首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to use the rat moderate spinal cord contusion model to investigate the effects of incomplete spinal cord injury (SCI) on the muscle regeneration process, comparing regeneration of slow-twitch plantarflexor soleus muscle and fast-twitch dorsiflexor tibialis anterior (TA) muscle. Additionally, we wanted to examine the effect of a week of locomotor training following incomplete SCI on the muscle regeneration process in these muscles and also determine if a week of similar locomotor training is sufficient to initiate muscle regeneration in control, non-injured rats. Thirty-two, adult, female, Sprague–Dawley rats were chosen for the study. Moderate, midthoracic contusion SCIs were produced using a NYU (New York University) impactor in all rats except controls. Animals were randomly assigned to treadmill training or untrained groups. Rats in the treadmill training group were manually treadmill trained starting at 1 week after SCI, for 10 bouts (2 sessions of 20 min of actual stepping) over 5 days and control rats in the training group received similar training. Our results indicate that a muscle regenerative response was initiated only in the slow-twitch soleus muscle in the initial 2 weeks following SCI, the addition of 1 week of locomotor treadmill training led to a significant increase in soleus regenerative process. No significant regenerative process was observed in the fast-twitch TA. Increased muscle regeneration in soleus is suggested by our findings of increased expression of (1) insulin-like growth factor-1, involved in the activation of satellite cells; (2) Pax7, a marker of satellite cell activation; (3) myogenin, a muscle regulatory protein; and (4) embryonic myosin, an indicator of new muscle fiber formation. Locomotor training in control, non-injured animals did not induce similar changes towards the regenerative process.  相似文献   

2.
Magnetic resonance (MR) is frequently used to study structural and biochemical properties of skeletal muscle. Changes in proton transverse relaxation (T 2) properties have been used to study muscle cellular damage, as well as muscle activation during exercise protocols. In this study, we implemented MR imaging to characterize the T 2 relaxation properties of rat hindlimb muscles following spinal cord injury (SCI) and locomotor training. After moderate midthoracic contusion SCI, Sprague–Dawley rats were assigned to either treadmill training, cycle training or an untrained group. T 2 weighted images were obtained and mean muscle T 2 times were calculated in the tibialis anterior, soleus, and gastrocnemius (GAS) muscles at pre-injury as well as at 1, 2, 4, 8, and 12 weeks post-injury. Following SCI, hindlimb muscles in untrained animals showed a significant increase in muscle T 2, with the most dramatic shift (+5.46 ms) observed in soleus muscle at 1 week post-SCI. Subsequently, all muscle groups showed a spontaneous recovery in muscle T 2 with normalized T 2 values in the GAS and tibilias anterior muscles at 4 weeks and the soleus at 12 weeks post-SCI. Both training paradigms, treadmill and cycling training, accelerated the recovery of soleus muscle T 2. As a result, soleus muscle T 2 recovered back to pre-injury values within 3 weeks of training in both training groups. Finally, in vitro histological assessments of rat skeletal muscles demonstrated that there was no apparent muscle injury in any of the muscles studied at 1 week post-SCI.  相似文献   

3.
Summary The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m · min–1 5 days · week–1), and the other to a sprint programme (30-s bouts of running at 60 m · min–1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

4.
Body weight–supported (BWS) robotic-assisted step training on a motorized treadmill is utilized with the aim to improve walking ability in people after damage to the spinal cord. However, the potential for reorganization of the injured human spinal neuronal circuitry with this intervention is not known. The objectives of this study were to determine changes in the soleus H-reflex modulation pattern and activation profiles of leg muscles during stepping after BWS robotic-assisted step training in people with chronic spinal cord injury (SCI). Fourteen people who had chronic clinically complete, motor complete, and motor incomplete SCI received an average of 45 training sessions, 5 days per week, 1 h per day. The soleus H-reflex was evoked and recorded via conventional methods at similar BWS levels and treadmill speeds before and after training. After BWS robotic-assisted step training, the soleus H-reflex was depressed at late stance, stance-to-swing transition, and swing phase initiation, allowing a smooth transition from stance to swing. The soleus H-reflex remained depressed at early and mid-swing phases of the step cycle promoting a reciprocal activation of ankle flexors and extensors. The spinal reflex circuitry reorganization was, however, more complex, with the soleus H-reflex from the right leg being modulated either in a similar or in an opposite manner to that observed in the left leg at a given phase of the step cycle after training. Last, BWS robotic-assisted step training changed the amplitude and onset of muscle activity during stepping, decreased the step duration, and improved the gait speed. BWS robotic-assisted step training reorganized spinal locomotor neuronal networks promoting a functional amplitude modulation of the soleus H-reflex and thus step progression. These findings support that spinal neuronal networks of persons with clinically complete, motor complete, or motor incomplete SCI have the potential to undergo an endogenous-mediated reorganization, and improve spinal reflex function and walking function with BWS robotic-assisted step training.  相似文献   

