Thus, hAPP and endogenous BACE expression in similar anatomical localizations allow for processing of hAPP and Abeta formation in hAPP transgenic mice, but these are modified by additional age-related and anatomical factors.  相似文献   

4.
Mutations in the amyloid precursor protein (APP) gene are associated with altered production and deposition of amyloid beta (Abeta) peptide in the Alzheimer's disease (AD) brain. The pathways that regulate APP processing, Abeta production and Abeta deposition in different tissues and brain regions remain unclear. To address this, we examined levels of various APP processing products as well as Abeta deposition in a genomic-based (R1.40) and a cDNA-based (Tg2576) transgenic mouse model of AD. In tissues, only brain generated detectable levels of the penultimate precursor to Abeta, APP C-terminal fragment-beta. In brain regions, holoAPP levels remained constant, but ratios of APP C-terminal fragments and levels of Abeta differed significantly. Surprisingly, cortex had the lowest steady-state levels of Abeta compared to other brain regions. Comparison of Abeta deposition in Tg2576 and R1.40 animals revealed that R1.40 exhibited more abundant deposition in cortex while Tg2576 exhibited extensive deposition in the hippocampus. Our results suggest that AD transgenic models are not equal; their unique characteristics must be considered when studying AD pathogenesis and therapies.  相似文献   

5.
Transgenic mice (Tg2576) overexpressing human beta-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer's disease-like amyloid beta protein (Abeta) deposits by 8 to 10 months of age. These mice show elevated levels of Abeta40 and Abeta42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased markedly after the age of 12 months. At 15 and 19 months of age, senile plaque load was significantly greater in females than in males; in 91 mice studied at 15 months of age, the area occupied by plaques in female Tg2576 mice was nearly three times that of males. By enzyme-linked immunosorbent assay, female mice also had more Abeta40 and Abeta42 in the brain than did males, although this difference was less pronounced than the difference in histological plaque load. These data show that senescent female Tg2576 mice deposit more amyloid in the brain than do male mice, and may provide an animal model in which the influence of sex differences on cerebral amyloid pathology can be evaluated.  相似文献   

6.
Tg2576 mice, a transgenic model of amyloid pathology associated with Alzheimer's disease (AD), develop measurable levels of soluble amyloid beta1-40 and 1-42 by 6 months of age and amyloid plaque deposition in cortex, hippocampus and amygdala by 10 months of age. To investigate whether non-hippocampal learning strategies would predominate coincident with the age-related increase in Abeta load in the hippocampal region, we measured learning strategies in the T-maze and a redundant cued version of the water maze. Each of these tasks can be solved using either hippocampal or non-hippocampal learning strategies and has proved sensitive to hippocampal disruption in other settings. The results revealed subtle differences in T-maze and water maze performance in Tg2576 mice compared to controls. Surprisingly, however, Tg2576 mice were not impaired relative to non-transgenic littermates on any measures of hippocampal dependent behavior assessed in these tasks. These data suggest that the medial temporal lobe retains considerable function in 15-month-old Tg2576 mice despite significant Abeta pathology.  相似文献   

7.
Three mouse models of Alzheimer's disease (AD) were used to assess changes in gene expression potentially critical to amyloid beta-peptide (Abeta)-induced neuronal dysfunction. One mouse model harbored homozygous familial AD (FAD) knock-in mutations in both, amyloid precursor protein (APP) and presenilin 1 (PS-1) genes (APP(NLh/NLh)/PS-1(P264L/P264L)), the other two models harbored APP over-expression of FAD mutations (Tg2576) with the PS-1 knock-in mutation at either one or two alleles. These mouse models of AD had varying levels of Abeta40 and Abeta42 and different latencies and rates of Abeta deposition in brain. To assess changes in gene expression associated with Abeta accumulation, the Affymetrix murine genome array U74A was used to survey gene expression in the cortex of these three models both prior to and following Abeta deposition. Altered genes were identified by comparing the AD models with age-matched control littermates. Thirty-four gene changes were identified in common among the three models in mice with Abeta deposition. Among the up-regulated genes, three major classes were identified that encoded for proteins involved in immune responses, carbohydrate metabolism, and proteolysis. Down-regulated genes of note included pituitary adenylate cyclase-activating peptide (PACAP), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor I receptor (IGF-IR). In young mice without detectable Abeta deposition, there were no regulated genes common among the three models, although 40 genes were similarly altered between the two Tg2576 models with the PS-1 FAD knock-in. Finally, changes in gene expression among the three mouse models of AD were compared with those reported in human AD samples. Sixty-nine up-regulated and 147 down-regulated genes were found in common with human AD brain. These comparisons across different genetic mouse models of AD and human AD brain provide greater support for the involvement of identified gene expression changes in the neuronal dysfunction and cognitive deficits accompanying amyloid deposition in mammalian brain.  相似文献   

