首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pharmaceutical industry has entered in a new era, as there is a growing interest in increasing the quality standards of dosage forms, through the implementation of more structured development and manufacturing approaches. For many decades, the manufacturing of drug products was controlled by a regulatory framework to guarantee the quality of the final product through a fixed process and exhaustive testing. Limitations related to the Quality by Test system have been widely acknowledged. The emergence of Quality by Design (QbD) as a systematic and risk-based approach introduced a new quality concept based on a good understanding of how raw materials and process parameters influence the final quality profile. Although the QbD system has been recognized as a revolutionary approach to product development and manufacturing, its full implementation in the pharmaceutical field is still limited. This is particularly evident in the case of semisolid complex formulation development. The present review aims at establishing a practical QbD framework to describe all stages comprised in the pharmaceutical development of a conventional cream in a comprehensible manner.  相似文献   

2.
By considering the current regulatory requirement for an analytical method development, a reversed phase high performance liquid chromatographic method for routine analysis of etofenamate in dosage form has been optimized using analytical quality by design approach. Unlike routine approach, the present study was initiated with understanding of quality target product profile, analytical target profile and risk assessment for method variables that affect the method response. A liquid chromatography system equipped with a C18 column (250×4.6 mm, 5 μ), a binary pump and photodiode array detector were used in this work. The experiments were conducted based on plan by central composite design, which could save time, reagents and other resources. Sigma Tech software was used to plan and analyses the experimental observations and obtain quadratic process model. The process model was used for predictive solution for retention time. The predicted data from contour diagram for retention time were verified actually and it satisfied with actual experimental data. The optimized method was achieved at 1.2 ml/min flow rate of using mobile phase composition of methanol and 0.2% triethylamine in water at 85:15, % v/v, pH adjusted to 6.5. The method was validated and verified for targeted method performances, robustness and system suitability during method transfer.  相似文献   

3.
This paper describes progress made by the Legacy Products Task Team within the ISPE Product Quality Lifecycle Implementation (PQLI) initiative. It discusses the opportunities and the required business and technical processes to justify and deliver a quality by design (QbD) project for an existing product. A process flow is included that summarizes business, technical, and regulatory considerations. A quality risk management-based approach is suggested. Relevant case studies also are presented. Comments are welcome.  相似文献   

4.
The focus of the current investigations was to apply quality by design (QbD) approach to the development of dispersible tablets. Critical material and process parameters are linked to the critical quality attributes of the product. Variability is reduced by product and process understanding which translates into quality improvement, risk reduction and productivity enhancement. The risk management approach further leads to better understanding of the risks, ways to mitigate them and control strategy is proposed commensurate with the level of the risk. Design space in combination with pharmaceutical quality management system provide for flexible regulatory approaches with opportunity for continuous improvement that benefit patient and manufacturer alike. The development of dispersible tablet was proposed in the current study through a QbD paradigm for a better patient compliance and product quality. The quality target product profile of a model biopharmaceutical class II drug was identified. Initial risk analysis led to the identification of the critical quality attributes. Physicochemical characterization and compatibility studies of the drug with commonly used excipients were performed. Experiments were designed with focus on critical material and process attributes. Design space was identified and risk factors for all the possible failure modes were below critical levels after the implementation of control strategy. Compliance to the design space provides an opportunity to release batches in a real time. In conclusion, QbD tools together with risk and quality management tools provided an effective and efficient paradigm to build the quality into dispersible tablet.  相似文献   

5.
我国化学创新药物产业正蓬勃发展,药物创新体系不断完善,国产创新药及高端制剂处于快速发展阶段,将为我国新药研发格局带来深刻变革。化学药物质量控制是药物研发的重点,是药品安全有效的前提。围绕化学药物产业发展战略,攻坚关键核心技术,要重视科技创新。结合当前国内外前沿理念及技术,未来我国化药制造将持续发展。从化药制造关键质量属性辨识、化药生产质量源于设计和化药质量控制与剂型改良3个角度展开论述,以近10余年国内外相关研究为参考,围绕化药产业发展战略,紧扣关键质量属性与质量源于设计理念对化药质量控制相关内容进行归纳总结,以期为化药质量控制提供方向和参考。  相似文献   

6.
Context: Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results.

Objective: To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process.

