首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An independent verification of the leaf trajectories during each treatment fraction improves the safety of IMRT delivery. In order to verify dynamic IMRT with an electronic portal imaging device (EPID), the EPID response should be accurate and fast such that the effect of motion blurring on the detected moving field edge position is limited. In the past, it was shown that the errors in the detected position of a moving field edge determined by a scanning liquid-filled ionization chamber (SLIC) EPID are negligible in clinical practice. Furthermore, a method for leaf trajectory verification during dynamic IMRT was successfully applied using such an EPID. EPIDs based on amorphous silicon (a-Si) arrays are now widely available. Such a-Si flat panel imagers (FPIs) produce portal images with superior image quality compared to other portal imaging systems, but they have not yet been used for leaf trajectory verification during dynamic IMRT. The aim of this study is to quantify the effect of motion distortion and motion blurring on the detection accuracy of a moving field edge for an Elekta iViewGT a-Si FPI and to investigate its applicability for the leaf trajectory verification during dynamic IMRT. We found that the detection error for a moving field edge to be smaller than 0.025 cm at a speed of 0.8 cm/s. Hence, the effect of motion blurring on the detection accuracy of a moving field edge is negligible in clinical practice. Furthermore, the a-Si FPI was successfully applied for the verification of dynamic IMRT. The verification method revealed a delay in the control system of the experimental DMLC that was also found using a SLIC EPID, resulting in leaf positional errors of 0.7 cm at a leaf speed of 0.8 cm/s.  相似文献   

2.
3.
Greer PB  Popescu CC 《Medical physics》2003,30(7):1618-1627
Dosimetric properties of an amorphous silicon electronic portal imaging device (EPID) for verification of dynamic intensity modulated radiation therapy (IMRT) delivery were investigated. The EPID was utilized with continuous frame-averaging during the beam delivery. Properties studied included effect of buildup, dose linearity, field size response, sampling of rapid multileaf collimator (MLC) leaf speeds, response to dose-rate fluctuations, memory effect, and reproducibility. The dependence of response on EPID calibration and a dead time in image frame acquisition occurring every 64 frames were measured. EPID measurements were also compared to ion chamber and film for open and wedged static fields and IMRT fields. The EPID was linear with dose and dose rate, and response to MLC leaf speeds up to 2.5 cm s(-1) was found to be linear. A field size dependent response of up to 5% relative to dmax ion-chamber measurement was found. Reproducibility was within 0.8% (1 standard deviation) for an IMRT delivery recorded at intervals over a period of one month. The dead time in frame acquisition resulted in errors in the EPID that increased with leaf speed and were over 20% for a 1 cm leaf gap moving at 1.0 cm s(-1). The EPID measurements were also found to depend on the input beam profile utilized for EPID flood-field calibration. The EPID shows promise as a device for verification of IMRT, the major limitation currently being due to dead-time in frame acquisition.  相似文献   

