首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Sprague-Dawley rats were treated by intratracheal instillation with a single dose of 0.2 mg/kg body wt of 3-nitrobenzanthrone (3-NBA), and whole blood, lungs, pancreases, kidneys, urinary bladders, hearts, small intestines and livers were removed at various times after administration. At five posttreatment times (2 days, 2, 10, 20 and 36 weeks), DNA adducts were analysed in each tissue by (32)P-postlabelling to study their long-term persistence. 3-NBA-derived DNA adducts consisting of the same adduct pattern were observed in all tissues from animals killed between 2 days and 36 weeks and between 2 days and 20 weeks in blood. DNA isolated from whole blood contained the same 3-NBA-specific adduct pattern as that found in tissues. Although total adduct levels in the blood were much lower than those found in the lung, the target organ of 3-NBA tumourigenicity, they were related (20-25%, R(2) = 0.98) to the levels found in lung. In all organs, total adduct levels decreased over time to 20-30% of the initial levels till the latest time point (36 weeks) and showed a biphasic profile, with a rapid loss during the first 2 weeks followed by a much slower decline that reached a stable plateau at 20 weeks after treatment. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in target and non-target organs of the rat. The correlation between DNA adducts in lung and blood suggests that persistent 3-NBA-DNA adducts in the blood may be useful biomarkers for human respiratory exposure to 3-NBA.  相似文献   

2.
3-Nitrobenzanthrone (3-NBA) has been isolated from diesel exhaust and airborne particles and identified as a potent direct-acting mutagen in vitro and genotoxic agent in vivo. In order to evaluate the in vivo toxicity and carcinogenicity of 3-NBA in a situation corresponding to inhalation, a combined short-term and lifetime study with intratracheal (i.t.) instillation in female F344 rats was performed. DNA adduct formation, as a marker for the primary effect and analyzed by 32P-HPLC after single instillation, showed a few major DNA adducts and a rapid increase with a peak after 2 days, followed by a decline. No DNA adducts above the background level were observed after 16 days. The highest DNA adduct formation was observed in lung [approximately 250 DNA adducts/10(8) normal nucleotides (NN)] closely followed by kidney (approximately 200 DNA adducts/10(8) NN), whereas liver contained only 12% (approximately 30 DNA adducts/10(8) NN) of the levels of DNA adducts found in lung. In the tumor study, squamous cell carcinomas were found after 7-9 months in the high-dose group (total dose of 2.5 mg 3-NBA) and after 10-12 months in the low-dose group (total dose of 1.5 mg 3-NBA). The fraction of squamous cell carcinoma out of the total amount of tumors observed at the end of experiment at 18 months, corresponded to 3/16 and 11/16 in the low- and high-dose group, respectively. A single case of adenocarcinoma was also observed in each group. In the control group, no tumors were observed during the entire study of 18 months. In addition, a few cases of squamous metaplasia were also observed in the lung in both dose groups but not in the controls. In conclusion, 3-NBA forms DNA adducts in the lung immediately after i.t. administration but almost all DNA adducts were eliminated after 16 days. Tumor formation in two dose groups was observed in a dose-dependent manner with squamous cell carcinomas as the predominant tumor type at high exposure.  相似文献   

3.
3-Nitrobenzanthrone (3-NBA), a genotoxic mutagen found in diesel exhaust and ambient air pollution and its active metabolite N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) were tested for initiating and complete carcinogenic activity in the NMRI mouse skin carcinogenesis model. Both compounds were found to be inactive as either tumour initiators or complete carcinogens in mouse skin over a dose range of 25–400 nmol. Topical application of 3-NBA and N-OH-3-ABA produced DNA adduct patterns in epidermis, detected by 32P-postlabelling, similar to those found previously in other organs of rats and mice. 24 h after a single treatment of 100 nmol DNA adduct levels produced by 3-NBA (18 ± 4 adducts/108 nucleotides) were 6 times lower than those by 7,12-dimethylbenz[a]anthracene (DMBA; 114 ± 37 adducts/108 nucleotides). In contrast, identical treatment with N-OH-3-ABA resulted in adduct levels in the same range as with DMBA (136 ± 25 adducts/108 nucleotides), indicating that initial DNA adduct levels do not parallel tumour initiating activity. When compounds were tested for tumour initiating activity by a single treatment followed by twice-weekly applications of TPA, DNA adducts formed by DMBA, but not by 3-NBA or N-OH-3-ABA, were still detectable 40 weeks after treatment. When tested for activity as complete carcinogens by twice-weekly topical application, 3-NBA and N-OH-3-ABA produced identical DNA adduct profiles in mouse skin, with adducts still detectable after 40 weeks. Only 3-NBA produced detectable adducts in other organs.  相似文献   