5.
The purpose of this study was to provide evidence that treadmill step training is capable of attenuating muscle atrophy and may regulate brain derived neurotrophic factor (BDNF) in soleus muscle after complete spinal cord transection (SCT) at T8–T9 in rats. Five days after SCT, spinal animals started a 9-week step-training program on a treadmill with partial body weight support and manual step help. The muscular trophism was studied by analyzing muscle weight and myofiber cross-sectional area of the soleus, while Western blot analysis was used to detect BDNF expression in the same muscle. Step training, initiated immediately after SCT in rats, may partially impede/revert muscular atrophy in chronic paralyzed soleus muscle. Moreover, treadmill step training promoted upregulation of the BDNF in soleus muscle, which was positively correlated with muscle weight and myofiber cross-sectional size. These findings have important implications for the comprehension of the neurobiological substrate that promotes exercise-induced effects on paralyzed skeletal muscle and suggests treadmill training is a viable therapeutic approach in spinal cord injuries.  相似文献   

6.
Exercise training results in dynamic changes in skeletal muscle blood flow and metabolism. Nitric oxide (NO) influences blood flow, oxidative stress, and glucose metabolism. Hsp90 interacts directly with nitric oxide synthases (NOS), increasing NOS activity and altering the balance of superoxide versus NO production. In addition, Hsp90 expression increases in various tissues following exercise. Therefore, we tested the hypothesis that exercise training increases Hsp90 expression as well as Hsp90/NOS association and NOS activity in skeletal muscle. Male, Sprague–Dawley rats were assigned to either a sedentary or exercise trained group (n = 10/group). Exercise training consisted of running on a motorized treadmill for 10 weeks at 30 m/min, 5% grade for 1 h. Western blotting revealed that exercise training resulted in a 1.9 ± 0.1-fold increase in Hsp90 expression in the soleus muscle but no increase in neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase, or endothelial nitric oxide synthase (eNOS). Exercise training also resulted in a 3.4 ± 1.0-fold increase in Hsp90 association with nNOS, a 2.3 ± 0.4-fold increase association with eNOS measured by immunoprecipitation as well as a 1.5 ± 0.3-fold increase in eNOS phosphorylation at Ser-1179. Total NOS activity measured by the rate of conversion of L-[14C]arginine to L-[14C]citrulline was increased by 1.42 ± 0.9 fold in soleus muscle following exercise training compared to controls. In summary, a 10-week treadmill training program in rats results in a significant increase in total NOS activity in the soleus which may be due, in part, to increased NOS interaction with Hsp90 and phosphorylation. This interaction may play a role in altering muscle blood flow and skeletal muscle redox status.  相似文献   

7.
Skeletal muscle has the remarkable capability to regenerate itself following injury. Adult myogenic stem cells (MSCs) are responsible for the repair and regeneration, and their activity is controlled by intrinsic and extrinsic factors. The aim of this study was to examine and compare the expression levels of Pax3, Pax7, MRF and p38 proteins during the course of regeneration and in different areas of the focal freeze‐lesion damaged adult rat TA muscle. Using the focal freeze injury model, immunohistochemistry, laser‐capture micro‐dissection and Western blot analysis were performed. The results show that (1) in the severely damaged area, the focal freeze‐lesion injury significantly activated Pax7 and myogenin expression within 7 days and down‐regulated Pax3, MyoD and Myf‐5 within 1 or 3 days, and (2) the level of the p38 protein was strongly and transiently up‐regulated in the whole muscle on day 7 following injury, whereas the level of the pp38 protein was down‐regulated within 3 days in the severely damaged and non‐damaged areas. These findings indicate that the temporal (e.g. the time course of regeneration) and spatial (e.g. three zones created by the focal freeze‐lesion) cues in a regenerating muscle have a significant impact on the activity of the adult MSCs.  相似文献   