8.
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage caused by the over-expression of mutant APP and/or amyloid beta (Abeta). We investigated this hypothesis in a series of experiments examining what forms of APP and Abeta localize to the mitochondria, and whether the presence of these species is associated with mitochondrial dysfunction and oxidative damage. Using immunoblotting, digitonin fractionation, immunofluorescence, and electron microscopy techniques, we found a relationship between mutant APP derivatives and mitochondria in brain slices from Tg2576 mice and in mouse neuroblastoma cells expressing mutant human APP. Further, to determine the functional relationship between mutant APP/Abeta and oxidative damage, we quantified Abeta levels, hydrogen peroxide production, cytochrome oxidase activity and carbonyl proteins in Tg2576 mice and age-matched wild-type (WT) littermates. Hydrogen peroxide levels were found to be significantly increased in Tg2576 mice when compared with age-matched WT littermates and directly correlated with levels of soluble Abeta in Tg2576 mice, suggesting that soluble Abeta may be responsible for the production of hydrogen peroxide in AD progression in Tg2576 mice. Cytochrome c oxidase activity was found to be decreased in Tg2576 mice when compared with age-matched WT littermates, suggesting that mutant APP and soluble Abeta impair mitochondrial metabolism in AD development and progression. An increase in hydrogen peroxide and a decrease in cytochrome oxidase activity were found in young Tg2576 mice, prior to the appearance of Abeta plaques. These findings suggest that early mitochondrially targeted therapeutic interventions may be effective in delaying AD progression in elderly individuals and in treating AD patients.  相似文献   

9.
Tg2576 transgenic mice (mice overexpressing the "Swedish" mutation in the human amyloid precursor protein 695) demonstrated a decreased capacity for cell proliferation in the dentate gyrus of the hippocampus compared with non-transgenic littermates at 3 months, 6 months and 9 months of age. Isolation stress induced by individually housing each mouse from the time of weaning further decreased hippocampal cell proliferation in Tg2576 mice as well as in non-transgenic littermates at 6 months of age. Decreases in hippocampal cell proliferation in isolated Tg2576 mice were associated with impairments in contextual but not cued memory. Fluoxetine administration increased cell proliferation and improved contextual memory in isolated Tg2576 mice. Further, isolation stress accelerated the age-dependent deposition of beta-amyloid 42 plaques in Tg2576 mice. Numerous beta-amyloid plaques were found in isolated but not non-isolated Tg2576 mice at 6 months of age. These results suggest that Tg2576 mice, a mouse model of Alzheimer disease, have an impaired ability to generate new cells in the dentate gyrus of the hippocampus and that the magnitude of this impairment can be modulated by behavioral interventions and drugs known to have effects on hippocampal neurogenesis in normal rodents. Unexpectedly, isolation stress also appeared to accelerate the underlying process of beta-amyloid plaque deposition in Tg2576 mice. These results suggest that stress may have an impact on the underlying disease process associated with Alzheimer's disease.  相似文献   

10.
To investigate the consequences of mutant presenilin-1 (PS-1) expression under the control of the normal PS-1 gene, a gene-targeted mouse bearing the FAD mutation P264L was made. Gene-targeted models are distinct from transgenic models because the mutant gene is expressed at normal levels, in the absence of the wild-type protein. PS-1(P264L/P264L) mice had normal expression of PS-1 mRNA, but levels of the N- and C-terminal protein fragments of PS-1 were reduced while levels of the holoprotein were increased. When crossed into Tg(HuAPP695.K670N/M671L)2576 mice, the PS-1(P264L) mutation accelerated the onset of amyloid (Abeta) deposition in a gene-dosage dependent manner. Tg2576/PS-1(P264L/P264L) mice also had Abeta deposition that was widely distributed throughout the brain and spinal cord. APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mice had elevated levels of Abeta42, sufficient to cause Abeta deposition beginning at 6 months of age. Abeta deposition increased linearly over time in APP(NLh/NLh)/PS-1(P264L/P264L) mice, whereas the increase in Tg2576 mice was exponential. The APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mouse represents an animal model that exhibits Abeta deposition without overexpression of APP.  相似文献   