4.
Diesel exhaust is known to induce tumors in animals and is suspected of being carcinogenic in humans. Of the compounds found in diesel exhaust and in airborne particulate matter, 3-nitrobenzanthrone (3-NBA), is a particularly powerful mutagen. We investigated the capacity of 3-NBA to form DNA adducts in vivo that could be used as agent-specific biomarkers of exposure. Female Sprague-Dawley rats were treated orally with 2 mg/kg body weight of 3-NBA, and DNA from various organs was analyzed by (32)P-postlabeling. High levels of 3-NBA-specific adducts were detectable in all organs. Both enrichment versions nuclease P1 digestion and n-butanol extraction resulted in patterns consisting of either 3 or 4 adducts remarkably similar in all tissues examined. The highest level of DNA adducts was found in the small intestine (38 adducts per 10(8) nucleotides) followed by forestomach, glandular stomach, kidney, liver, lung and bladder. To provide information on the nature of the adducts formed in vivo in rats, DNA adducts were cochromatographed in 2 independent systems with standardized deoxyguanosine adducts and deoxyadenosine adducts produced by reaction of 3-NBA in the presence of xanthine oxidase with deoxyribonucleoside 3'-monophosphates in vitro. In both systems, each of the rat adducts comigrated either with a deoxyguanosine or a deoxyadenosine-derived 3-NBA adduct. Our results demonstrate that 3-NBA binds covalently to DNA after metabolic activation, forming multiple DNA adducts in vivo, all of which are products derived from reductive metabolites bound to the purine bases (deoxyguanosine 60% and deoxyadenosine 40%).  相似文献   

5.
The present study investigated the effects of dietary oltipraz on cigarette smoke-related lipophilic DNA adduct formation. Female Sprague- Dawley rats were exposed daily to sidestream cigarette smoke in a whole- body exposure chamber 6 h/day for 4 consecutive weeks. One group of rats was maintained on control diet while another group received the same diet supplemented with either a low (167 p.p.m.) or high (500 p.p.m.) dose of oltipraz, starting 1 week prior to initiation of smoke exposure until the end of the experiment. Analysis of lipophilic DNA adducts by the nuclease P1-mediated 32P-post-labeling showed up to five smoke-related adducts. Adduct no. 5 predominated in both the lung and the heart while adduct nos 3 and 2 predominated in the trachea and bladder, respectively. Quantitative analysis revealed that the total adduct level was the highest in lungs (270+/-68 adducts/10(10) nucleotides), followed by trachea (196+/-48 adducts/10(10) nucleotides), heart (141+/-22 adducts/10(10) nucleotides) and bladder (85+/-16 adducts/10(10) nucleotides). High dose oltipraz treatment reduced the adduct levels in lungs and bladder by >60%, while the reduction in lungs in the low-dose group was approximately 35%. In trachea, the effect of low and high dietary oltipraz on smoke DNA adduction was equivocal, while smoke-related DNA adducts in the heart were minimally inhibited by high-dose oltipraz. In a repeat experiment that employed a 3-fold lower dose of cigarette smoke, oltipraz (500 p.p.m.) was found to inhibit the formation of DNA adducts in rat lungs and trachea by 80 and 65%, respectively. These data clearly demonstrate a high efficacy of oltipraz in inhibiting the formation of cigarette smoke-induced DNA adducts in the target tissues.   相似文献   

