首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMP) are involved in the pathophysiology of brain injury. We recently showed that knockout mice deficient in MMP-9 expression were protected against traumatic brain injury. However, the cellular sources of MMP activity after trauma remain to be fully defined. In this study, we investigated the hypothesis that resident brain cells secrete MMP after mechanical trauma injury in vitro, and mitogen-activated protein (MAP) kinase signal transduction pathways are involved in this response. Rat primary cortical neurons, astrocytes, and co-cultures were subjected to needle scratch mechanical injury, and levels of MMP-2 and MMP-9 in conditioned media were assayed by zymography. MMP-2 and MMP-9 were increased in cortical astrocytes and co-cultures, whereas only MMP-2 was increased in neurons. Western blots showed that phosphorylated extracellular signal regulated kinase (ERK1/2) and p38 were rapidly upregulated in co-cultures after mechanical injury. No change in phosphorylated c-jun N-terminal kinase (JNK) was observed. In-gel kinase assays confirmed this lack of response in the JNK pathway. Treatment with either 10 microM of U0126 (a MAP kinase/ERK1/2 kinase inhibitor) or 10 microM of SB203580 (a p38 inhibitor) had no detectable effect on MMP-2 and MMP-9 levels after mechanical injury. However, combination treatment with both inhibitors significantly reduced secretion of MMP-9. Herein, we demonstrate that (1) resident brain cells secrete MMP after mechanical injury, (2) astrocytes are the main source of MMP-9 activity, and (3) ERK and p38 MAP kinases are upregulated after mechanical injury, and mediate the secretion of MMP-9.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) cascades are membrane-to-nucleus signaling modules that recently have been implicated as mediators of cellular injury. In this study, we investigated the involvement of the MAP kinase p44/p42 (extracellular signal-regulated kinase [ERK1/2]) in traumatic brain injury (TBI) in rats. There was a strong increase in activated, phosphorylated ERK 1/2 (p-ERK 1/2) protein at 10 min up to 24 h after the injury. Expression of p-ERK occurred in cells identified as neurons, astrocytes, and microglia. Most of the cells expressing p-ERK were TUNEL positive at later time points. Treatment with the MEK inhibitor U0126 or the free radical scavenger S-PBN, both with neuroprotective properties in TBI, attenuated the early activation of ERK and resulted in less activation of caspase-3 and subsequent DNA fragmentation. Post-treatment with U0126 resulted in a significant decrease (-60%) in cortical cavity size and cortical atrophy at 2 weeks after trauma. Overall, the results suggest that ERK activation is initiated by increased oxygen radical activity and that overactivation of ERK sets off secondary cell death mechanisms in TBI. Clinical studies are warranted to evaluate the concept of MEK inhibition in head-injured patients.  相似文献   

3.
ERK/MAPK通路参与肝癌产生多药耐药的胞内信号传导   总被引:1,自引:0,他引:1  
目的探讨微环境诱导肝癌产生多药耐药的胞内信号传导途径。方法分别使HepG2细胞在缺氧、低糖环境下生长或稳定整合HBX基因,运用Western蛋白印迹法检测这些细胞内ERK/MAPK的活性。用ERK/MAPK特异性阻断剂U0126处理这些细胞后,用Western蛋白印迹法检测缺氧诱导因子-1α(HIF—1α)和多药耐药相关蛋白的表达变化,逆转录聚合酶链反应和免疫细胞化学技术分别检测HIF-1α在mRNA水平表达量和部位的改变。结果不同环境下生长的HepG2细胞中,磷酸肜非磷酸化ERK/MAPK比例均有不同程度的增高。用U0126处理12h后,这些细胞中HIF-1α和多药耐药相关蛋白的表达下降,且HIF-1α表达由胞核向胞质转位,其mRNA水平无显著变化。结论ERK/MAPK信号通路是微环境诱导肝癌产生多药耐药的重要胞内信号传导途径。  相似文献   

