首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently showed that phosphoinositide-3-kinase-gamma-deficient (PI3Kgamma-/-) mice have increased cardiac contractility without changes in heart size compared with control mice (ie, PI3Kgamma+/+ or PI3Kgamma+/-). In this study, we show that PI3Kgamma-/- cardiomyocytes have elevated Ca2+ transient amplitudes with abbreviated decay kinetics compared with control under field-stimulation and voltage-clamp conditions. When Ca2+ transients were eliminated with high Ca2+ buffering, L-type Ca2+ currents (I(Ca,L)), K+ currents, and action potential duration (APD) were not different between the groups, whereas, in the presence of Ca2+ transients, Ca2+-dependent phase of I(Ca,L) inactivation was abbreviated and APD at 90% repolarization was prolonged in PI3Kgamma-/- mice. Excitation-contraction coupling (ECC) gain, sarcoplasmic reticulum (SR) Ca2+ load, and SR Ca(2+) release fluxes measured as Ca2+ spikes, were also increased in PI3Kgamma-/- cardiomyocytes without detectable changes in Ca2+ spikes kinetics. The cAMP inhibitor Rp-cAMP eliminated enhanced ECC and SR Ca2+ load in PI3Kgamma-/- without effects in control myocytes. On the other hand, the beta-adrenergic receptor agonist isoproterenol increased I(Ca,L) and Ca2+ transient equally by approximately 2-fold in both PI3Kgamma-/- and PI3Kgamma+/- cardiomyocytes. Our results establish that PI3Kgamma reduces cardiac contractility in a highly compartmentalized manner by inhibiting cAMP-mediated SR Ca2+ loading without directly affecting other major modulators of ECC, such as AP and I(Ca,L).  相似文献   

2.
3.
Parasympathetic stimulation of the heart acts through M(2)-muscarinic acetylcholine receptors to regulate ion channel activity and subsequent inotropic status. Although muscarinic signal transduction is mediated via pertussis toxin-sensitive G proteins Galpha(i/o), the specific signal transduction requirements of Galpha(i2) and Galpha(i3) in mediating muscarinic regulated L-type calcium currents (I(Ca, L)), intracellular calcium, and cell contractility remain to be determined. Adult ventricular myocytes were isolated from Galpha(i2)-null mice, Galpha(i3)-null mice, and their wild-type littermates. Cell shortening, intracellular calcium levels, and I(Ca, L) were all measured in response to isoproterenol, a beta-adrenergic receptor agonist, and carbachol, a cholinergic receptor agonist. With isoproterenol stimulation, myocytes from all groups demonstrated a marked increase in calcium currents, correlating with augmented intracellular calcium transient amplitude and cell shortening. Carbachol significantly attenuated the isoproterenol response in wild-type and Galpha(i3)-null cells but had no effect in Galpha(i2)-null cells. This study demonstrates that Galpha(i2), but not Galpha(i3), is required for muscarinic inhibition of the beta-adrenergic response in adult murine ventricular myocytes.  相似文献   

4.
M C Gershengorn  C Thaw 《Endocrinology》1983,113(4):1522-1524
TRH stimulation of prolactin secretion is thought to be mediated by an elevation of free cytoplasmic Ca2+. However, whether TRH-induced influx of extracellular Ca2+ is required to elevate cytoplasmic Ca2+ remains controversial. We measured cytoplasmic free Ca2+ concentration in GH3 cells with an intracellularly trapped fluorescent indicator, Quin 2. In unstimulated cells incubated in medium containing 1.5 mM Ca2+, cytoplasmic free Ca2+ concentration was 118 +/- 18 nM (mean +/- SD). TRH (1 microM) caused a rapid transient elevation of free cytoplasmic Ca2+ to a level estimated to be at least 500 nM. High extracellular K+, which induces extracellular Ca2+ influx, caused an elevation of free cytoplasmic Ca2+ which was greater and longer in duration that that caused by TRH. When cells were incubated in medium containing 3 mM EGTA, the K+ depolarization-induced increase in free cytoplasmic Ca2+ was abolished. By contrast, the TRH-induced increase was not affected by incubating cells in medium with 3 mM EGTA, or high K+, or both; incubation of cells in medium with EGTA and high K+ abolishes the electrochemical driving force for Ca2+ influx. These data demonstrate that Ca2+ influx is not required for TRH-induced elevation of free cytoplasmic Ca2+ in GH3 cells. We conclude that in GH3 cells TRH induces an elevation of free cytoplasmic Ca2+ leading to stimulated prolactin secretion by mobilizing cellular Ca2+.  相似文献   