11.
Impaired rapid eye movement sleep (REMS) is commonly observed in Alzheimer's disease, suggesting injury to mesopontine cholinergic neurons. We sought to determine whether abnormal beta-amyloid peptides impair REMS and injure mesopontine cholinergic neurons in transgenic (hAPP695.SWE) mice (Tg2576) that model brain amyloid pathologies. Tg2576 mice and wild-type littermates were studied at 2, 6, and 12 months by using sleep recordings, contextual fear conditioning, and immunohistochemistry. At 2 months of age, REMS was indistinguishable by genotype but was reduced in Tg2576 mice at 6 and 12 months. Choline acetyltransferase-positive neurons in the pedunculopontine tegmentum of Tg2576 mice at 2 months evidenced activated caspase-3 immunoreactivity, and at 6 and 12 months the numbers of pedunculopontine tegmentum choline acetyltransferase-positive neurons were reduced in the Tg2576 mice. Other cholinergic groups involved in REMS were unperturbed. At 12 months, Tg2576 mice demonstrated increased 3-nitrotyrosine immunoreactivity in cholinergic projection sites but not in cholinergic soma. We have identified a population of selectively compromised cholinergic neurons in young Tg2576 mice that manifest early onset REMS impairment. The differential vulnerability of these cholinergic neurons to Abeta injury provides an invaluable tool with which to understand mechanisms of sleep/wake perturbations in Alzheimer's disease.  相似文献   

12.
Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis   总被引:5,自引:0,他引:5  
Abeta peptides are naturally occurring peptides, which are thought to play a key role in the pathophysiology of Alzheimer's disease (AD). In AD cases, levels of soluble and insoluble Abeta peptides increase in the brain as well as in the cerebrovasculature, a phenomenon that does not occur in extra-cranial vessels. There are frequently anomalies in the cerebrovasculature in AD, and despite increases in several pro-angiogenic factors in AD brain, evidence for increased vascularity is lacking; in fact there is evidence to the contrary. It has also been recently shown that Abeta peptides may have profound anti-angiogenic effects in vitro and in vivo. We therefore investigated whether there is evidence for altered angiogenesis in the vasculature in a transgenic mouse model of Abeta amyloidosis (Tg APPsw line 2576). In vitro, the formation of capillary-like structures on a reconstituted extracellular matrix by endothelial cells isolated from Tg APPsw is impaired. Ex vivo, the sprouting of new capillaries from arterial explants (over expressing Abeta) isolated from 9-month-old Tg APPsw is reduced compared to arterial explants isolated from control littermates. In addition, Tg APPsw mice show a reduction in vascular density in the cortex and hippocampus compared to control littermates. Altogether, our data suggest that the over expression of APPsw in the vasculature may oppose angiogenesis.  相似文献   

13.
Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Here, the effects of the antioxidant, alpha-lipoic acid (ALA) were tested on the Tg2576 mouse, a transgenic model of cerebral amyloidosis associated with AD. Ten-month old Tg2576 and wild type mice were fed an ALA-containing diet (0.1%) or control diet for 6 months and then assessed for the influence of diet on memory and neuropathology. ALA-treated Tg2576 mice exhibited significantly improved learning, and memory retention in the Morris water maze task compared to untreated Tg2576 mice. Twenty-four hours after contextual fear conditioning, untreated Tg2576 mice exhibited significantly impaired context-dependent freezing. ALA-treated Tg2576 mice exhibited significantly more context freezing than the untreated Tg2576 mice. Assessment of brain soluble and insoluble beta-amyloid levels revealed no differences between ALA-treated and untreated Tg2576 mice. Brain levels of nitrotyrosine, a marker of nitrative stress, were elevated in Tg2576 mice, while F2 isoprostanes and neuroprostanes, oxidative stress markers, were not elevated in the Tg2576 mice relative to wild type. These data indicate that chronic dietary ALA can reduce hippocampal-dependent memory deficits of Tg2576 mice without affecting beta-amyloid levels or plaque deposition.  相似文献   