4.
Greer PB 《Medical physics》2005,32(12):3558-3568
The aim of this work is to determine the pixel sensitivity variation and off-axis dose response of an amorphous silicon electronic portal imaging device (EPID), and develop a correction method to improve EPID dosimetry. The uncorrected or raw pixel response of the aS500 amorphous silicon EPID shows differences in response (sensitivity) of individual pixels as well as a large off-axis differential response with respect to an ion chamber in water. Both can be corrected by division of raw images by the flood-field (FF) image. However, this leads to two problems for dosimetry: (1) the beam profile is present in both the raw image and FF image, and hence is "washed out" of the corrected image, and (2) any mismatch of EPID position between dosimetry and FF calibration means that the beam profile and off-axis response in the raw image and FF are misaligned. This causes artifacts in FF division and dosimetric errors. A method was developed to measure the off-axis response and pixel sensitivity variation separately to allow correction of images at any EPID position while retaining beam profile information. The pixel sensitivity variation is applied to the imager plane and is independent of imager position. The off-axis response depends on the imager plane position relative to the beam central axis. The pixel sensitivities were derived from multiple images of the same symmetric field acquired with the detector displaced laterally between each image. The off-axis response was measured by acquiring off-axis raw images (FF correction removed) and dividing out the off-axis beam fluence and previously determined pixel sensitivity differences. The dosimetric errors due to lateral and vertical detector displacement with the conventional FF calibration method were measured and compared to the new method. Corrected EPID profiles were then compared to beam profiles measured with ion chamber in water for open fields. The EPID was found to have a large off-axis differential response with respect to an ion chamber in water, particularly for 6 MV. This increased to 13% at 15 cm off-axis for 6 MV, and 3.5% for 18 MV at the isocenter plane. The dosimetric errors introduced by detector displacement with conventional FF calibration were found to be approximately 1% per centimeter of lateral detector displacement and 0.1% per centimeter of vertical displacement. These were reduced to less than 1% for any position with the new correction method. Corrected EPID images agreed with ion-chamber measurements to within 2% (excluding penumbra and low-dose areas outside the field) for various field sizes. The new correction method gives consistent dosimetry for any EPID position and retains beam profile information in the image.  相似文献   

5.
6.
Using an amorphous silicon (a-Si) EPID for transit dosimetry requires detailed characterization of its dosimetric response in a variety of conditions. In this study, a measurement-based model was developed to calibrate an a-Si EPID response to dose for transit dosimetry by comparison with a reference ionization chamber. The ionization chamber reference depth and the required additional buildup thickness for electronic portal imaging devices (EPID) transit dosimetry were determined. The combined effects of changes in radiation field size, phantom thickness, and the off-axis distance on EPID transit dosimetry were characterized. The effect of scattered radiation on out-of-field response was investigated for different field sizes and phantom thicknesses by evaluation of the differences in image profiles and in-water measured profiles. An algorithm was developed to automatically apply these corrections to EPID images based on the user-specified field size and phantom thickness. The average phantom thickness and an effective field size were used for IMRT fields, and images were acquired in cine mode in the presence of an anthropomorphic phantom. The effective field size was defined as the percentage of the jaw-defined field that was involved during the delivery. Nine head and neck dynamic IMRT fields were tested by comparison with a MatriXX two-dimensional array dosimeter using the Gamma (3 %, 3 mm) evaluation. A depth of 1.5 cm was selected as the ionization chamber reference depth. An additional 2.2 mm of copper buildup was added to the EPID. Comparison of EPID and MatriXX dose images for the tested fields showed that using a 10 % threshold, the average number of points with Gamma index <1 was 96.5 %. The agreement in the out-of field area was shown by selection of a 2 % threshold which on average resulted in 94.8 % of points with a Gamma index <1. The suggested method is less complicated than previously reported techniques and can be used for all a-Si EPIDs regardless of the manufacturer.  相似文献   