5.
The requirement for TRPV6 for vitamin D-dependent intestinal calcium absorption in vivo has been examined by using vitamin D-deficient TRPV6 null mice and littermate wild-type mice. Each of the vitamin D-deficient animals received each day for 4 days 50 ng of 1,25-dihydroyvitamin D3 in 0.1 ml of 95% propylene glycol:5% ethanol vehicle or vehicle only. Both the wild-type and TRPV6 null mice responded equally well to 1,25-dihydroxyvitamin D3 in increasing intestinal calcium absorption. These results, along with our microarray data, demonstrate that TRPV6 is not required for vitamin D-induced intestinal calcium absorption and may not carry out a significant role in this process. These and previous results using calbindin D9k null mutant mice illustrate that molecular events in the intestinal calcium absorption process in response to the active form of vitamin D remain to be defined.  相似文献   

6.
The platelet release reaction plays a critical role in thrombosis and contributes to the events that follow hemostasis. Previous studies have shown that platelet secretion is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins from granule and plasma membranes. The SNAREs form transmembrane complexes that mediate membrane fusion and granule cargo release. Although VAMP-8 (v-SNARE) and SNAP-23 (a t-SNARE class) are important for platelet secretion, the identity of the functional syntaxin (another t-SNARE class) has been controversial. Previous studies using anti-syntaxin Abs in permeabilized platelets have suggested roles for both syntaxin-2 and syntaxin-4. In the present study, we tested these conclusions using platelets from syntaxin-knockout mouse strains and from a Familial Hemophagocytic Lymphohistiocytosis type 4 (FHL4) patient. Platelets from syntaxin-2 and syntaxin-4 single- or double-knockout mice had no secretion defect. Platelets from a FHL4 patient deficient in syntaxin-11 had a robust defect in agonist-induced secretion although their morphology, activation, and cargo levels appeared normal. Semiquantitative Western blotting showed that syntaxin-11 is the more abundant syntaxin in both human and murine platelets. Coimmunoprecipitation experiments showed that syntaxin-11 can form SNARE complexes with both VAMP-8 and SNAP-23. The results of the present study indicate that syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet exocytosis.  相似文献   

7.
This study was undertaken to test the hypothesis that a compensatory response of the heart to a chronic and continuous, metabolic and heart rate overload was an increase in the calcium sequestering activity of the myocardial sarcoplasmic reticulum. Calcium sequestering activity was estimated by determination of the calcium-dependent ATPase (Ca2+-ATPase) activity of isolated microsomes. Chronic rate overload was modelled by comparing: dysthyroid and control rats; control swine and swine with implanted cardiac pacemakers set at 180 beats/min; and different species of mammals with widely different heart rates. The myocardial sarcoplasmic reticulum Ca2+-ATPase pump activity was significantly increased by 39% for hyperthyroid rats compared to control rats and by 87% for control rats compared to thyroidectomized rats; by 63% for paced swine compared to control swine; and by 43% for rats compared to guinea pigs, by 140% for guinea pigs compared to dogs and by 120% for dogs compared to cows. These data indicate that calcium sequestering activity of myocardial sarcoplasmic reticulum increases in equivalent proportion to the chronotropic demand and that heart rate is a hemodynamic correlate of the sarcoplasmic reticulum Ca2+-ATPase activity.  相似文献   