6.
Lung cancer is a leading cause of mortality in Taiwan. We hypothesised that high susceptibility to DNA damage in the target organ acts as a risk biomarker for the development of lung cancer. To verify this hypothesis, the aromatic/hydrophobic DNA adduct levels of non-tumorous adjacent lung tissues from 73 primary lung cancer patients and 33 non-cancer controls were evaluated by 32P-postlabelling assay. Wilcoxon rank sum test showed that DNA adduct levels in lung cancer patients (49.58+/-33.39 adducts/10(8) nucleotides) were significantly higher than those in non-cancer controls (18.00+/-15.33 adducts/10(8) nucleotides, P<0.001). The DNA adduct levels among lung cancer and non-cancer samples were not influenced by smoking behaviour and cigarette consumption. Our data also showed that the polymorphisms of cytochrome P4501A1 (CYP1A1) Msp1, glutathione S-transferase M1 (GSTM1) and the combination of both genetic polymorphisms were not related to the DNA adduct levels. Interestingly, positive association between CYP1A1 protein expression and DNA adduct levels was found when CYP1A1 protein expression in lung specimens from lung cancer patients was examined by immunohistochemistry. Multivariate linear regression analysis indicated that the DNA adduct level was not associated with gender, smoking behaviour, or genetic polymorphisms of CYP1A1 and GSTM1. Moreover, multivariate logistic regression analysis showed that persons with high DNA adduct levels (>48.66 adducts/10(8) nucleotides) had an approximately 25-fold risk of lung cancer compared with persons with low DNA adduct levels (相似文献   

7.
Understanding the kinetics of aromatic-DNA adducts in target tissues and white blood cells (WBC) would enhance the applicability of DNA adducts in WBC as surrogate source of DNA in biomonitoring studies. In the present study, rats were acutely exposed to benzo[a]pyrene (B[a]P; 10 mg/kg body wt) via intratracheal (i.t.), dermal and oral administration. DNA adducts were analyzed in relevant target organs and WBC by nuclease P1 enriched (32)P-post-labeling at 1, 2, 4, 11 and 21 days after exposure. Additionally, the internal dose was assessed by measurement of urinary excretion of 3-hydroxy-B[a]P (3-OH-B[a]P). Total B[a]P-DNA adduct levels in WBC were highest after i.t. and oral administration, whereas DNA adducts were hardly detectable after dermal exposure. Highest adduct levels were reached at 2 days after exposure. In lung tissue, DNA adduct levels reached maximal values at 2 days and were highest after i.t., oral and dermal exposure, respectively. DNA adduct levels were significantly lower in WBC as compared with lung. Nonetheless, overall B[a]P-DNA adduct levels in WBC were significantly correlated with those in lung. In target organs, highest DNA adduct levels were observed in skin after topical application, and lowest in stomach after oral administration of B[a]P. Furthermore, DNA adduct levels in WBC were correlated with DNA adduct levels in skin after dermal exposure and stomach after oral administration of B[a]P. Two-fold higher levels of 3-OH-B[a]P were excreted after i.t. administration of B[a]P as compared with dermal or oral exposure. Urinary 3-OH-B[a]P concentrations were correlated with DNA adduct levels at the site of B[a]P application. Overall, it can be concluded that aromatic-DNA adduct levels in WBC can be applied as a surrogate source of DNA for the site of application of B[a]P and reflect binding to lung DNA, independently of the exposure route.  相似文献   

8.
Diesel exhaust is known to induce tumours in animals. Of the compounds found in diesel exhaust 3-nitrobenzanthrone (3-NBA) is particularly a powerful mutagen. Recently we showed that 3-NBA is genotoxic in vivo in rats by forming specific DNA adducts derived from nitroreduction. In this study a panel of genetically engineered V79 Chinese hamster cell lines expressing various human cytochrome P450 (CYP) enzymes (CYP1A1, CYP3A4) and/or human NADPH:CYP oxidoreductase (CYPOR) was used to identify CYP enzymes involved in the metabolic activation of 3-NBA. We analyzed the formation of specific DNA adducts by 32P-postlabelling after exposing cells to 1 microM 3-NBA. A similar pattern with a total of four distinct 3-NBA-DNA adducts was found in all cells, identical to those detected previously in DNA from rats treated with 3-NBA in vivo. Total adduct levels ranged from 75 to 132 using nuclease P1 and from 103 to 220 adducts per 10(8) nucleotides, using butanol enrichment. Comparison of DNA binding between different V79MZ derived cells revealed that human CYPOR and CYP3A4 were involved in the metabolic activation of 3-NBA. Furthermore, dose-dependent high adduct levels were detected after exposure to 0.01, 0.1 or 1 microM 3-NBA in the subclone V79NH which exhibits high activities of nitroreductase and N,O-acetyltransferase. Our results suggest that nitroreduction is the major pathway in the human bioactivation of 3-NBA. Moreover, acetylation of the initially formed N-hydroxy arylamine intermediates may contribute to the high genotoxic potential of 3-NBA.  相似文献   