4.
Traumatic brain injury (TBI) contributes to morbidity in children and boys, and hypotension worsens outcome. Extracellular signal-related kinase (ERK) mitogen-activated protein kinase (MAPK) is upregulated more in males and reduces cerebral blood flow (CBF) after fluid percussion injury (FPI). Increased cerebral perfusion pressure (CPP) via phenylephrine (Phe) sex-dependently improves impairment of the cerebral autoregulation seen after FPI through modulation of ERK MAPK upregulation, which is aggravated in males, but is blocked in females. Activation of ATP- and calcium-sensitive (Katp and Kca) channels produces cerebrovasodilation and contributes to autoregulation, both of which are impaired after FPI. Using piglets equipped with a closed cranial window, we hypothesized that potassium channel functional impairment after FPI is prevented by Phe in a sex-dependent manner through modulation of ERK MAPK upregulation. The Katp and Kca agonists cromakalim and NS 1619 produced vasodilation that was impaired after FPI more in males than in females. Phe prevented reductions in cerebrovasodilation after cromakalim and NS 1619 in females, but reduced dilation after these potassium channel agonists were given to males after FPI. Co-administration of U 0126, an ERK antagonist, and Phe fully restored dilation to cromakalim, calcitonin gene-related peptide (CGRP), and NS 1619, in males after FPI. These data indicate that Phe sex-dependently prevents impairment of Katp and Kca channel-mediated cerebrovasodilation after FPI in females, but aggravates impairment in males, through modulation of ERK MAPK upregulation. Since autoregulation of CBF is dependent on intact functioning of potassium channels, these data suggest a role for sex-dependent mechanisms in the treatment of cerebral autoregulation impairment after pediatric TBI.  相似文献   

5.
Effects of magnesium sulfate on traumatic brain edema in rats   总被引:2,自引:0,他引:2  
svarietyofneuroprotectiveagentshavebeensynthesized .However ,besidessomeagentspresentlybeingevaluatedinclinicaltrails ,mostofthesecompoundshavelimitedclinicalusebecauseofneurotoxicityandbehavioralsideeffects .Recently ,severalstudiesdemonstratedthattraumaticinjurytothebraincausesadecreaseinmagnesiumconcentrationcorrelatedwithinjuryseverity .1Sincethen ,moreandmoreattentionhasbeen paidtoMgSO4 foritsneuroprotectiveeffects .Magnesiumsulfatehasbeenwidelyusedinclinicalpracticeforalmost 10 0 years.…  相似文献   

6.
Effects of magnesium sulfate on traumatic brain edema in ats   总被引:1,自引:0,他引:1  
OBJECTIVE: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism. METHODS: Forty-eight Sprague-Dawley (SD) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na(+), K(+), Ca(2+), Mg(2+) contents were measured. Permeability of blood-brain barrier (BBB) was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied. RESULTS: Water, Na(+), Ca(2+) and EB contents in Treatment group were significantly lower than those in Trauma group (P<0.05). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury. CONCLUSIONS: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.  相似文献   

7.
The mechanisms accounting for the development of tissue damage following traumatic brain injury (TBI) have been studied for several decades. A variety of mediators, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), which play a crucial role in edema formation after TBI, have been identified. We experienced a case of brain edema that progressed continuously at least until 13 days after head injury. The brain edema occurred around the hemorrhage from an intracerebral contusion. The evacuated hematoma was investigated based on the inference that the unexpected expansion of edema was induced by the mediators within the hematoma itself. A 64-year-old woman was admitted to our hospital following a traffic injury. Left brain contusion was revealed by head computed tomography (CT) on admission. Three hours later, formation of an intracerebral hematoma became evident. Serial CT examination revealed that brain edema had developed progressively till 13 days after the injury. A hematoma removal operation was performed on Day 13. The hematoma was centrifuged and the supernatant was analyzed for the expression of VEGF and MMP-9. The values of both (4400 pg/ml and 920 ng/ml, respectively) were extremely high compared with values reported previously in serum and cerebrospinal fluid collected from patients with intracranial infection or injury. This case suggested that the delayed exacerbation of edema following traumatic intracranial hemorrhage was possibly induced by secretory factors such as VEGF and MMP-9 released from within and around the hematoma.  相似文献   

8.
BACKGROUND: Although inflammation and apoptosis are known to play important roles in cisplatin nephrotoxicity, the exact intracellular signaling mechanisms are not well understood. Recent reports that extracellular signal-regulated kinase (ERK1/2) pathway mediates cisplatin-induced caspase activation and apoptosis in cultured renal tubular cells led us to investigate the effect of MAPK/ERK kinase (MEK) inhibitor, an immediate upstream of ERK1/2 in cisplatin-induced acute renal failure (ARF) in mice. METHODS: The effect of MEK/ERK1/2 inhibition on kidney tumor necrosis factor-alpha (TNF-alpha (gene expression, inflammation, the activation of tissue caspases, and apoptosis were examined in addition to its effects on renal function and histology in cisplatin-induced ARF in mice. RESULTS: Pretreatment of MEK inhibitor, U0126, decreased ERK1/2 phosphorylation following cisplatin administration with significant functional and histologic protection. This beneficial effect was accompanied by decrease in TNF-alpha gene expression level and inflammation, as well as in caspase 3 activity and apoptosis. CONCLUSION: These data provide evidence that ERK1/2 pathway functions as an upstream signal for TNF-alpha-mediated inflammation and caspase 3-mediated apoptosis in cisplatin-induced ARF in mice and suggest that ERK1/2 can be a novel therapeutic target in cisplatin nephrotoxicity.  相似文献   