8.
Insulin stimulation drives the formation of a complex between tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1) and 1-phosphatidylinositol 3-kinase (PI 3-kinase; ATP:1-phosphatidyl-1D-myo-inositol 3-phosphotransferase, EC 2.7.1.137), a heterodimer consisting of regulatory 85-kDa (p85) and catalytic 110-kDa (p110) subunits. This interaction takes place via the phosphorylated YMXM motifs of IRS-1 and the Src homology region 2 (SH2) domains of p85. In this study, the stable overexpression in a Chinese hamster ovary (CHO) cell line of a mutant p85 alpha (delta p85) protein, which lacks a binding site for p110, disrupted the complex formation between IRS-1 and the catalytic subunit of PI 3-kinase in intact cells during insulin stimulation. Activation of insulin receptor kinase and the tyrosine phosphorylation of IRS-1 remained unaffected. In this cell line, both insulin-stimulated accumulation of phosphatidylinositol 3,4,5-trisphosphate and the insulin-stimulated glucose uptake due to the translocation of GLUT1 glucose transporters were markedly impaired, whereas neither phorbol 12-myristate 13-acetate-stimulated glucose uptake nor the insulin-stimulated activation of RAS was impaired. These results suggest that PI 3-kinase is required for glucose transport in insulin signaling in CHO cells.  相似文献   

9.
10.
11.
Bacteriophage T7 gene 4 protein, purified from phage-infected cells, consists of a mixture of 56- and 63-kDa species that provides helicase and primase activities required for T7 DNA replication. The 56-kDa species has been purified independently of the colinear 63-kDa species. Like a mixture of the two proteins, the 56-kDa protein binds single-stranded DNA in the presence of dTTP, catalyzes DNA-dependent hydrolysis of dTTP, and has helicase activity. In contrast to the mixture, the 56-kDa protein cannot catalyze template-dependent RNA primer synthesis. In the absence of a DNA template, both the 56-kDa protein and the mixture of the two species synthesize low levels of diribonucleotide. A putative "zinc finger" present near the amino terminus of the 63-kDa protein but absent from the 56-kDa protein may play a major role in the recognition of primase sites in the template.  相似文献   

12.
Mutations affecting the seemingly unrelated gene products, SepN1, a selenoprotein of unknown function, and RyR1, the major component of the ryanodine receptor intracellular calcium release channel, result in an overlapping spectrum of congenital myopathies. To identify the immediate developmental and molecular roles of SepN and RyR in vivo, loss-of-function effects were analyzed in the zebrafish embryo. These studies demonstrate the two proteins are required for the same cellular differentiation events and are needed for normal calcium fluxes in the embryo. SepN is physically associated with RyRs and functions as a modifier of the RyR channel. In the absence of SepN, ryanodine receptors from zebrafish embryos or human diseased muscle have altered biochemical properties and have lost their normal sensitivity to redox conditions, which likely accounts for why mutations affecting either factor lead to similar diseases.  相似文献   

13.
The inactivation of glycogen synthase kinase-3beta (GSK-3beta) is proposed as the event integrating protective pathways initiated by preconditioning and other interventions. The inactivation of GSK-3 is thought to decrease the probability of opening of the mitochondrial permeability transition pore. The aim of this study was to verify the role of GSK-3 using a targeted mouse line lacking the critical N-terminal serine within GSK-3beta (Ser9) and the highly homologous GSK-3alpha (Ser21), which when phosphorylated results in kinase inactivation. Postconditioning with 10 cycles of 5 seconds of reperfusion/5 seconds of ischemia and preconditioning with 6 cycles of 4 minutes of ischemia/6 minutes of reperfusion, similarly reduced infarction of the isolated perfused mouse heart in response to 30 minutes of global ischemia and 120 minutes of reperfusion. Preconditioning caused noticeable inactivating phosphorylation of GSK-3. However, both preconditioning and postconditioning still protected hearts of homozygous GSK-3 double knockin mice. Moreover, direct pharmacological inhibition of GSK-3 catalytic activity with structurally diverse inhibitors before or after ischemia failed to recapitulate conditioning protection. Nonetheless, cyclosporin A, a direct mitochondrial permeability transition pore inhibitor, reduced infarction in hearts from both wild-type and homozygous GSK-3 double knockin mice. Furthermore, in adult cardiac myocytes from GSK-3 double knockin mice, insulin exposure was still as effective as cyclosporin A in delaying mitochondrial permeability transition pore opening. Our results, which include a novel genetic approach, suggest that the inhibition of GSK-3 is unlikely to be the key determinant of cardioprotective signaling in either preconditioning or postconditioning in the mouse.  相似文献   