9.
3-Nitrobenzanthrone (3-NBA) is a potent mutagen and potential human carcinogen identified in diesel exhaust and ambient air particulate matter. Previously, we detected the formation of 3-NBA-derived DNA adducts in rodent tissues by 32P-postlabeling, all of which are derived from reductive metabolites of 3-NBA bound to purine bases, but structural identification of these adducts has not yet been reported. We have now prepared 3-NBA-derived DNA adduct standards for 32P-postlabeling by reacting N-acetoxy-3-aminobenzanthrone (N-Aco-ABA) with purine nucleotides. Three deoxyguanosine (dG) adducts have been characterised as N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-C8-N-ABA), 2-(2'-deoxyguanosin-N2-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-N2-ABA) and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-C8-C2-ABA), and a deoxyadenosine (dA) adduct was characterised as 2-(2'-deoxyadenosin-N6-yl)-3-aminobenzanthrone-3'-phosphate (dA3'p-N6-ABA). 3-NBA-derived DNA adducts formed experimentally in vivo and in vitro were compared with the chemically synthesised adducts. The major 3-NBA-derived DNA adduct formed in rat lung cochromatographed with dG3'p-N2-ABA in two independent systems (thin layer and high-performance liquid chromatography). This is also the major adduct formed in tissue of rats or mice treated with 3-aminobenzanthrone (3-ABA), the major human metabolite of 3-NBA. Similarly, dG3'p-C8-N-ABA and dA3'p-N6-ABA cochromatographed with two other adducts formed in various organs of rats or mice treated either with 3-NBA or 3-ABA, whereas dG3'p-C8-C2-ABA did not cochromatograph with any of the adducts found in vivo. Utilizing different enzymatic systems in vitro, including human hepatic microsomes and cytosols, and purified and recombinant enzymes, we found that a variety of enzymes [NAD(P)H:quinone oxidoreductase, xanthine oxidase, NADPH:cytochrome P450 oxidoreductase, cytochrome P450s 1A1 and 1A2, N,O-acetyltransferases 1 and 2, sulfotransferases 1A1 and 1A2, and myeloperoxidase] are able to catalyse the formation of 2-(2'-deoxyguanosin-N2-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyadenosin-N6-yl)-3-aminobenzanthrone in DNA, after incubation with 3-NBA and/or 3-ABA.  相似文献   

10.
In the present study, the level of benzo[a]pyrene 7,8-diol-9,10-epoxide-N(2)-deoxyguanosine (BPDE-N(2)-dG) in normal bronchial epithelial cells from non-cancerous bronchus of 22 lung cancer subjects was evaluated and compared to the lung parenchyma. We found very high formation of BPDE-N(2)-dG adduct in samples corresponding to a pure preparation of bronchial epithelial cells with 4-fold interindividual differences in the DNA adduct levels in the range of 36.5-175.4 BPDE-N(2)-dG adducts/10(8) nucleotides in smokers (mean: 84.7+/-38.4; n = 13) and 3-fold differences in the range of 19.7-62.4 in non-smokers (mean: 37.6+/-22.2; n = 3). DNA isolated from the bronchial tissue consisting of bronchial lining epithelium with adjacent lamina propria showed significantly lower BPDE-N(2)-dG formation (P < 0.001) in the range of 0.4-4.2 BPDE-N(2)-dG adducts/10(8) nucleotides (mean: 1.8+/-0.56; n = 6). This difference is clearly related to the procedure used to prepare the bronchial tissue samples leading to the presence of different types of cells. Eight samples from the normal parenchyma did not show measurable adducts, the other 14 samples showed 50-fold variation (mean: 1.7+/-1.5; range 0.1-5.2 adducts/10(8) nucleotides; n = 14). There were considerably higher adduct levels in pure bronchial epithelial cells than in parenchymal tissue (75.8+/-38.8 vs 0.9+/-1.5 adducts/10(8) nucleotides) (P < 0.0002) BPDE-N(2)-dG adduct concentrate almost exclusively in bronchial epithelial cells. The adduct values obtained in bronchial epithelial cells could be considered as 'critical' for the initiation of human lung cancer. The high formation of BPDE-N(2)-dG adducts in bronchial epithelial cells and investigations showing that the profile of mutations induced by BPDE in these cells is similar to that seen in the p53 gene isolated from human lung tumors implicates benzo[a]pyrene as important carcinogen in tobacco-induced lung cancer in human beings.  相似文献   

