首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND Sperm aster organization during bovine and human fertilization requires a paternally-derived centriole that must first disengage from the sperm tail connecting-piece. We investigated the participation of the 26S proteasome in this process. METHODS Proteasome localization and enzymatic activity were studied in normal and pathological human spermatozoa by immunocytochemistry and enzyme-substrate assays. The role of proteasomes during bovine zygote development was investigated using a pharmacological proteasome-inhibitor, MG132, and with anti-proteasome antibodies delivered by Streptolysin O-permeabilization or with the Chariot reagent. Human zygotes discarded after ICSI failures (n = 28) were also examined. RESULTS Proteasomes were localized in the sperm acrosome and connecting-piece, as well as in the pronuclei of bovine and human zygotes. Proteasomal enzymatic activities were decreased in defective human spermatozoa. Disrupted sperm aster formation and pronuclear development were found after pharmacological and immunological block of proteasomes in human/bovine spermatozoa and oocytes, as well as in 28 discarded human post-ICSI fertilization failures. CONCLUSIONS Specific proteasome inhibition disrupts sperm aster formation and pronuclear development/apposition in bovine and human zygotes. Human spermatozoa with defective centriolar/pericentriolar structures have decreased proteasomal enzymatic activity. Release of a functional sperm centriole that acts as a zygote microtubule-organizing center probably relies on selective proteasomal proteolysis. These findings suggest an important role of sperm proteasomes in zygotic development.  相似文献   

2.
As a start to understanding the importance of intracellular proteolysis in the protozoon Leishmania mexicana, the parasite proteasome has been purified and characterised. The L. mexicana proteasome is similar to proteasomes from other eukaryotes. It is soluble, and the 20S form has a mass of around 670 kDa, composed of at least 10 distinct subunits in the 22 to 32 kDa size range. The molecular mass of the L. mexicana proteasome increases to 1200 kDa in the presence of adenosine-5'-triphosphate, consistent with there being a 26S proteasome in the parasite. The purified 20S proteasome has activity towards substrates with hydrophobic, basic and acidic P, residues, and is sensitive to a range of peptide aldehyde inhibitors, as well as the proteasome-specific inhibitor lactacystin. The peptide aldehydes are able to arrest parasite growth in vitro with the same relative effectiveness as against the purified proteasome activity. The parasite population arrests with an increased 4N DNA content, indicating that, in part, the essential nature of the proteasome for L. mexicana proliferation is due to a role in the parasite cell cycle. Surprisingly, lactacystin is a relatively inefficient inhibitor of L. mexicana growth in vitro.  相似文献   

3.
The 26S proteasome is a large proteolytic particle present in the cytosol and nucleus of eukaryotic cells. Most intracellular proteins, including those affected by oxidative damage, are degraded by the proteasome. The human thioredoxin, Txnl1, is known to associate with the 26S proteasome and thereby equips proteasomes with redox capabilities. Here, we characterize the fission yeast orthologue of Txnl1, called Txl1. Txl1 associates with the 26S proteasome via its C-terminal domain. This domain is also found in the uncharacterized protein, Txc1, which was also found to interact with 26S proteasomes. A txl1 null mutant, but not a txc1 null, displayed a synthetic growth defect with cut8, encoding a protein that tethers the proteasome to the nuclear membrane. Txc1 is present throughout the cytoplasm and nucleus, whereas Txl1 co-localizes with 26S proteasomes in both wild-type cells and in cut8 mutants, indicating that Txl1 is tightly associated with 26S proteasomes, while Txc1 might be only transiently bound to the complex. Finally, we show that Txl1 is an active thioredoxin. Accordingly, Txl1 was able to reduce and mediate the degradation of an oxidized model proteasome substrate in vitro. Thus, Txl1 and Txc1 are proteasome co-factors connected with oxidative stress.  相似文献   