14.
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H+-ATPase (V-ATPase) and the vacuolar H+-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H+-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H+-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.  相似文献   

15.
Summary The small guanosine 5-triphosphate (GTP)ase Rab4 has been suggested to play a role in insulin-induced GLUT4 translocation. Under insulin stimulation, GLUT4 translocates to the plasma membranes, while Rab4 leaves the GLUT4-containing vesicles and becomes cytosolic. Rab proteins cycle between a GTP-bound active form and a guanosine 5-diphosphate (GDP)-bound inactive form. The intrinsic GTPase activity of Rab proteins is low and the interconversion between the two forms is dependent on accessory factors. In the present work, we searched for a GTPase activating protein (GAP) for Rab4 in 3T3-L1 adipocytes. We used a glutathione-S-transferase (GST)-Rab4 protein which possesses the properties of a small GTPase (ability to bind GDP and GTP and to hydrolyse GTP) and can be isolated in a rapid and efficient way. This GAP activity was observed in 3T3-L1 adipocyte lysates, and was able to accelerate the hydrolysis of the [-32P]GTP bound to GST-Rab4 into [-32P]GDP. This activity, tentatively called Rab4-GAP, was also present in 3T3-L1 fibroblasts. The Rab4-GAP activity was present in total membrane fractions and nearly undetectable in cytosol. Following subcellular fractionation, Rab4-GAP was found to be enriched in plasma membranes when compared to internal microsomes. Insulin treatment of the cells had no effect on the total Rab4-GAP activity or on its subcellular localization. Taking our results together with the accepted model of Rab cycling in intracellular traffic, we propose that Rab4-GAP activity plays a role in the cycling between the GTP- and GDP-bound forms of Rab4, and thus possibly in the traffic of GLUT4-containing vesicles.Abbreviations GAP GTPase activating protein - GDI guanosine dissociation inhibitor - GDS guanosine dissociation stimulator - GDF GDI dissociation factor - GEF GDP exchange factor - GST glutathione-S-transferase - p44mapk MAP-kinase isoform with an Mr 44000 - PM plasma membranes - HLDM high and low density microsomes - DMEM Dulbecco's modified Eagle's medium - BSA bovine serum albumin - PVDF polyvinylidene difluoride - KLH Keyhole limpet haemocyanin - CHAPS 3-[(3-cholamidopropyl)dimethylammonic]-1-propane sulphonate - AS subunit of Gi1,2  相似文献   

16.
The Escherichia coli Rep protein is a 3' to 5' SF1 DNA helicase required for replication of bacteriophage phiX174 in E. coli, and is structurally homologous to the E. coli UvrD helicase and the Bacillus stearothermophilus PcrA helicase. Previous crystallographic studies of Rep protein bound to single-stranded DNA revealed that it can undergo a large conformational change consisting of an approximately 130 degrees rotation of its 2B subdomain about a hinge region connected to the 2A subdomain. Based on crystallographic studies of PcrA, its 2B subdomain has been proposed to form part of its duplex DNA binding site and to play a role in duplex destabilization. To test the role of the 2B subdomain in Rep-catalyzed duplex DNA unwinding, we have deleted its 2B subdomain, replacing it with three glycines, to form the RepDelta2B protein. This RepDelta2B protein can support phiX174 replication in a rep(-) E. coli strain, although the growth rate of E. coli containing the repDelta2B gene is approximately 1.5-fold slower than with the wild-type rep gene. Pre-steady-state, single-turnover DNA unwinding kinetics experiments show that purified RepDelta2B protein has DNA helicase activity in vitro and unwinds an 18-bp DNA duplex with rates at least as fast as wild-type Rep, and with higher extents of unwinding and higher affinity for the DNA substrate. These studies show that the 2B domain of Rep is not required for DNA helicase activity in vivo or in vitro, and that it does not facilitate DNA unwinding in vitro.  相似文献   