11.
Smokers with a low body mass index (BMI; weight/height(2)) have a higher risk for developing lung malignancies as compared with smokers of average weight, but there is no mechanistic explanation for this observation. Carcinogens in cigarette smoke are thought to elicit cancer by the formation of DNA adducts, which give the opportunity to additionally investigate the biological link between BMI and lung cancer. DNA adduct levels in peripheral blood lymphocytes of 24 healthy smoking volunteers (0.76 +/- 0.41 adducts per 10(8) nucleotides) positively correlated with cigarette consumption (r = 0.51; P = 0.01) and were inversely related with BMI (r = -0.48; P = 0.02). A significant overall relationship was observed when both parameters were included in multiple regression analysis (r = 0.63; P = 0.007). Moreover, body composition may affect DNA adduct persistence, because lipophilic tobacco smoke-derived carcinogens accumulate in adipose tissue and can be mobilized once exposure ceases. Therefore, DNA adduct levels and BMI were reassessed in all of the subjects after a nonsmoking period of 22 weeks. Adduct levels declined to 0.44 +/- 0.23 per 10(8) nucleotides (P = 0.002), and the estimated half-life was 11 weeks on the basis of exponential decay to background levels in never-smoking controls (0.33 +/- 0.18 per 10(8) nucleotides). Overweight subjects (BMI >25) with little weight gain after smoking cessation (相似文献   

12.
Cigarette smoking plays a major role in the etiology of several human cancers. It is believed that formation of DNA adducts is an initial step in the carcinogenic process. In this study, we have examined the ability of dietary N-acetylcysteine (NAG) to inhibit the formation of cigarette smoke-related DNA adducts in various tissues of rats. Female Sprague-Dawley rats were exposed to cigarette smoke (10 mg TPM/m(3)) in a whole-body exposure chamber for 6 h per day, seven days a week for four weeks. The smoke-exposed groups were provided either an unrefined diet or diets supplemented with low (5,000 ppm) or high (20,000 ppm) dose of NAG. A sham group was given control diet and maintained on filtered ambient air. Tissue DNA analysis of smoke-exposed rats by nuclease P1-version of the P-32-postlabeling assay showed up to 6 adducts in the following descending order expressed as total adducts/10(10) nucleotides: 1 predominant (no. 5) and 4 (no. 1-no. 4) minor adducts in the (219 +/- 36), 6 minor adducts in the heart (93 +/- 11), 5 adducts in the trachea (50 +/- 16), and 4 adducts in the bladder (50 +/- 3.5); sham-treated animals showed 2 or 3 adducts in each tissue but at 4-20-fold lower levels. Dietary intervention with either high or low dose of NAC did not affect the levels of most adducts, except for the following: a 30-40% increase (P<0.05) for adducts 3 and 4 in the lung; a 40-50% decrease (P<0.05) for adduct 2 in the trachea; and a 30% increase (P<0.05) for adduct 2 in the bladder. In a second experiment conducted under identical conditions, most major and minor adducts remained unaffected with NAC intervention, except for adduct 2 in the trachea which was somewhat diminished. These results suggest that dietary NAC intervention does not significantly influence the levels of most major and minor adducts. However, some minor adducts in the lung, trachea and bladder were modulated differentially.  相似文献   