7.
In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.  相似文献   

8.
The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images were acquired for each segment. A previously developed in-house back-projection algorithm was used to reconstruct the dose distribution in the phantom mid-plane (intersecting the isocenter). Segment dose images were summed to obtain an EPID mid-plane dose image for each field. Fields were compared using profiles and in two dimensions with the y evaluation (criteria: 3%/3 mm). To quantify results, the average gamma (gamma avg), maximum gamma (gamma max), and the percentage of points with gamma < 1(P gamma < 1) were calculated within the 20% isodose line of each field. For 10 patient plans, all fields were measured with EPID and film at gantry set to 0 degrees. The film was located in the phantom coronal mid-plane (10 cm depth), and compared with the back-projected EPID mid-plane absolute dose. EPID and film measurements agreed well for all 50 fields, with (gamma avg) =0.16, (gamma max)=1.00, and (P gamma < 1)= 100%. Based on these results, film measurements were discontinued for verification of prostate IMRT plans. For 20 patient plans, the dose distribution was re-calculated with the phantom CT scan and delivered to the phantom with the original gantry angles. The planned isocenter dose (plan(iso)) was verified with the EPID (EPID(iso)) and an ionization chamber (IC(iso)). The average ratio, (EPID(iso)/IC(iso)), was 1.00 (0.01 SD). Both measurements were systematically lower than planned, with (EPID(iso)/plan(iso)) and (IC(iso)/plan(iso))=0.99 (0.01 SD). EPID mid-plane dose images for each field were also compared with the corresponding plane derived from the three dimensional (3D) dose grid calculated with the phantom CT scan. Comparisons of 100 fields yielded (gamma avg)=0.39, gamma max=2.52, and (P gamma < 1)=98.7%. Seven plans revealed under-dosage in individual fields ranging from 5% to 16%, occurring at small regions of overlapping segments or along the junction of abutting segments (tongue-and-groove side). Test fields were designed to simulate errors and gave similar results. The agreement was improved after adjusting an incorrectly set tongue-and-groove width parameter in the treatment planning system (TPS), reducing (gamma max) from 2.19 to 0.80 for the test field. Mid-plane dose distributions determined with the EPID were consistent with film measurements in a slab phantom for all IMRT fields. Isocenter doses of the total plan measured with an EPID and an ionization chamber also agreed. The EPID can therefore replace these dosimetry devices for field-by-field and isocenter IMRT pre-treatment verification. Systematic errors were detected using EPID dosimetry, resulting in the adjustment of a TPS parameter and alteration of two clinical patient plans. One set of EPID measurements (i.e., one open and transit image acquired for each segment of the plan) is sufficient to check each IMRT plan field-by-field and at the isocenter, making it a useful, efficient, and accurate dosimetric tool.  相似文献   

9.
Respiratory motion can introduce substantial dose errors during IMRT delivery. These errors are difficult to predict because of the nonsynchronous interplay between radiation beams and tissues. The present study investigates the impact of dose fractionation on respiratory motion induced dosimetric errors during IMRT delivery and their radiobiological implications by using measured 3D dose. We focused on IMRT delivery with dynamic multileaf collimation (DMLC-IMRT). IMRT plans using several beam arrangements were optimized for and delivered to a polystyrene phantom containing a simulated target and critical organs. The phantom was set in linear sinusoidal motion at a frequency of 15 cycles/min (0.25 Hz). The amplitude of the motion was +/- 0.75 cm in the longitudinal direction and +/- 0.25 cm in the lateral direction. Absolute doses were measured with a 0.125 cc ionization chamber while dose distributions were measured with transverse films spaced 6 mm apart. Measurements were performed for varying number of fractions with motion, with respiratory-gated motion, and without motion. A tumor control probability (TCP) model for an inhomogeneously irradiated tumor was used to calculate and compare TCPs for the measurements and the treatment plans. Equivalent uniform doses (EUD) were also computed. For individual fields, point measurements using an ionization chamber showed substantial dose deviations (-11.7% to 47.8%) for the moving phantom as compared to the stationary phantom. However, much smaller deviations (-1.7% to 3.5%) were observed for the composite dose of all fields. The dose distributions and DVHs of stationary and gated deliveries were in good agreement with those of treatment plans, while those of the nongated moving phantom showed substantial differences. Compared to the stationary phantom, the largest differences observed for the minimum and maximum target doses were -18.8% and +19.7%, respectively. Due to their random nature, these dose errors tended to average out over fractionated treatments. The results of five-fraction measurements showed significantly improved agreement between the moving and stationary phantom. The changes in TCP were less than 4.3% for a single fraction, and less than 2.3% for two or more fractions. Variation of average EUD per fraction was small (< 3.1 cGy for a fraction size of 200 cGy), even when the DVHs were noticeably different from that of the stationary tumor. In conclusion, IMRT treatment of sites affected by respiratory motion can introduce significant dose errors in individual field doses; however, these errors tend to cancel out between fields and average out over dose fractionation. 3D dose distributions, DVHs, TCPs, and EUDs for stationary and moving cases showed good agreement after two or more fractions, suggesting that tumors affected by respiration motion may be treated using IMRT without significant dosimetric and biological consequences.  相似文献   