Materials and methods: A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company.

Results: The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges.

Discussion and conclusions: This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.  相似文献   

7.
Protein-based biologic drugs encounter a variety of stress factors during drug substance (DS) and drug product (DP) manufacturing, and the subsequent steps that result in clinical administration by the end user. This article is the third in a series of commentaries on these stress factors and their effects on biotherapeutics. It focuses on assessing the potential negative impact from primary packaging, transportation, and handling on the quality of the DP. The risk factors include ingress of hazardous materials such as oxidizing residuals from the sterilization process, delamination- or rubber stopper-derived particles, silicone oil droplets, and leachables into the formulation, as well as surface interactions between the protein and packaging materials, all of which may cause protein degradation. The type of primary packaging container used (such as vials and prefilled syringes) may substantially influence the impact of transportation and handling stresses on DP Critical Quality Attributes (CQAs). Mitigations via process development and robustness studies as well as control strategies for DP CQAs are discussed, along with current industry best practices for scale-down and in-use stability studies. We conclude that more research is needed on postproduction transportation and handling practices and their implications for protein DP quality.  相似文献   

8.
This work aimed at establishing a framework to screen and understand the product variability deeming from factors that affect the quality features of cream formulations.As per Quality by Design – based approach, cream quality target profile and critical quality attributes were identified, and a risk assessment analysis was conducted to qualitatively detect the most critical variables for cream design and development. A Plackett-Burman design was used to screen out unimportant factors, avoiding collecting large amounts of data. Accordingly, 2 designs of experiments (DoE-1 and DoE-2) were performed, and the effects of independent variables on the cream formulations responses were estimated. At different factor combinations, significant variability was observed in droplet size, consistency, hardness, compressibility, and adhesiveness with values ranging from 2.6 ± 0.9 to 10 ± 6 μm, 7.93 ± 0.05 to 13.53 ± 0.14 mm, 27.6 ± 0.3 to 58.4 ± 1.1 g, 38 ± 6 to 447 ± 37 g.s, and 25.7 ± 2.1 to 286 ± 33 g.s, respectively. The statistical analysis allowed determining the most influent factors. This study revealed the potential of Quality by Design methodology in understanding product variability, recognizing the most critical independent variables for the final product quality. This systematic approach in the pharmaceutical field will yield more robust products and processes, provisioning time and cost effective developments.  相似文献   

9.
Introduction: Quality by design (QbD) encourages the pharmaceutical industry to use risk management and science-based manufacturing principles to gain process and product understanding and thus assures quality of the product. With the objective to curb the rising costs for development and regulatory barriers to innovation and creativity, QbD is being widely promoted by Food and Drug Administration (FDA) and International Conference on Harmonization (ICH).

Areas covered: This review describes the elements, different design and tools of QbD as well as multidimensional applications of QbD ranging from dosage form and method development to meeting latest regulatory requirements.

Expert opinion: The understanding of a process is facilitated by proper identification of sources of variation, management of variability by process design, and prediction of product quality attributes using design space. The pharmaceutical industry is rapidly adopting the QbD principles for fabrication of safe, effective and quality products; however, we are still on a journey and the process of gathering all experience and metrics required for connecting and demonstrating QbD benefits to all stakeholders is still in progress. Understanding the formulation and process parameters with the philosophy of QbD will be useful for the optimization of complex drug delivery systems in the near future.  相似文献   