8.
The soleus H-reflex modulation pattern was investigated in ten spinal cord intact subjects during treadmill walking at varying levels of body weight support (BWS), and nine spinal cord injured (SCI) subjects at a BWS level that promoted the best stepping pattern. The soleus H-reflex was elicited by tibial nerve stimulation with a single 1-ms pulse at an intensity that the M-waves ranged from 4 to 8% of the maximal M-wave (Mmax). During treadmill walking, the H-reflex was elicited every four steps, and stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. EMGs were recorded with surface electrodes from major left and right hip, knee, and ankle muscles. M-waves and H-reflexes at each bin were normalized to the Mmax elicited at 60–100 ms after the test reflex stimulus. For every subject, the integrated EMG area of each muscle was established and plotted as a function of the step cycle phase. The H-reflex gain was determined as the slope of the relationship between H-reflex and soleus EMG amplitudes at 60 ms before H-reflex elicitation for each bin. In spinal cord intact subjects, the phase-dependent H-reflex modulation, reflex gain, and EMG modulation pattern were constant across all BWS (0, 25, and 50) levels, while tibialis anterior muscle activity increased with less body loading. In three out of nine SCI subjects, a phase-dependent H-reflex modulation pattern was evident during treadmill walking at BWS that ranged from 35 to 60%. In the remaining SCI subjects, the most striking difference was an absent H-reflex depression during the swing phase. The reflex gain was similar for both subject groups, but the y-intercept was increased in SCI subjects. We conclude that the mechanisms underlying cyclic H-reflex modulation during walking are preserved in some individuals after SCI.  相似文献   

9.
Aerobic exercise, including treadmill running has been widely used to treat insulin resistance and type 2 diabetes. We studied the effects of endurance training on gene expression of adiponectin receptor 1 (AdipoR1) in skeletal muscle of obese Zucker rats: the 8-week moderate exercise program consisted of treadmill running at 20 m/min and 0° gradient for 1 h/day, 7 days/week. After 8 weeks, insulin action on glucose disposal rate was measured by glucose–insulin index, the product of the areas under the curve of glucose and insulin during intraperitoneal glucose tolerance testing. In contrast to results for sedentary obese rats, exercise training decreased plasma levels of insulin and glucose as well as the glucose–insulin index in obese rats, indicating the merit of regular moderate exercise for improvement of insulin sensitivity in this insulin-resistant animal model. Also, diabetes-related reductions in mRNA and protein content of AdipoR1 in soleus muscle were observed in obese rats at baseline; they were markedly reversed after the 8-week exercise program. However, such exercise training did not alter plasma levels of insulin and glucose in lean Zucker rats. Also, AdipoR1 gene expression in soleus muscle was not changed by exercise in lean Zucker rats compared with the sedentary, lean littermates. These results suggest that long-term exercise training may reverse reduced AdipoR1 gene expression in soleus muscle and improve insulin sensitivity in the obese Zucker rats. Thus, an endurance exercise training is probably helpful clinically for obese individuals with insulin resistance.  相似文献   

10.
This is, to our knowledge, the first report demonstrating the effects of orthotic gait training on the activity of the spinal locomotor neural networks. Three subjects with complete spinal cord injury (SCI) performed 1-h training with reciprocating gait orthosis 5 days/week for 12 weeks. The results showed that after 3 (n=1) or 6 weeks (n=2) of training, EMG activities synchronized with locomotor rhythm appeared in the soleus muscle (SOL) in all subjects, although very little EMG activity accompanied the orthotic gait at the early training stage. Our results suggest that the induced modulation in the SOL EMG waveforms might be attributable to changes in the orthotic gait movement pattern, and/or changes in the interneuronal activities of the spinal locomotor neural networks, as a result of orthotic gait training.  相似文献   