4.
Antisecretory factor (AF) is a protein complex which inhibits inflammation and regulates fluid transport. In this article, two new immunoassays (ELISA) are developed. The first ELISA establishes a 26S proteasome concentration of 0.41±0.03 μg/mL in normal plasma; the second ELISA discloses the binding of proteasomes to complement factor C3. The latter test values increased about tenfold following intake of processed cereals, paralleling with the old AF ELISA. The proteasome/C3 complex is purified and shown to expose hidden antisecretory peptide sequence and contain the inactive C3c protein. These findings might explain the antisecretory and anti-inflammatory effect during AF complex formation.  相似文献   

5.
6.
The proteasome interacts with a large number of proteins which regulate specific cellular functions. The focus of this study is to examine the proteasome interaction with Delta-aminolevulinate dehydratase (ALAD). ALAD is involved in the heme biosynthesis pathway and was co-isolated, with the 20S proteasome using several chromatographic purification steps. The MALDI-TOF mass spectrometry analysis identified this proteasome co-isolated protein as ALAD. When the proteasome was isolated using density-gradient centrifugation, ALAD was also found in the 26S proteasome fractions. It co-isolated with the 20S more than with the 26S proteasome. Furthermore, immunoprecipitated ALAD stained positive with antibodies to proteasome subunits. These results indicate that ALAD might interact with the proteasome. It is possible that ALAD is involved in modulating proteasome activity. When purified proteasomes were incubated with ALAD it was found that ALAD changes proteasome activity in a dose dependent manner. This indicates that ALAD may play a significant role in regulating proteasome activity. The data supports the hypothesis that ALAD, an important enzyme for heme synthesis, is also important as a proteasome interacting protein.  相似文献   

7.
The 20S proteasome is the enzyme complex responsible for the processing of antigens bound by major histocompatibility complex class I molecules. The role of the interferon-γ (IFN-γ)-inducible proteasome subunits LMP2 and LMP7 in this process is, however, still controversial. We have studied the effects of IFN-γ-independent LMP incorporation on the quality of peptides processed from the murine cytomegalovirus IE pp89 25-mer polypeptide substrate through dual cleavages by 20S proteasomes. The incorporation of a single LMP subunit or both LMP2 and LMP7 induces changes in 20S proteasome subunit stoichiometry, alters its cleavage site preference and in consequence, the quality of the generated peptides. When the several hydrolytic activities are tested with short fluorogenic peptide substrates, the Vmax, S0.5 (Km), or both values of 20S proteasomes are altered, depending on the combination of LMP. There exists, however, no obvious correlation between the observed changes in hydrolytic activities against short fluorogenic peptides and the changes in dual cleavage site usage within the 25-mer polypeptide substrate. As judged from the calculated Hill coefficients, the presence of both LMP subunits induces a drastic increase in positive cooperativity between the proteasome subunits.  相似文献   

8.
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.  相似文献   

9.
We have determined peptide sequences of three Trypanosoma brucei proteasome subunit proteins by mass spectrometry of tryptic digests of the proteins purified by two-dimensional (2-D) polyacrylamide gel electrophoresis. Three genes identified by the sequence of their cDNA encode the peptides identified in these three proteins. The three proteins predicted from the gene sequences have significant similarity to other known proteasome subunits and represent an alpha6 type subunit (TbPSA6), and two beta-type subunits belonging to the beta1-type (TbPSB1) and beta2 type (TbPSB2). The sequences of both beta-subunits predict formation of catalytically active subunits through proteolytic processing. The prediction is supported by the presence in each of the two beta-subunits of a tryptic peptide that has the correctly processed N-terminus that creates the threonine nucleophile of the mature protein. This peptide cannot be generated by trypsin because of the required cleavage of a glycine-threonine bond. It is thus likely that there are at least two catalytically active beta-subunits, TbPSB1 and TbPSB2, present in the mature 20S proteasome from T. brucei.  相似文献   

10.
11.
The development of malignant neoplasm of the head and neck is related to the state of intracellular proteasome system. Elevation of total activity of proteasomes and specifi c activity of 20S proteasomal pool are accompanied by changes in proteasomal composition. Tumor size correlated with the content of regulatory proteasomal complex PA28. In the presence of regional metastases, 26S proteasome activity decreases and the content of proteasome immune subunit LMP7 in the tumor increases.  相似文献   