10.
目的:通过分析智能制造理念下,质量源于设计(quality by design,QbD)与血液制品生产的相关性、过程分析技术(process analytical technology,PAT)在血液制品QbD中的应用以及关键质量环节的QbD实施,以期推动我国血液制品行业升级,实现血液制品的智能生产。方法:采取前瞻性研究方法,查阅、检索以"智能制造" "血液制品" "质量源于设计"过程分析技术"为关键词的文献,对智能制造理念在血液制品的应用研究进行论述。结果与结论:基于我国制药工业的自动化与信息化的水平与现状,制药工业的"智能制造"已逐步发展起来,QbD已被引入我国新版药品GMP,强调了与药品注册、上市制度的有效衔接。在科学监管的要求下,QbD理念已成为血液制品行业界的共识,实施QbD,通过基于问题的审核(question-based review,QbR),将有助于全面提高我国血液制品的质量,提升产品的竞争力。  相似文献   

11.
This paper gives an overview of progress made by the ISPE PQLI initiative - a global industry-led initiative aimed at facilitating the implementation of ICH Q8, Q9, and ultimately Q10 guidance. Through this initiative ISPE is spearheading the effort to help industry begin to define areas where they will be able to provide the technical framework for the implementation of key elements of Quality by Design (QbD) - a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding based on sound science and quality risk management. Three topic areas, Design Space, Criticality, and Control Strategy were selected for specific focus and discussion, and this paper gives an overview of progress in these three areas.
Roger NosalEmail:
  相似文献   

12.
Introduction: Preformulation assists scientists in screening lead candidates based on their physicochemical and biopharmaceutical properties. This data is useful for selection of new chemical entities (NCEs) for preclinical efficacy/toxicity studies which is a major section under investigational new drug application. A strong collaboration between discovery and formulation group is essential for selecting right NCEs in order to reduce attrition rate in the late stage development.

Areas covered: This article describes the significance of preformulation research in drug discovery and development. Various crucial preformulation parameters with case studies have been discussed.

Expert opinion: Physicochemical and biopharmaceutical characterization of NCEs is a decisive parameter during product development. Early prediction of these properties helps in selecting suitable physical form (salt, polymorph, etc.) of the candidate. Based on pharmacokinetic and efficacy/toxicity studies, suitable formulation for Phase I clinical studies can be developed. Overall these activities contribute in streamlining efficacy/toxicology evaluation, allowing pharmacologically effective and developable molecules to reach the clinic and eventually to the market. In this review, the magnitude of understanding preformulation properties of NCEs and their utility in product development has been elaborated with case studies.  相似文献   

13.
PURPOSE: The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. MATERIALS AND METHODS: The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. RESULTS: The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. CONCLUSIONS: Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.  相似文献   

14.
Quality by design (QbD) principle has been established as a guideline to emphasize the understanding of the relationship of product quality with process control. Vaccine product have characteristics of security and high efficiency, but it also has features such as complexity and rigorous regulatory for production. This case study describes an example of QbD-driven process development for manufacturing a veterinary vaccine produced with baby hamster kidney-21 cells. The study revealed that cell culture duration was the most significant factor affecting 50% tissue culture infectious doses (TCID50) and antigenic titer, and the factors of culture temperature and pH at infection phase exhibited less effect. Culture temperature at infection phase was the only significant factor for total protein. Through the Monte Carlo simulation, the design spaces of process parameters were determined. Meanwhile, the excellent and robust performance in manufacturing scale (4000-L) validated the effectiveness of this strategy. A reliable and robust multivariate process parameter range, that is, design space, was identified by this systematic approach. Our investigation presents a successful case of QbD principle, which encourages other researchers to combine the methodology into other biopharmaceutical manufacturing process.  相似文献   

15.
This paper describes an approach and technical process for developing and implementing a Control Strategy, which is a planned set of controls, derived from current product and process understanding that assures process performance and product quality. Development of a Control Strategy requires a structured process, involving a multi-disciplinary team of experts, linking pharmaceutical development to the manufacturing process, and engineering controls of process equipment. The PQLI Control Strategy Team has proposed a Control Strategy Model that facilitates understanding and that may be used a cross-functional communication tool. This paper concentrates on the techniques and principles involved in developing the early Control Strategy rather than the operational implementation of the strategy. Tom Garcia - Pfizer, Stephen Tyler - Abbott, Eric Ahuja - Merck, Metter Bryder - Lundbeck, Michael Hahn - Lundbeck, Ray Bolton - AstraZeneca, Gordon Muirhead - GSK, Sue Busse - Lilly, Hedinn Valthorsson - Novartis  相似文献   