9.
目的探讨miR-155在甲状腺乳头状癌(papillary thyroid carcinoma,PTC)细胞生长、侵袭与转移过程中的作用及可能的作用机制。方法构建人的miR-155类似物并体外转染PTC BCPAP细胞,通过CCK8及transwell试验观察细胞增殖及侵袭能力的变化。miR-155类似物体外转染BCPAP细胞并用Western blot方法检测MAPK通路相关蛋白本底及磷酸化表达。给予ERK通路抑制剂U0126观察能否逆转miR-155过表达造成的甲状腺癌细胞异常增殖及侵袭能力增强。结果过表达miR-15548 h后通过CCK8试验检测发现BCPAP细胞明显增殖,过表达miR-15524h、48 h后通过transwell试验发现甲状腺癌细胞侵袭能力明显增强(P<0.05);利用Western blot检测MAPK信号通路相关蛋白JNK、ERK、P38的表达均明显上调(P<0.05)。同时检测细胞内p-ERK蛋白表达升高(P<0.05),利用ERK通路抑制剂U0126与miR-155共同处理细胞发现p-ERK表达较miR-155组明显降低(P<0.05)。同时,我们检测各组细胞的增殖及侵袭情况,发现U0126能逆转miR-155造成的促增殖及促侵袭作用。结论miR-155能通过激活MAPK通路的ERK通路,进而促进PTC BCPAP细胞的增殖以侵袭能力,为治疗甲状腺癌提供了潜在的靶点。  相似文献   

10.

Purpose

Neuroblastoma tumors are comprised of neuroblastic (N), substrate-adherent (S), and intermediate (I) cells. Because cell growth and differentiation often involve p44/p42 mitogen-activated protein kinase (MAPK) pathway signaling, we explored MAPK signaling and growth response in three NB cell types after MAPK kinase (MEK) inhibition to evaluate the feasibility of MAPK-targeted treatment strategies.

Methods

Three human NB cell cultures, SH-SY5Y (N-type), BE(2)-C (I-type), and SK-N-AS (S-type), were treated in monolayer cultures with increasing concentrations of the MEK inhibitor U0126. MAPK pathway intermediates MEK and ERK, their activated (phosphorylated) forms p-MEK and p-ERK, and p53 expression were assessed by Western blot at 1 and 24 hours. At 72 hours, cell counts determined growth inhibition and DNA fragmentation ELISA assessed apoptosis.

Results

Among all three lines, total ERK and MEK expression were unaffected by U0126. However, constitutive total ERK and p53 expression were significantly greater in BE(2)-C (I-type) cells than in SH-SY5Y (N-type) and SK-N-AS (S-type). Active ERK (p-ERK) levels decreased in dose response to U0126 at 1 and 24 hours in all lines. Conversely, p-MEK levels increased with increasing U0126 concentrations at 1 hour in SH-SY5Y (N-type) and at 24 hours in all lines. BE(2)-C (I-type) cell counts decreased in concentration-dependent fashion with U0126, whereas SH-SY5Y (N-type) and SK-N-AS (S-type) showed a biphasic response with increased cell counts at 1 μmol/L U0126 and slightly decreased cell counts at 10 μmol/L U0126.

Conclusion

This study demonstrates that BE(2)-C (I-type) cells exhibit greater constitutive total ERK and p53 expression than SH-SY5Y (N-type) and SK-N-AS (S-type). Although all three lines exhibit p-ERK decreases with MEK inhibition, only BE(2)-C (I-type) cells significantly decrease their proliferation with U0126 treatment. Although MEK inhibition holds promise in targeting I-type NB cells, successfully treating this heterogeneous tumor may require combining agents against N- and S-type cells.  相似文献   