10.
Greer PB 《Medical physics》2007,34(10):3815-3824
Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) have typically been calibrated to dose at central axis (CAX). Division of acquired images by the flood-field (FF) image that corrects for pixel sensitivity variation as well as open field energy-dependent off-axis response variation should result in a flat EPID response over the entire matrix for the same field size. While the beam profile can be reintroduced to the image by an additional correction matrix, the CAX EPID response to dose calibration factor is assumed to apply to all pixels in the detector. The aim of this work was to investigate the dose response of the Varian aS500 amorphous silicon detector across the entire detector area. First it was established that the EPID response across the panel became stable (within approximately 0.2%) for MU settings greater than approximately 200 MU. The EPID was then FF calibrated with a high MU setting of approximately 400 for all subsequent experiments. Whole detector images with varying MU settings from 2-500 were then acquired for two dose rates (300 and 600 MU/min) for 6 MV photons for two EPIDs. The FF corrected EPID response was approximately flat or uniform across the detector for greater than 100 MU delivered (within 0.5%). However, the off-axis EPID response was greater than the CAX response for small MU irradiations, giving a raised EPID profile. Up to 5% increase in response at 20 cm off-axis compared to CAX was found for very small MU settings for one EPID, while it was within 2% for the second (newer) EPID. Off-axis response nonuniformities attributed to detector damage were also found for the older EPID. Similar results were obtained with the EPID at 18 MV energy and operating in asynchronous mode (acquisition not synchronized with beam pulses), however the profiles were flatter and more irregular for the small MU irradiations. By moving the detector laterally and repeating the experiments, the increase in response off-axis was found to depend on the pixel position relative to the beam CAX. When the beam was heavily filtered by a phantom the off-axis response variation was reduced markedly to within 0.5% for all MU settings. Independent measurements of off-axis point doses with ion chamber did not show any change in off-axis factor with MUs. Measurements of beam quality (TMR20-10) for MU settings of 2, 5, and 100 at central axis and at 15 cm off-axis could not explain the effect. The response change is unlikely to be significant for clinical IMRT verification with this imaging/acclerator system where MUs are of the order of 100-300, provided the detector does not exhibit radiation damage artifacts.  相似文献   

11.
This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.  相似文献   

12.
目的:为确保调强放射治疗的精确,利用自制和专用设备对每个射野的位置、形状和野内剂量分布进行验证。方法:用自制的位置验证标记球,贴在病人体表的某个固定位置,和病人一起进行CT扫描,设计计划时将此标记球设为位置验证靶区进行射野位置验证。利用加速器自带的射野影像系统(EPID)和治疗计划系统(TPS)的DRR图比对进行射野形状验证。利用Matrixx二维电离室矩阵和OnmiPro软件进行每个射野的剂量验证。结果:射野位置验证在统一调整系统后,误差结果满意。射野形状验证以3mm为标准,调整前的吻合率约为75%。剂量验证通过率大于等于95%的射野占77%。结论:通过81例鼻咽癌调强放疗的实验证明,利用上述三种方法对调强计划进行验证,可以及时纠正误差,确保计划准确执行。  相似文献   