12.
Tone Y  Toh-E A 《Genes & development》2002,16(24):3142-3157
Nob1p is a nuclear protein that forms a complex with the 19S regulatory particle of the 26S proteasome and with uncharacterized nuclear protein Pno1p. Overexpression of NOB1 overrode the defects in maturation of the 20S proteasome of ump1Delta cells, and temperature-sensitive nob1 and pno1 mutants exhibited defects in the processing of the beta subunits and in the assembly of the 20S and the 26S proteasomes. A defect in either NOB1 or PNO1 caused accumulation of newly formed Pre6p in the cytoplasm, whereas Pre6p of the ump1Delta strain accumulated in the nucleus irrespective of the temperature. Here we present a model proposing that (1) Nob1p serves as a chaperone to join the 20S proteasome with the 19S regulatory particle in the nucleus and facilitates the maturation of the 20S proteasome and degradation of Ump1p, and (2) Nob1p is then internalized into the 26S proteasome and degraded to complete 26S proteasome biogenesis.  相似文献   

13.
The effect of several polyphenols on the 20S proteasomes, both the constitutive and the LMP proteasomes, isolated from bovine tissues, has been investigated. Polyphenolic compounds show many biological activities such as antiviral, antibacterial, antifungal, anti-inflammatory, antimutagenic, and antiallergic activities. However, the molecular mechanism underlying these effects has not been identified. It is well established that polyphenols possess inhibitory activities on several enzymes and among them the 20S proteasome. In the present work, the ChT-L, BrAAP, PGPH, and T-L activities of the isolated constitutive and immuno-proteasomes were assayed in order to get an overall information on the polyphenols binding to the complexes. The effects of the polyphenols on the proteasomal activities were analyzed, taking into account the different subunits composition of the two complexes. Furthermore the same activities were measured on whole extracts from cancer cells exposed to EGCG and gallic acid, evaluating, also, their antioxidant action under oxidative stress. EGCG and gallic acid are able to affect the 20S proteasomes functionality, depending on the complex subunit composition and, in cell extracts, they behave both as antioxidants and proteasome effectors.  相似文献   

14.
The immunodominant MART‐126(27)‐35 epitope, liberated from the differentiation antigen melanoma antigen recognized by T cells/melanoma antigen A (MART‐1/Melan‐A), has been frequently targeted in melanoma immunotherapy, but with limited clinical success. Previous studies suggested that this is in part due to an insufficient peptide supply and epitope presentation, since proteasomes containing the immunosubunits β5i/LMP7 (LMP, low molecular weight protein) or β1i/LMP2 and β5i/LMP7 interfere with MART‐126‐35 epitope generation in tumor cells. Here, we demonstrate that in addition the IFN‐γ‐inducible proteasome subunit β2i/MECL‐1 (multicatalytic endopeptidase complex‐like 1), proteasome activator 28 (PA28), and ER‐resident aminopeptidase 1 (ERAP1) impair MART‐126‐35 epitope generation. β2i/MECL‐1 and PA28 negatively affect C‐ and N‐terminal cleavage and therefore epitope liberation from the proteasome, whereas ERAP1 destroys the MART‐126‐35 epitope by overtrimming activity. Constitutive expression of PA28 and ERAP1 in melanoma cells indicate that both interfere with MART‐126‐35 epitope generation even in the absence of IFN‐γ. In summary, our results provide first evidence that activities of different antigen‐processing components contribute to an inefficient MART‐126‐35 epitope presentation, suggesting the tumor cell's proteolytic machinery might have an important impact on the outcome of epitope‐specific immunotherapies.  相似文献   