11.
Traumatic brain injury (TBI) results in the activation of glia and the release of proinflammatory cytokines, including interleukin (IL)-1β. The response of astrocytes to mild TBI has not been well studied. We used an in vitro model of cell stretch to investigate the effects of mild mechanical insult on astrocyte injury (lactate dehydrogenase and propidium iodide), and on mediators of inflammation including IL-1β, the chemokine CX3CL1, and nitrite. Here, we tested the hypothesis that a mild mechanical insult would increase susceptibility of astrocytes to delayed exposure to IL-1β, including enhanced release of the matrix metalloproteinease-9 (MMP-9). We investigated the role of the mitogen protein-activated kinase (MAPK) pathway in these responses. Cells subjected to a mild stretch show an increase in activation of the ERK1/2 and JNK pathways, and an increase in lactate dehydrogenase (LDH), but no change in the levels of inflammatory mediators. An early increase in LDH was dependent on ERK activation. Exposure to IL-1β, or to stretch alone, did not increase MMP-9. In contrast, the combination of mild stretch followed by IL-1β resulted in greater activation of the ERK pathway compared to either stimulus alone, and also resulted in an increase in the production of MMP-9 by astrocytes. Inhibition of the ERK pathway suppressed the increase in MMP-9 induced by the combination of stretch and IL-1β treatment. These results suggest that a primary mild mechanical injury renders astrocytes more susceptible to a secondary exposure to a proinflammatory cytokine such as IL-1β via the activation of the ERK pathway, and suggest a mechanism by which a mild head injury may confer increased susceptibility to neurologic injury caused by a subsequent insult.  相似文献   

12.
13.
BACKGROUND: Cyclosporine A (CsA) has been shown to increase transepithelial resistance in Madin-Darby canine kidney (MDCK) cells, and the mechanism may involve altered phosphorylation of junctional proteins. In this study, we examine the effect of the extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) pathways on the basal transepithelial resistance (TER) and on the CsA-induced increase in TER across MDCK monolayers. Here we present evidence that CsA may be mediating some of its effects through activation of the ERK 1/2 MAPK pathway. METHODS: MDCK cells were treated with CsA (4.2 micromol/L) and paracellular permeability was assessed by measuring TER. The role of the ERK 1/2 and the p38 MAPK pathways in modulating TER was investigated using the inhibitors PD98059 and U0126 for ERK 1/2 and SB203580 for p38. ERK 1/2 and p38 phosphorylation/activation was also examined by Western blot analysis. RESULTS: CsA (4.2 micromol/L) increased the TER of MDCK monolayers. The ERK 1/2 inhibitor PD98059 decreased basal TER and also ameliorated the CsA-induced increase in TER. Similar results were found with the U0126 inhibitor of ERK 1/2. The p38 inhibitor SB203580 had no effect on the basal TER of the monolayers, however, SB203580 significantly augmented the CsA-induced increase in TER. CsA was shown to significantly activate ERK 1/2 and this activation by CsA was prevented by PD98059. Inhibition of the p38 pathway by SB203580 also resulted in activation of ERK 1/2 and this activation of ERK 1/2 was further enhanced by CsA. No effect of CsA or the inhibitors PD98059 or SB203580 on p38 phosphorylation was detected. CONCLUSION: The results presented here suggest that activation of the ERK 1/2 MAPK cascade is important in the regulation of the paracellular permeability in MDCK cells. Activation of this pathway appears to be pivotal to the CsA-induced increase in TER.  相似文献   

14.
Modulation of the glutamatergic and excitotoxic pathway may attenuate secondary damage following traumatic brain injury by reducing presynaptic glutamate release and blocking sodium channels in their inactivated state. The aim of the present study was to investigate the neuroprotective potential of riluzole in traumatic brain-injured rats. A left temporoparietal contusion was induced in 70 male Sprague-Dawley rats (controlled cortical impact injury). Riluzole (8 mg/kg body weight) was given 30 min, and 6, 24, and 30 h after trauma, while control rats received physiological saline. Experiments were performed at two different degrees of trauma severity as defined by penetration depth of the impactor rod (1 vs. 1.5 mm) with the aim of investigating impact of severity of tissue damage on the neuroprotective potential of riluzole. At 48 h after trauma, brains were removed to determine hemispheric swelling and water content and to assess cortical contusion volume. Before brain removal cisternal cerebrospinal fluid (CSF) was collected in all rats to determine the effects of riluzole on substances associated with edema formation. For this, the excitatory transmitter glutamate, the volume-regulatory amino acid taurine, and the ATP-degradation product hypoxanthine were analyzed by high-performance liquid chromatography. Overall, the degree of tissue damage seems to influence the neuroprotective potential of riluzole. In rats with a less severe trauma (1-mm penetration depth), hemispheric swelling, cerebral water content of the traumatized hemisphere and cortical contusion volume were significantly reduced under riluzole compared to controls (p < 0.05). In rats with a more severe trauma (1.5-mm penetration depth), the neuroprotective effect of riluzole failed to reach statistical significance. Following trauma, CSF glutamate, taurine, and hypoxanthine levels were significantly increased compared to nontraumatized rats (p < 0.001). However, these neurochemical parameters as measured in cisternal CSF failed to reflect trauma-dependent increases in severity of tissue damage and did not reveal riluzole-mediated neuroprotection. Under the present study design, riluzole significantly reduced brain edema formation and contusion volume in rats subjected to a mild focal cortical contusion.  相似文献   