16.
吕锐 《中国药事》2013,(10):1097-1099
目的 探索当前形势下将质量风险管理融入药品GMP管理的最佳途径和方法.方法 通过对2010年版GMP及其中质量风险管理条款的理解,结合质量风险管理在GMP具体应用中存在的问题,从药品生产企业的角度对其进行分析及探讨.结果与结论 风险管理是药品质量管理体系更加完善的产物;有效的质量风险管理必须建立在顺畅运行的质量保证体系基础之上;而人为因素是质量风险管理的关键所在.具体运用中要注重风险管理的前瞻性和回顾性方式,以减少事件或过程中的不确定因素,进而避免陷入无尽的风险评估事物之中.质量风险管理的应用需要一个循序渐进的过程,最终经过制度化、常态化的良性运行方可达到预期目的.  相似文献   

17.
Abstract

This paper proposes the development of a drug product Manufacturing Classification System (MCS) based on processing route. It summarizes conclusions from a dedicated APS conference and subsequent discussion within APS focus groups and the MCS working party. The MCS is intended as a tool for pharmaceutical scientists to rank the feasibility of different processing routes for the manufacture of oral solid dosage forms, based on selected properties of the API and the needs of the formulation. It has many applications in pharmaceutical development, in particular, it will provide a common understanding of risk by defining what the “right particles” are, enable the selection of the best process, and aid subsequent transfer to manufacturing. The ultimate aim is one of prediction of product developability and processability based upon previous experience.

This paper is intended to stimulate contribution from a broad range of stakeholders to develop the MCS concept further and apply it to practice. In particular, opinions are sought on what API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process. Feedback can be given by replying to our dedicated e-mail address (mcs@apsgb.org); completing the survey on our LinkedIn site; or by attending one of our planned conference roundtable sessions.  相似文献   

18.
药品质量标准制订的QbD理念初探   总被引:1,自引:0,他引:1  
本文介绍了基于质量源于设计(QbD)理念的药品质量标准制订过程,通过获取有用的与药品质量有关的信息和药品本身蕴藏着的丰富知识,采用科学的风险评估、寻找关键的质量属性、进行合理的空间设计,制订可行的达到全面认识的质量标准.为我国药品质量标准的制订提供参考.  相似文献   

19.
《Drug delivery》2013,20(6):765-784
Abstract

Of late, solid self-nanoemulsifying drug delivery systems (S-SNEDDS) have been extensively sought-after owing to their superior portability, drug loading, stability and patient compliance. The current studies, therefore, entail systematic development, optimization and evaluation (in vitro, in situ and in vivo) of the solid formulations of (SNEDDS) lovastatin employing rational quality by design (QbD)-based approach of formulation by design (FbD). The patient-centric quality target product profile (QTPP) and critical quality attributes (CQAs) were earmarked. Preformulation studies along with initial risk assessment facilitated the selection of lipid (i.e. Capmul MCM), surfactant (i.e. Nikkol HCO-50) and co-surfactant (i.e. Lutrol F127) as CMAs for formulation of S-SNEDDS. A face-centered cubic design (FCCD) was employed for optimization using Nikkol-HCO50 (X1) and Lutrol-F127 (X2), evaluating CQAs like globule size, liquefaction time, emulsification time, MDT, dissolution efficiency and permeation parameter. The design space was generated using apt mathematical models, and the optimum formulation was located, followed by validation of the FbD methodology. In situ SPIP and in vivo pharmacodynamic studies on the optimized formulation carried out in unisex Wistar rats, corroborated superior drug absorption and enhanced pharmacodynamic potential in regulating serum lipid levels. In a nutshell, the present studies report successful QbD-oriented development of novel oral S-SNEDDS of lovastatin with distinctly improved biopharmaceutical performance.  相似文献   

20.
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51 °C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号