13.
14.
Smoking is a major risk factor for lung cancer. This comparative study of smoking-related carcinogen-DNA adducts in pulmonary tissues and peripheral blood lymphocytes aims to further explore the primary DNA damaging processes by cigarette smoke in target and surrogate tissues. Samples of tumour and normal peripheral lung tissue, normal bronchial tissue and peripheral blood lymphocytes were obtained from a total of 85 lung cancer patients who underwent lung resection. Bulky DNA adducts were determined by 32P-postlabelling, and polycyclic aromatic hydrocarbon (PAH)-DNA adducts were detected by (+/-)-7beta, 8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-DNA chemiluminescence immunoassay (BPDE-DNA CIA) in smaller subsets of tissue samples subject to availability of DNA. Bulky DNA adduct levels ranged between 0.3 and 27.8 adducts/10(8) nucleotides (nt) with mean adduct levels between 2.8 and 11.5 adducts/10(8) nt. Mean PAH-DNA adduct levels were 2.6-6.2 adducts/10(8) nt. Significantly higher bulky DNA adduct levels were detected in smokers' lungs as compared with non-smokers' (P < 0.02). PAH-DNA adduct levels appeared higher in the lungs of smokers compared with non-smokers but the difference was not significant. Lung tumour contained on average a 50% lower DNA adduct level compared with normal lung tissue. A statistically significant positive correlation was found between the DNA adduct levels of the corresponding tumour and normal lung tissue samples in both smokers and non-smokers using both methodologies. Bulky DNA adduct levels in normal lung and blood lymphocytes correlated significantly in non-smokers only (r = 0.55, P = 0.023). In lung tumour DNA samples there was a weak correlation between values obtained by 32P-postlabelling and by the BPDE-DNA immunoassay (r = 0.27, P = 0.054). However, with normal lung DNA samples, values obtained by the two assays did not correlate.  相似文献   

15.
Little is known of the predictive value of the levels of DNA adducts in terms of cancer risk. We examined the association between bulky DNA adducts and risk of lung cancer in a population-based cohort, comprising of 25,717 men and 27,972 women aged 50-64 years at entry. We included 245 cases (137 men and 108 women) with lung cancer and a comparison group of 255 individuals (137 men and 118 women), matched on sex, age and smoking duration. Bulky adducts in white blood cells collected at enrollment and stored at -150 degrees C were analyzed by (32)P-postlabeling method, using the butanol enrichment procedure. The median level of bulky DNA adducts was 0.196 adduct/10(8) nucleotides (5-95 percentiles: 0.094-0.595) among current smokers who were later diagnosed with lung cancer and 0.163 adduct/10(8) nucleotides (5-95 percentiles: 0.091-0.455) among current smokers in the comparison group. The smoking adjusted incidence rate ratios (IRR) for lung cancer in relation to one log unit (natural logarithm) difference in adduct levels were 1.22 (95% CI 0.85-1.74), 1.33 (95% CI 0.89-1.98) and 0.76 (95% CI 0.39-1.47) among all, current and former smokers, respectively. Current smokers with bulky DNA adduct levels above the median had a significant higher lung cancer rate than those with adduct levels below the median (IRR = 1.61; 95% CI 1.04-2.49). The results are compatible with previous studies, suggesting a slightly higher risk of lung cancer with higher levels of adducts among smokers. Our results indicate that bulky DNA adducts may have a weak association with lung cancer risk.  相似文献   