15.
It was previously shown that cyclosporine A (CsA) increases transepithelial resistance in MDCK cells. Activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) cascade seems to be pivotal to the CsA-induced increase in transepithelial electrical resistance (TER). This study examined the role played by TGF-beta in mediating the CsA-induced activation of ERK1/2 and the resulting increase in TER in MDCK cells. Paracellular permeability across MDCK monolayers after various treatments was assessed by measurement of TER. TGF-beta secretion was measured by Western blot and ELISA. Activation of the ERK1/2 pathway and tight junction protein expression were also assessed by Western blot analysis. CsA increased production and secretion of TGF-beta and expression of the TGF-beta receptor II. Exogenous addition of TGF-beta1 activated ERK1/2 and increased TER across MDCK monolayers, both of which were attenuated by the MEK inhibitor U0126. Neutralizing antibodies against TGF-beta1 and the TGF-beta receptor II significantly reduced the CsA-induced increase in TER. Both CsA and TGF-beta1 increased expression of tight junction proteins claudin-1 and zonula occludens 2. Inhibition of the p38 MAPK pathway also attenuated the TGF-beta1-induced increase in TER. The results presented here suggest that the CsA-induced modulation of paracellular permeability may be mediated, at least in part, by an increase in TGF-beta production.  相似文献   

16.
17.
In this study, we examined the effects of magnesium sulfate administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. Seventy-one adult male Sprague-Dawley rats were anesthetized, and experimental closed head trauma was induced by allowing a 450-g weight to fall from a 2-m height onto a metallic disk fixed to the intact skull. Sixty-eight surviving rats were randomly assigned to receive an intraperitoneal bolus of either 750 micromol/kg magnesium sulfate (group 4; n = 30) or 1 mL of saline (group 2; n = 30) 30 minutes after induction of traumatic brain injury; 39 nontraumatized animals received saline (group 1; n = 21) or magnesium sulfate (group 3; n = 18) with an identical protocol of administration. Brain water content and brain tissue specific gravity, as indicators of brain edema, were measured 24 hours after traumatic brain injury. Blood-brain barrier integrity was evaluated quantitatively 24 hours after injury by spectrophotometric assay of Evans blue dye extravasations. In the magnesium-treated injured group, brain water content was significantly reduced (left hemisphere: group 2, 83.2 +/- 0.8; group 4, 78.4 +/- 0.7 [P <.05]; right hemisphere: group 2, 83.1 +/- 0.7; group 4, 78.4 +/- 0.5. [P <.05]) and brain tissue specific gravity was significantly increased (left hemisphere: group 2, 1.0391 +/- 0.0008; group 4, 1.0437 +/- 0.001 [P <.05]; right hemisphere, group 2, 1.0384 +/- 0.001; group 4, 1.0442 +/- 0.005 [P <.05]) compared with the saline-treated injured group. Evans blue dye content in the brain tissue was significantly decreased in the magnesium-treated injured group (left hemisphere: group 2, 0.0204 +/- 0.03; group 4, 0.0013 +/- 0.0002 [P <.05]; right hemisphere: group 2, 0.0064 +/- 0.0009; group 4, 0.0013 +/- 0.0003 [P <.05]) compared with the saline-treated injured group. The findings of the present study support that beneficial effects of magnesium sulfate exist after severe traumatic brain injury in rats. These results also indicate that a blood-brain barrier permeability defect occurs after this model of diffuse traumatic brain injury, and magnesium seems to attenuate this defect.  相似文献   