17.
18.
The alpha-fetoprotein gene (Afp) is a member of a multigenic family that comprises the related genes encoding albumin, alpha-albumin, and vitamin D binding protein. The biological role of this major embryonic serum protein is unknown although numerous speculations have been made. We have used gene targeting to show that AFP is not required for embryonic development. AFP null embryos develop normally, and individually transplanted homozygous embryos can develop in an AFP-deficient microenvironment. Whereas mutant homozygous adult males are viable and fertile, AFP null females are infertile. Our analyses of these mice indicate that the defect is caused by a dysfunction of the hypothalamic/pituitary system, leading to anovulation.  相似文献   

19.
OBJECTIVE: To determine the role of the endothelial cell adhesion molecules E- and P-selectin in the development and severity of adjuvant-induced arthritis (AIA) in the rat. METHODS: Lewis rats were immunized subcutaneously with Mycobacterium butyricum (Mb), and blocking monoclonal antibodies (mAb) to rat E- and P-selectin were administered. Clinical score, radiolabeled (51Cr and 111In) blood polymorphonuclear leukocyte (PMN) and monocyte migration to joints, and histologic features were monitored. RESULTS: When mAb treatment was started on day 5 postimmunization with Mb (preclinical stage), development of AIA was significantly (P < 0.01) inhibited by mAb to E- but not to P-selectin (mean score on day 14 control 10.2, anti-E 2.8, anti-P 9.1). This was associated with markedly decreased migration (by 66-94%) of PMN and monocytes to arthritic joints and diminished cartilage degradation. When treatment was delayed until animals showed signs of arthritis (day 10 postimmunization), only a marginal and variable effect was observed as compared with blockade during the preclinical (day 5) stage. E-selectin blockade on day 5 and day 7 postimmunization resulted in inhibition of antigen-dependent T cell-mediated inflammation, since it decreased T cell migration to sites of dermal-delayed hypersensitivity induced by Mb without affecting migration to concanavalin A or cytokines. The proliferative response of T cells to Mb in vitro was not altered. CONCLUSION: E-selectin plays an important role early in the development of AIA. This adhesion molecule may contribute to the migration of antigen-reactive T cells to peripheral tissues, including the joints where T cells initiate the arthritis.  相似文献   

20.
Lan Z  Wu H  Li W  Wu S  Lu L  Xu M  Dai W 《Blood》2000,95(2):633-638
Protein tyrosine phosphorylation is an integral part of cytokine-induced proliferation and differentiation of hematopoietic cells. The authors previously reported cloning and characterization of the receptor tyrosine kinase Tif, also termed Tyro3. Using the yeast 2-hybrid technology, they recently identified that the p85 subunit of phosphatidylinositol 3-kinase (PI3 kinase) interacted with the cytoplasmic domain of Tyro3. On treatment with epidermal growth factor (EGF), NIH3T3 cells expressed EGFR/Tyro3 (a fusion receptor with the extracellular domain from epidermal growth factor receptor and the transmembrane and cytoplasmic domains from Tyro3), and EGFR/Tyro3 was rapidly phosphorylated on tyrosine residues. The interaction between Tyro3 and p85 was also confirmed by glutathione S-transferase (GST) pull-down experiments. Co-immunoprecipitation followed by Western blot analysis revealed that PI3 kinase was associated with and phosphorylated by the activated Tyro3. Tyro3-associated PI3 kinase exhibited an enhanced kinase activity. In addition, EGF treatment of EGFR/Tyro3-expressing cells led to enhanced phosphorylation of Akt, a downstream component of PI3 kinase. Treatment of NIH3T3 cells expressing a full length of rat Tyro-3, but not NIH3T3 cells, with protein S also resulted in phosphorylation of Akt. Soft agar colony assays showed that the addition of EGF to EGFR/Tyro3-transfected cells, but not to the parental NIH3T3 cells, resulted in a concentration-dependent increase in the formation of anchorage-independent colonies. Tyro3-mediated transformation of NIH3T3 cells was significantly blocked by wortmannin, a PI3 kinase-specific inhibitor. Results of these combined studies strongly suggested that the oncogenic transforming ability of Tyro3 was mediated at least in part by the PI3 kinase pathway. (Blood. 2000;95:633-638)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号