16.
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen found in diesel exhaust and ambient air pollution. The main metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), was detected in the urine of salt mining workers occupationally exposed to diesel emissions. We evaluated the role of hepatic cytochrome P450 (CYP) enzymes in the activation of 3-ABA in vivo by treating hepatic cytochrome P450 oxidoreductase (POR)-null mice and wild-type littermates intraperitoneally with 0.2 and 2mg/kg body weight of 3-ABA. Hepatic POR-null mice lack POR-mediated CYP enzyme activity in the liver. Using the (32)P-postlabelling method, multiple 3-ABA-derived DNA adducts were observed in liver DNA from wild-type mice, qualitatively similar to those formed in incubations using human hepatic microsomes. The adduct pattern was also similar to those formed by the nitroaromatic counterpart 3-NBA and which derive from reductive metabolites of 3-NBA bound to purine bases in DNA. DNA binding by 3-ABA in the livers of the null mice was undetectable at the lower dose and substantially reduced (by up to 80%), relative to wild-type mice, at the higher dose. These data indicate that POR-mediated CYP enzyme activities are important for the oxidative activation of 3-ABA in livers, confirming recent results indicating that CYP1A1 and -1A2 are mainly responsible for the metabolic activation of 3-ABA in human hepatic microsomes. No difference in DNA binding was found in kidney and bladder between null and wild-type mice, suggesting that cells in these extrahepatic organs have the metabolic capacity to oxidize 3-ABA to species forming the same 3-ABA-derived DNA adducts, independently from the CYP-mediated oxidation in the liver. We determined that different model peroxidases are able to catalyse DNA adduct formation by 3-ABA in vitro. Horseradish peroxidase (HRP), lactoperoxidase (LPO), myeloperoxidase (MPO), and prostaglandin H synthase (PHS) were all effective in activating 3-ABA in vitro, forming DNA adducts qualitatively similar to those formed in vivo in mice treated with 3-ABA and to those found in DNA reacted with N-hydroxy-3-aminobenzanthrone (N-OH-ABA). Collectively, these results suggest that both CYPs and peroxidases may play an important role in metabolizing 3-ABA to reactive DNA adduct forming species.  相似文献   

17.
Smokers of cigarettes are exposed to a number of carcinogens, including polycyclic aromatic hydrocarbons (PAHs), and are at a high risk for lung cancer. PAHs exert their carcinogenic activity after metabolic activation to reactive intermediates that can damage DNA through adduct formation. Measuring DNA adducts in peripheral white blood cells (WBC) could serve as a means of monitoring human exposure to genotoxic agents and subsequently risk assessment. In this study, DNA from WBC obtained from 39 lung cancer patients was examined for PAH-DNA adducts both in an ELISA using a polyclonal antibody against benzo[a]pyrene 7,8-diol-9,10-epoxide (BPDE)-DNA and the 32P-post-labeling technique. The ELISA results showed BPDE-DNA antigenicity in WBC DNA from 12/38 (32%) patients and adduct levels ranged from 1.5 to greater than 150 adducts in 10(8) nucleotides. The autoradiographs of chromatograms of 32P-post-labeled digests of WBC DNA from the 38 patients showed a variety of adduct spots; relative adduct labeling (RAL) values ranged from 0.3 to 407 adducts in 10(8) nucleotides. In 18 of the 38 (47%) persons an adduct spot was detected that co-chromatographed with the major BPDE-DNA adduct (BPDE-dG); RAL values ranged from 0.03 to 382 adducts in 10(8) nucleotides. Correlations were not significant between the adduct levels in WBC and smoking habits, age or sex. From 20 patients of the same group lung tissue was collected at surgery and examined for PAH-DNA adducts by ELISA and 32P-post-labeling assay. No significant correlation was found between DNA adduct levels in blood and lung. This finding stresses the limitations of the use of WBC as a surrogate for adduct levels in the target organ.  相似文献   

18.
Ellipticine is a potent antineoplastic agent whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms covalent DNA adducts in vitro and that the formation of the major adduct is dependent on the activation of ellipticine by cytochrome P450 (CYP). Here, we investigated the capacity of ellipticine to form DNA adducts in vivo. Male Wistar rats were treated with ellipticine, and DNA from various organs was analyzed by (32)P postlabeling. Ellipticine-specific DNA adduct patterns, similar to those found in vitro, were detected in most test organs. Only DNA of testes was free of the ellipticine-DNA adducts. The highest level of DNA adducts was found in liver (19.7 adducts per 10(7) nucleotides), followed by spleen, lung, kidney, heart and brain. One major and one minor ellipticine-DNA adducts were found in DNA of all these organs of rats exposed to ellipticine. Besides these, 2 or 3 additional adducts were detected in DNA of liver, kidney, lung and heart. The predominant adduct formed in rat tissues in vivo was identical to the deoxyguanosine adduct generated in DNA by ellipticine in vitro as shown by cochromatography in 2 independent systems. Correlation studies showed that the formation of this major DNA adduct in vivo is mediated by CYP3A1- and CYP1A-dependent reactions. The results presented here are the first report showing the formation of CYP-mediated covalent DNA adducts by ellipticine in vivo and confirm the formation of covalent DNA adducts as a new mode of ellipticine action.  相似文献   