15.
Proteasomes are one of the cellular complexes controlling protein degradation from archaebacteria to mammalian cells. We recently purified and characterized the catalytic core of the proteasome, the 20S form, from Trypanosoma brucei, a flagellated protozoa which causes African trypanosomiasis. To identify the role of proteasomes in African trypanosomes, we used lactacystin, a specific inhibitor of proteasome activity. Lactacystin showed potent inhibition of the activity of 20S proteasomes purified from both bloodstream and procyclic (insect) forms of T. brucei (IC50=1 μM). It also inhibited proliferation of T. brucei cells in culture assays, with 1 μM inhibiting growth of bloodstream forms, whereas 5 μM was required to block proliferation of procyclic forms. Analysis of the DNA content of these cells by flow cytometry showed that 5 μM lactacystin arrested procyclic cells in the G2+M phases of the cell cycle. Fluorescence microscopy revealed that most of the cells had one nucleus and one kinetoplast each, indicating that the cells had replicated their DNA, but failed to undergo mitosis. This suggests that transition from G2 to M phase was blocked. On the other hand, incubation of bloodstream forms with 1 μM lactacystin led to arrest of 30–35% of the cell population in G1 and 55–60% of the cells in G2, indicating that both transition from G1 to S and from G2 to M were blocked. These observations were also confirmed by using another inhibitor of proteasome, N-carbobenzoxy- -leucyl- -leucyl- -norvalinal (LLnV), which arrested procyclic forms in G2, and bloodstream forms in both G1 and G2. These results suggest that proteasome activity is essential for driving cell cycle progression in T. brucei, and that proteasomes may control cellular functions differently in bloodstream and procyclic forms of T. brucei.  相似文献   

16.
The 26S proteasome is a multicatalytic threonine protease complex responsible for degradation of the majority of proteins in eukaryotic cells. In the last two decades, the ubiquitin proteasome system (UPS) has been increasingly recognized as an integral component in numerous biologic processes including cell proliferation, adaptation to stress, and cell death. The turnover of intracellular proteins inevitably affects the contributions of these molecules to cellular networks and pathways in any given tissue or organ, including the myocardium. Perturbations in the protein-degradation process have been shown to affect protein turnover and thereby affect the cardiac cell functions that these molecules are designated to carry out, engendering diseased cardiac phenotypes. Recent studies have implicated the role of proteasomes in stressed cardiac phenotypes including postischemia-reperfusion injury and cardiac remodeling (e.g., heart failure). The 26S proteasomes also appear to be susceptible to modulation by stresses (e.g., reactive oxygen species). This review focuses on roles of the 26S proteasome system in protein degradation; it provides an overview of the progress made in cardiac proteasome research as well as a discussion of recent controversies regarding the UPS system in diseased cardiac phenotypes.  相似文献   

17.
This study examined the hypothesis that postischemic levels of oxidized and/or ubiquitinated proteins may be predictive of functional recovery as they may be indicative of activity of the 20S and/or 26S proteasomes, respectively. Subjecting isolated rat hearts to 15 min of ischemia had no effect on 20S- and 26S-proteasome activities; however, both were significantly (p < 0.05) decreased by 70% and 54%, respectively, following 30 min of ischemia and 60 min of reperfusion, changes associated with increased levels of protein carbonyls and ubiquitinated proteins. Preischemic treatment of hearts with the proteasome inhibitor, MG132, resulted in dose-dependent decreases (p < 0.05) in recovery of postischemic function [MG132 (microM), heart rate x pressure product: 0, 11,158 +/- 2,423; 6, 11,400 +/- 3,009; 12, 5,513 +/- 2,225; 25, 2,325 +/- 992] and increased accumulation of ubiquitinated proteins. Preconditioning with repetitive ischemia (IP) or preischemic treatment with nicorandil (Nic) resulted in a significant increase in postischemic 20S-proteasome activity after 60 min of reperfusion (control, 95 +/- 4; IP, 301 +/- 65; Nic, 242 +/- 61 fluorescence units). Only Nic had similar effects on 26S-proteasome activity. These results support the conclusion that a correlation exists between eventual recovery of postischemic function and levels of oxidized and/or ubiquitinated proteins, a phenomenon that may be dependent on activity of the 20S and 26S proteasomes.  相似文献   