11.
12.
Effects of administration of granulocyte colony-stimulating factor (G-CSF) on the regeneration of injured mammalian skeletal muscles were studied in male C57BL/6J mice. Muscle injury was induced by injection of cardiotoxin (CTX) into tibialis anterior muscles bilaterally. G-CSF was administrated for 8 consecutive days from 3 days before and 5 days after the injection. Significant decreases of wet weight and protein content were noted in the necrotic muscle with CTX injection. A large number of the regenerating fibers having central nucleus were observed 7 days after the injection. The regeneration of injured muscle was further facilitated by the G-CSF treatment. Population of Pax7-positive nuclei was increased by the G-CSF treatment at day 7. Phospho-Akt and phospho-glycogen synthase kinase 3αβ (GSK3αβ) signals were also activated by G-CSF-administrated group during the regenerative process. It was suggested that G-CSF treatment may facilitate the regeneration of injured skeletal muscles via the activation of Akt/GSK3αβ signals.  相似文献   

13.
Effects of acute exercise varying in duration and intensity, as well as of two training regimes (endurance and sprint training) on the sensitivity of the soleus muscle of rat to insulin was measured in vitro and compared in rats. As an index of the muscle insulin sensitivity the hormone concentration in the incubation medium which would produce half maximum stimulation of lactate production (LA) and glycogen synthesis was determined. A single bout of moderate endurance exercise (60 min treadmill running at 20 m×min–1, 0° inclination) increased the rate of LA production at the hormone concentrations used and increased the sensitivity of the process to insulin at 0.25 and 2 h but not 24 h after termination of exercise. Similar though less pronounced effects were found after heavy endurance exercise (30 min at 25 m×min–1, 10°), but sprint exercise (6×10 s bouts at 43 m×min–1, 0°) had no influence on the insulin sensitivity of the soleus muscle. The rate of glycogen synthesis in vitro was accelerated after endurance exercise, but the sensitivity of this process to insulin was unaffected by the preceding exercise. Endurance training for 5 weeks caused marked enhancement of sensitivity of both LA production and glycogen synthesis to insulin, which persisted for at least 48 h after the last training session. No changes in the soleus muscle sensitivity to insulin were found after sprint training. It is concluded that the increased insulin sensitivity of glucose utilization by skeletal muscle which occurs after endurance exercise and particularly during endurance training can substantially contribute to improved carbohydrate tolerance. Sprint exercise does not produce any changes in muscle insulin sensitivity, at least in the soleus muscle of the rat.Dedicated to the late Professor Stanislaw Kozlowski  相似文献   

14.
Satellite cells are the myogenic cells lying between the myofiber sarcolemma and basal lamina. The objective of this study was to determine the expression patterns of MyoD, myogenin, and Pax7 within the satellite cell population in the growing rat soleus and extensor digitorum longus (EDL) muscles. Secondly, the expression of the myogenic markers was also studied within the interstitial cell compartment and myonuclei. It was discovered that the soleus contained a higher number of Pax7, MyoD, or myogenin-positive nuclei compared with the EDL. Similarly, myogenin was expressed at a lower level in the myonuclei of the soleus compared with the EDL, and myogenin was expressed at a higher level in the interstitial compartment of the soleus compared with the EDL. When interstitial nuclei, myonuclei, and double-labeled nuclei were used in the estimate of the satellite cell population, it was discovered that approximately of 13% of the myofibers in a transverse section of the soleus muscle and 4.1% of EDL myofibers exhibit a labeled satellite cell nucleus. Overall, results from this study suggest that expression patterns of these markers vary predictably among muscles with different growth dynamics and phenotypic characteristics.  相似文献   

15.
16.
Our purpose was to determine the effect of physical exercise on growth and differentiation during regeneration of a slow-twitch muscle. Degeneration/regeneration of the left soleus muscles of Wistar female rats was induced by injection of a snake venom. Muscular differentiation was studied by monitoring the sequential expression of the various myosin heavy chain isoforms (MHCs). Rats were assigned to one of two groups: cage sedentary (n?=?14) or exercised (n?=?16). The exercise programme began 1-day post-injection and the rats ran 1?h/day on a motorized treadmill. Then, 9 and 25 days after venom treatment, the soleus MHC phenotype as determined by immunohistology, electrophoresis and immunoblotting, was studied. At 25 days the expression of MHCs by regenerating soleus was not changed by the increased level of physical activity (P? >?0.05). Exercised and sedentary regenerating muscles contained similar numbers of type-I fibres (100% of total fibres), levels of MHC-1 (85.4 and 89.5% of total MHCs), MHC-2a and M?/?HC-2x/d and their fibres expressed MHC-1 (100% of total fibres) and MHC-2 (45–50%) in the same way. Moreover, the masses of regenerating and nonregenerating soleus were significantly increased by physical exercise (P? 相似文献   