19.
There is growing concern that human exposure to respirable grain dust contaminated with aflatoxin B1 (AFB1), a potent hepatocarcinogen, may be a risk factor for a number of human diseases. The objective of this study was to determine if liver DNA adduct formation occurs in rats following either intratracheal injection or nose-only aerosol inhalation exposure to AFB1. Male Fischer 344 rats were exposed by both routes of administration, and in preliminary data using intratracheal instillation, up to 2% of the administered dose became bound to liver DNA. In the nose-only aerosol inhalation experiments, rats were exposed for up to 120 min. Immediately after exposure, four animals were killed at each time point and their livers removed, DNA isolated and purified and analyzed for aflatoxin-DNA adducts by HPLC. A linear dose-response relationship was observed with a correlation coefficient of 0.96 between increasing length of exposure, and the amount of aflatoxin-N7-guanine adducts formed per mg DNA, the mean values and standard errors were 4.2 +/- 0.18, 15.3 +/- 4.3, 21.6 +/- 2.8 and 56.8 +/- 4.6 pmol aflatoxin-DNA adducts per mg DNA for the 20, 40, 60 and 120 min exposures respectively. The amounts of aflatoxin-DNA adducts formed were statistically significantly different (P less than 0.01) among the treated groups. These results indicate that aerosol inhalation is an effective route of exposure to AFB1 in rats that results in genotoxic damage in the liver.  相似文献   

20.
Determining the capability of humans to metabolize the suspected carcinogen 3-nitrobenzanthrone (3-NBA) and understanding which human enzymes are involved in its activation are important in the assessment of individual susceptibility to this environmental contaminant found in diesel exhaust and ambient air pollution. We compared the ability of eight human hepatic microsomal samples to catalyze DNA adduct formation by 3-NBA. Using two enrichment procedures of the (32)P-postlabeling method, nuclease P1 digestion and butanol extraction, we found that all hepatic microsomes were competent to activate 3-NBA. DNA adduct patterns with multiple adducts, qualitatively similar to those found recently in vivo in rats, were observed. Additionally one major DNA adduct generated by human microsomes was detected. The role of specific cytochromes p450 (p450) and NADPH:p450 reductase in the human hepatic microsomal samples in 3-NBA activation was investigated by correlating the p450- and NADPH: p450 reductase-linked catalytic activities in each microsomal sample with the level of DNA adducts formed by the same microsomes. On the basis of this analysis, most of the hepatic microsomal activation of 3-NBA was attributed to NADPH: p450 reductase. Inhibition of DNA adduct formation in human liver microsomes by alpha-lipoic acid, an inhibitor of NADPH: p450 reductase, supported this finding. Using the purified rabbit enzyme and recombinant human NADPH: p450 reductase expressed in Chinese hamster V79 cells, we confirmed the participation of this enzyme in the formation of 3-NBA-derived DNA adducts. Moreover, essentially the same DNA adduct pattern found in microsomes was detected in metabolically competent human lymphoblastoid MCL-5 cells. The role of individual human recombinant p450s 1A1, 1A2, 1B1, 2A6, 2B6, 2D6, 2C9, 2E1, and 3A4 and of NADPH: p450 reductase in the metabolic activation of 3-NBA, catalyzing DNA adduct formation, was also examined using microsomes of baculovirus-transfected insect cells containing the recombinant enzymes (Supersomes). DNA adducts were observed in all Supersomes preparations, essentially similar to those found with human hepatic microsomes and in human cells. Of all of the recombinant human p450s, p450 2B6 and -2D6 were the most efficient to activate 3-NBA, followed by p450 1A1 and -1A2. These results demonstrate for the first time the potential of human NADPH: p450 reductase and recombinant p450s to contribute to the metabolic activation of 3-NBA by nitroreduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号