14.
Cao D  Fukuchi K  Wan H  Kim H  Li L 《Neurobiology of aging》2006,27(11):1632-1643
Emerging evidence indicates that cholesterol metabolism affects the pathogenesis of Alzheimer's disease (AD). The LDL receptor (LDLR) is obligatory in maintaining cholesterol homeostasis in the periphery. To investigate the role of LDLR in the development of AD-like behavior and pathology, Tg2576 mice, a well-characterized transgenic mouse model of AD, with different genotypes of LDLR were generated. Here we show that LDLR-deficient Tg2576 mice developed hypercholesterolemia and age-dependent cerebral beta-amyloidosis. Before the manifestation of amyloid-beta (Abeta) deposition, these mice displayed hyperactivity, reduced anxiety, and impaired spatial learning regardless of LDLR genotypes. After the manifestation of Abeta deposition, LDLR-deficient Tg2576 mice showed more spatial learning deficits than LDLR-intact Tg2576 mice. Although LDLR genotypes did not affect the expression level of the amyloid-beta precursor protein transgene, there was a significant increase in Abeta deposition accompanied with an increase of apoE expression in LDLR-deficient Tg2576 mice. Our results suggest that the LDLR plays a role in the development of Alzheimer-type learning impairment and amyloidosis and can be a novel therapeutic target for AD.  相似文献   

15.
The Tg2576 mouse model of Alzheimer's disease (AD) exhibits age-dependent amyloid beta (Abeta) deposition in the brain. We studied electroencephalographically defined sleep and the circadian regulation of waking activities in Tg2576 mice to determine whether these animals exhibit sleep abnormalities akin to those in AD. In Tg2576 mice at all ages studied, the circadian period of wheel running rhythms in constant darkness was significantly longer than that of wild type mice. In addition, the increase in electroencephalographic delta (1-4 Hz) power that occurs during non-rapid eye movement sleep after sleep deprivation was blunted in Tg2576 mice relative to controls at all ages studied. Electroencephalographic power during non-rapid eye movement sleep was shifted to higher frequencies in plaque-bearing mice relative to controls. The wake-promoting efficacy of the acetylcholinesterase inhibitor donepezil was lower in plaque-bearing Tg2576 mice than in controls. Sleep abnormalities in Tg2576 mice may be due in part to a cholinergic deficit in these mice. At 22 months of age, two additional deficits emerged in female Tg2576 mice: time of day-dependent modulation of sleep was blunted relative to controls and rapid eye movement sleep as a percentage of time was lower in Tg2576 than in wild type controls. The rapid eye movement sleep deficit in 22 month-old female Tg2576 mice was abolished by brief passive immunization with an N-terminal antibody to Abeta. The Tg2576 model provides a uniquely powerful tool for studies on the pathophysiology of and treatments for sleep deficits and associated cholinergic abnormalities in AD.  相似文献   

16.
Acetylcholinesterase (AChE) is shown to promote deposition of beta-amyloid (Abeta) peptides and to enhance Abeta toxicity. Tg2576 (transgenic mice carrying the Swedish mutation of amyloid precursor protein, APPswe) mice and mice overexpressing human synaptic acetylcholinesterase (AChE-S) were crossed (hAChE-Tg//APPswe), to study the effects of brain Abeta, from 1 to 10 months of age, under the constant influence of AChE-S. The effect of nicotine treatment was also evaluated in these mice since we have previously shown that nicotine dramatically decreases Abeta levels in single transgenic APPswe mice. Already at 1 and 3 months, hAChE-Tg// APPswe mice showed increased levels of cortical insoluble Abeta1-40 and Abeta1-42 compared with APPswe mice, whereas APPswe mice displayed increased soluble Abeta1-40. Abeta plaques were detected at 7 months, thus before onset of plaque formation in APPswe mice. No differences were found in [125I]alpha-bungarotoxin binding sites or hippocampal glial fibrillary acidic protein (GFAP) immunoreactivity between hAChE-Tg//APPswe, and APPswe mice at either 1 or 10 months of age. L(-)-Nicotine (final dose 0.45 mg/kg) treatment twice daily for 10 days to 14-month-old hAChE-Tg// APPswe mice increased cortical insoluble Abeta1-40 levels, while both L(-)- and D(+)-nicotine (final dose 0.45 mg/kg) increased soluble Abeta1-42. L(-)-Nicotine reduced hippocampal GFAP immunoreactivity both in hAChE-Tg//APPswe mice and non-transgenic controls, while D(+)-nicotine caused a decrease only in hAChE-Tg//APPswe mice. Moreover, D(+)-nicotine increased the [125I]alpha-bungarotoxin binding sites in the hippocampus, and cortex of the hAChE-Tg//APPswe mice. In conclusion, already at a very young age, hAChE-Tg// APPswe mice exhibit increased levels of aggregated Abeta compared with APPswe mice, due to the possible interaction between Abeta and AChE-S, whereas APPswe mice exhibit increased soluble Abeta. The interaction between Abeta and AChE-S may also explain the different effect of nicotine on Abeta pathology in the hAChE-Tg//APPswe mice. The results in this study emphasize the importance of using different transgenic mouse models for evaluating the effect of new drug candidates for the treatment of Alzheimer's disease.  相似文献   