17.
Causes of disuse atrophy include loss of upper motor neurons, which occurs in spinal cord injury (SCI) or lower motor neurons (denervation). Whereas denervation quickly results in muscle fibrillations, SCI causes delayed onset of muscle spasticity. To compare the influence of denervation or SCI on muscle atrophy and atrophy-related gene expression, male rats had transection of either the spinal cord or sciatic nerve and were sacrificed 3, 7, or 14 days later. Rates of atrophy increased gradually over the first week after denervation and then were constant. In contrast, atrophy after SCI peaked at 1 week, then declined sharply. The greater atrophy after SCI compared to denervation was preceded by high levels of ubiquitin ligase genes, MAFbx and MuRF1, which then also markedly declined. After denervation, however, expression of these genes remained elevated at lower levels throughout the 2-week time course. Interestingly, expression of the muscle growth factor, IGF-1 was increased at 3 days after denervation when fibrillation also peaks compared to SCI. Expression of IGF-1R, GADD45, myogenin, and Runx1 were also initially increased after denervation or SCI, with later declines in expression levels which correlated less well with rates of atrophy. Thus, there were significant time-dependent differences in muscle atrophy and MAFbx, MuRF1, and IGF-1 expression following SCI or denervation which may result from distinct temporal patterns of spontaneous muscle contractile activity due to injury to upper versus lower motor neurons.  相似文献   

18.
Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS. Then, the soleus muscles were excised following 6-week HS (4 weeks after CTX-injection). CTX-injection caused to reduce the soleus fiber cross-sectional area (CSA) in WT mice under both unloading and weight-bearing conditions, but not in MSTN-DN mice. Under unloading condition, CTX-injected muscle weight and fiber CSA in MSTN-DN mice were significantly higher than those in WT mice. CTX-injected muscle had many damaged and regenerating fibers having central nuclei in both WT and MSTN-DN mice. Significant increase in the population of Pax7-positive nuclei in CTX-injected muscle was observed in MSTN-DN mice, but not in WT mice. Evidences indicate that the suppression of MSTN cause to increase the regenerative potential of injured soleus muscle via the increase in the population of muscle satellite cells regardless of unloading conditions.  相似文献   

19.
The effect of functional overloading on the regenerating process of injured skeletal muscle was investigated in 10-week-old male mice (C57BL/6J). Functional overloading on soleus of both hindlimbs was performed by cutting the distal tendons of plantaris and gastrocnemius muscles for 2 weeks before cardiotoxin (CTX) injection as the preconditioning and also during 10 weeks of recovery. To activate the necrosis-regeneration cycle, 0.1 ml of 10-microM CTX was injected into soleus muscle. The mean values of absolute muscle weight and the percentage of Pax7-positive nuclei in soleus were increased by the preconditioning. These values, as well as total muscle protein content, in the group with CTX injection plus overloading were larger than in the group with CTX injection alone. Fibers with central nucleus were noted in the group with CTX injection with or without overloading. The rate of disappearance of fibers having central nucleus during recovery was stimulated by overloading. Histological analyses revealed that the regeneration of injured soleus muscle with overloading proceeded more rapidly than the muscle without overloading. These results, in combination with previous lines of evidence, strongly suggest that functional overloading may facilitate the regeneration of injured skeletal muscles.  相似文献   

20.
We previously reported that 14 bouts of exhaustive high-intensity intermittent training [20 s periods of swimming while carrying a weight (14% of body weight), separated by pauses of 10 s] is the highest stimuli in terms of exercise training-induced glucose transporter 4 (GLUT-4) expression in rat epitrochlearis (EPI) muscles. In the present study, we found that the GLUT-4 protein content in the skeletal muscle of male Sprague-Dawley rats (age 5 weeks old; body weight 90–110 g) that underwent intermittent exercise training of 3 and 14 bouts of 20 s swimming for 5 days was increased over age-matched sedentary control rats by 75 and 71%, respectively, 18 h after the last bout of exercise. These results suggest that GLUT-4 content in rat EPI muscle increases dramatically after very short (60 s) and nonexhaustive high-intensity intermittent exercise training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号