18.
目的探讨细胞外信号调节激酶(ERK)通路在儿童肾病综合征糖皮质激素耐药中的作用机制。方法①收集儿童肾病综合征激素耐药和激素敏感患儿外周血单个核细胞(PBMCs),Western-blot印迹法检测磷酸化ERK水平,激光共聚焦显微镜观察糖皮质激素受体GRa核转位情况,计算核浆比;②体外观察ERK抑制剂U0126对激素耐药患儿PBMCs GRa核转位的影响;③超抗原金黄色葡萄球菌肠毒素B型(SEB)体外诱导糖皮质激素抵抗模型中ERK活化时程;④观察ERK抑制剂U0126逆转超抗原SEB诱导的糖皮质激素抵抗作用;⑤观察ERK抑制剂U0126对激素抵抗细胞模型GRa核转位的影响。结果①激素耐药患儿PBMCs存在显著的ERK磷酸化以及糖皮质激素受体GRa核转位障碍;②ERK抑制剂U0126可以逆转激素耐药患儿PBMCs糖皮质激素受体GRa核转位障碍;③超抗原SEB体外诱导可以导致糖皮质激素抵抗发生,ERK抑制剂U0126后可解除SEB诱导的激素抵抗;④SEB作用1min后即出现p-ERK1/2,在24h仍维持在高水平表达。结论激素耐药患儿PBMCs存在显著的ERK活化,体外超抗原SEB刺激PBMCs后出现糖皮质激素抵抗,其作用机制显著持续的ERK活化,ERK抑制剂可逆转激素耐药患儿PBMCs及体外超抗原SEB诱导的糖皮质激素抵抗发生。  相似文献   

19.
Traumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Endothelin-1 (ET-1) contributes to impaired autoregulation via oxygen (O??) after TBI in piglets, but its relative role in males compared with females has not been previously investigated. Increased cerebral perfusion pressure (CPP) via phenylephrine (Phe) sex dependently improves impairment of autoregulation after TBI through modulation of extracellular signal-related kinase (ERK) mitogen-activated protein kinase (MAPK) upregulation, aggravated in males, but blocked in females. Activation of adenosine-5'-triphosphate (ATP) and Ca sensitive K channels produce vasodilation, contributing to autoregulation. We hypothesized that ET-1 upregulation is greater in males after TBI and that disturbed autoregulation will be prevented by Phe in a sex-dependent manner through modulation of ET-1, O??, and ERK. Results show that ET-1 release was greater in males after fluid percussion injury (FPI), blunted by Phe in females, but aggravated in males. K channel vasodilation was impaired more in males than in females after TBI. Phe prevented reductions in K channel vasodilation in females, but further reduced dilation in males after TBI. Co-administration of BQ-123, U0126, or PEG-SOD (ET-1, ERK antagonist, and O?? scavenger) with Phe restored dilation to K agonists and hypotension in males after TBI. ERK upregulation was blocked by BQ-123 and PEG-SOD. These data indicate that TBI upregulates ET-1 more in males than in females. Elevation of CPP with Phe sex dependently prevents impairment of cerebral autoregulation after TBI through modulation of ET-1, O??, and ERK mediated impairment of K channel vasodilation. These observations advocate for the consideration of development of sex-based therapies for the treatment of hemodynamic sequelae of pediatric TBI.  相似文献   

20.
Evidence was recently provided for the activation of extracellular signal-regulated kinase (ERK), the best characterized mitogen-activated protein kinase, as an intracellular convergence point for mitogenic stimuli in animal models of glomerulonephritis (GN). In this study, in vivo ERK activity was blocked, with a pharmacologic inhibitor (U0126) of the ERK-activating kinase, in rats with mesangioproliferative GN. After injection of the monoclonal anti-Thy1.1 antibody (OX-7), the rats were treated (days 3 to 6) with low (10 mg/kg body wt) or high (100 mg/kg body wt) doses of U0126 administered intraperitoneally twice daily. On day 6 after induction of the disease, whole cortical tissue and isolated glomeruli were examined by using kinase activity assays, Western blot analyses, and immunohistochemical assays. Treatment with U0126 significantly reduced glomerular stimulation of ERK in anti-Thy1 GN. In the high dose-treated group, this downregulation was accompanied by a reduction in the number of glomerular mitotic figures, back to healthy control levels, and significant decreases in the numbers of total (P < 0.05) and 5-bromo-2'-deoxyuridine-positive (P < 0.05) glomerular cells. Immunohistochemical double-staining of renal sections demonstrated that mesangial cells were the major glomerular targets of U0126 in anti-Thy1 GN. These observations point to ERK as a putative intracellular mediator of the proliferative response in GN and suggest that pharmacologic treatments that interfere with the activation of ERK may be of potential therapeutic interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号