17.
目的:研究阿尔茨海默病(AD)血清中抗Aβ抗体与淀粉样蛋白结合的特性。方法:以AD患者和健康老人的血清作一抗,①用组织淀粉样斑块免疫反应(TAPIR)观察与Tg2576鼠脑内老年斑结合能力;②Western blot检测与Aβ42-GST融合蛋白的结合能力;③将Aβ42与PC12细胞培养,加入健康老人和AD患者的血清后,MTT法观察PC12细胞存活率。结果:AD患者的血清中抗Aβ抗体与成熟老年斑和Aβ42-GST融合蛋白的结合能力较弱;加入AD血清后,PC12细胞的A值较健康老人血清相比下降明显(P<0.01)。结论:AD血清中抗Aβ抗体对淀粉样蛋白可能存在着免疫耐受。  相似文献   

18.
A recent clinical study showed that statins, which are inhibitors of cholesterol biosynthesis pathway, reduced the prevalence of Alzheimer's disease (AD). Animal studies that have employed high cholesterol diet indicate significant relationship between cholesterol level and senile plaque deposition. Here, we investigated the effects of lovastatin on beta-amyloid production and senile plaque deposition in an animal model of AD (Tg2576 mice). As expected, lovastatin treatment reduced plasma cholesterol level in both male and female mice. However, lovastatin enhanced the amounts of beta-amyloid and other beta-secretase derived peptides in females, but not in males. Likewise, lovastatin increased the number of plaques in the hippocampus and cortex of females, but not in males. Lovastatin did not change the amounts of full-length or alpha-secretase processed amyloid precursor protein (APP), or presenilin 1 (PS1) in either sex. Thus, lovastatin lowers cholesterol level in both genders, but enhances beta-amyloid production and senile plaque deposition only in brains of female Tg2576 mice. Our results suggest that low plasma cholesterol levels might be a risk factor for AD in females.  相似文献   

19.
Phosphatidylethanolamine binding protein (PEBP) is a multifunctional protein, with proposed roles as the precursor protein of hippocampal cholinergic neurostimulating peptide (HCNP), and as the Raf kinase inhibitor protein (RKIP). Previous studies have demonstrated a decrease in PEBP mRNA in CA1 region of AD hippocampus. The current study demonstrates that PEBP is decreased in the hippocampus of 11 month Tg2576 mice, in the absence of change in mRNA levels compared to non-transgenic littermates. The level of PEBP in transgenic mouse hippocampus significantly decreases at 11 months (a time point when Abeta begins accumulating) and 15 months (when Abeta plaques have formed). There was a significant correlation between decreased PEBP expression and accumulation of Abeta. Immunohistochemical studies on Tg2576 and AD brain sections demonstrate that PEBP immunoreactivities are present at the periphery of dense multicore Abeta plaques, and in selective astrocytes, primarily surrounding plaques. These findings suggest that PEBP expression may be influenced by accumulation of Abeta. Down-regulation of PEBP may result in lower levels of HCNP or altered coordination of signal transduction pathways that may contribute to neuronal dysfunction and pathogenesis in AD.  相似文献   

20.
The progressive deposition of amyloid-β (Aβ) in the brain is a pathologic feature of Alzheimer's disease (AD). This study was aimed to determine whether endogenous tissue plasminogen activator (tPA) modulates the pathogenic process of AD. tPA expression and activity developed around amyloid plaques in the brains of human amyloid precursor protein–overexpressing Tg2576 mice, which were weakened by the genetic ablation of tPA. Although the complete loss of tPA was developmentally fatal to Tg2576 mice, tPA-heterozygous Tg2576 mice expressed the more severe degenerative phenotypes than tPA wild-type Tg2576 mice, including abnormal and unhealthy growth, shorter life spans, significantly enhanced Aβ levels, and the deposition of more and larger amyloid plaques in the brain. In addition, the expression of synaptic function–associated proteins was significantly reduced, which in turn caused a more severe impairment in learning and memory performance in Tg2576 mice. Thus, endogenous tPA, preferentially its aggregate form, could degrade Aβ molecules and maintain low levels of brain Aβ, resulting in the delay of AD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号