18.
Dendritic cells (DC) are highly specialized professional antigen presenting cells which are pivotal for the initiation and control of the cytotoxic T cell response. Upon stimulation by cytokines, bacteria, or CD40L DC undergo a maturation process from an antigen-receptive state to a state of optimal stimulation of T cells. We investigated the composition of proteasomes of DC derived from human peripheral blood monocytes before and after stimulation by CD40L, LPS, or proinflammatory cytokines (TNF-alpha + IL-6 + IL-1beta). Immunoprecipitation of proteasomes and analysis on two-dimensional gels revealed that during maturation the inducible proteasome subunits LMP2, LMP7, and MECL-1 are up-regulated and that the neosynthesis of proteasomes is switched exclusively to the production of immunoproteasomes containing these subunits. The proteasome regulator PA28 is markedly up-regulated in mature DC and in addition a so - far unidentified 21-kDa protein co-precipitates with the proteasome in LPS - stimulated DC. These changes in proteasome composition may be functionally linked to special properties of DC like MHC class I up-regulation or cross-priming. Our findings imply that the spectrum of class I-bound peptides may change after DC maturation which could be relevant for the design of DC - based vaccines.  相似文献   

19.
Human leucocyte antigen (HLA)-B27 is strongly associated with spondyloarthropathies, including reactive arthritis. Several Gram-negative bacteria, such as Salmonella typhimurium, can trigger this disease. It has been suggested that peptides derived from bacterial proteins and presented by HLA-B27 to cytotoxic T lymphocytes might show molecular mimicry with autologous peptides, leading to T-cell cross-reaction and autoimmunity. Antigen presentation in Salmonella-infected cells could be modulated by changes in the composition of the proteasome, which is the major proteolytic system that generates major histocompatibility complex class I ligands. In this study we analysed whether the composition or activity of the 20S proteasome was altered upon infection of lymphoid cells by S. typhimurium. Two-dimensional gel electrophoresis failed to show any differences between the composition of 20S proteasomes from cells infected with S. typhimurium for 24 hr, relative to non-infected cells. In addition, digestions of oxidized insulin B-chain with purified 20S proteasomes from non-infected and infected cells generated the same products, indicating that the proteasomal cleavage specificity was not altered upon infection. These data indicate that infection of lymphoid cells by S. typhimurium fails to induce formation of immunoproteasomes or otherwise alter the proteolytic specificity of the 20S proteasome.  相似文献   

20.
Proteasomes are the main non lysosomal proteolytic structures of the cells. They correspond to the major system eliminating abnormal proteins, short half-life proteins and proteins controlling the cell cycle. They are essential for the production of peptides subsequently presented by the MHC-I. They are formed by a proteolytic core (the 20S proteasome) made of 4 rings of 7 proteic subunits associated with regulatory complexes (namely the 19S complex forming the 26S proteasome). Using classical cell biology techniques (cytometry, immunofluorescence microscopy, Western blot) our group has particularly studied the proteasome expression of leukaemic cell lines (U937 and CCRF-CEM) during in vitro differentiation induced by PMA and Vitamin D plus retino?c acid. During differentiation, the level of proteasome expression and its localization vary. The various monoclonal antibodies used provided different patterns according to the different subunits. There was a general trend to a disappearance of nuclear proteasome and to a decrease in their cytoplasmic expression. In contrast, proteosomal antigens were increased on the cell membrane and in culture supernatants. We derived an ELISA test to measure plasma proteasome concentrations. Preliminary results showed differences between patients with haemopoietic malignancies or solid tumors and normal donors. Proteasome levels varied under treatment. They were correlated with LDH levels. Taken together, these results argue in favor of a role for cellular proteasomes in malignant differentiation process, and emphasize the qualitative changes in proteasome expression. Plasma proteasomes do not only reflect tumor cell mass and could play a role in addition to their proteolytic activity. They seem to be a relevant tool for diagnosis, prognosis and therapeutic monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号