13.
The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.  相似文献   

14.
J Chang  G S Mageras  C C Ling  W Lutz 《Medical physics》2001,28(11):2247-2257
There has been an increasing interest in the application of electronic portal imaging devices (EPIDs) to dosimetric verification, particularly for intensity modulated radiotherapy. Although not water equivalent, the phantom scatter factor of an EPID, Spe, is generally assumed to be that of a full phantom, Sp, a slab phantom, Sps, or a mini phantom. This assumption may introduce errors in absolute dosimetry using EPIDs. A calibration procedure that iteratively updates Spe and the calibration curve (pixel value to dose rate) is presented. The EPID (Varian Portal Vision) is irradiated using a 20 x 20 cm2 field with different beam intensities. The initial guess of dose rates in the EPID is calculated from ionization chamber measurements in air, multiplied by Sp or Sps. The calibration curve is obtained by fitting EPID readings from pixels near the beam central axis and dose rates in EPID to a quadratic equation. The Spe is obtained from EPID measurements in 10 X 10 cm2 and 20 x 20 cm2 field and from the calibration curve, and is in turn used to adjust the dose rate measurements and hence the calibration curve. The above procedure is repeated until it converges. The final calibration curve is used to convert portal dose to dose in the slab phantom, using the calibrated Spe, or assuming Spe = Sp or Spe=Sps . The converted doses are then compared with the dose measured using an ionization chamber. We also apply this procedure to off-axis points and study its dependence on the energy spectrum. The hypothesis testing results (on the 95% significance level) indicate that systematic errors are introduced when assuming Spe = Sp or Spe=Sps and the dose calculated using Spe is more consistent with ionization chamber measurements. Differences between Spe and Sps are as large as 2% for large field sizes. The measured relative dose profile at dmax using the EPID agrees well with the measured profile at dmax of the isocentric plane using film in a polystyrene phantom with full buildup and full backup, for open and wedged fields, and for a broad range of field sizes of interest. The dependence of the EPID response on the energy spectrum is removed once the calibration is performed under the same conditions as the actual measurements.  相似文献   

15.
The purpose of this study was to develop, implement and validate a method for portal dosimetry with an amorphous silicon EPID for a wide energy range. Analytic functions were applied in order to correct for nonlinearities in detector response with dose rate, irradiation time and total dose. EPID scattering processes were corrected for by means of empirically determined convolution kernels. For a variety of rectangular and irregularly shaped fields, head scatter factors determined from central axis portal dose values and those measured with an ionization chamber showed a maximum deviation of 0.5%. The accuracy of our method was further investigated for pretreatment IMRT verification (i.e. without absorbers in the beam). The agreement between EPID and film dosimetry was quantified using gamma (gamma) evaluation, with 2% dose and 2 mm distance-to-agreement criteria. All gamma-distributions showed a gamma(mean) < 0.5, a 99th percentile <1.5 and a fraction of pixels with gamma > 1 smaller than 7%. The number of monitor units delivered by single segments of the IMRT fields could be extracted from the portal images with high accuracy. Measured and delivered doses were within +/-3% for more than 98% of data points. Ghosting effects were found to have limited effects on dosimetric IMRT verification.  相似文献   

16.
Dosimetric effect of respiration-gated beam on IMRT delivery   总被引:3,自引:0,他引:3  
Intensity modulated radiation therapy (IMRT) with a dynamic multileaf collimator (DMLC) requires synchronization of DMLC leaf motion with dose delivery. A delay in DMLC communication is known to cause leaf lag and lead to dosimetric errors. The errors may be exacerbated by gated operation. The purpose of this study was to investigate the effect of leaf lag on the accuracy of doses delivered in gated IMRT. We first determined the effective leaf delay time by measuring the dose in a stationary phantom delivered by wedge-shaped fields. The wedge fields were generated by a DMLC at various dose rates. The so determined delay varied from 88.3 to 90.5 ms. The dosimetric effect of this delay on gated IMRT was studied by delivering wedge-shaped and clinical IMRT fields to moving and stationary phantoms at dose rates ranging from 100 to 600 MU/min, with and without gating. Respiratory motion was simulated by a linear sinusoidal motion of the phantom. An ionization chamber and films were employed for absolute dose and 2-D dose distribution measurements. Discrepancies between gated and nongated delivery to the stationary phantom were observed in both absolute dose and 2-D dose distribution measurements. These discrepancies increased monotonically with dose rate and frequency of beam interruptions, and could reach 3.7% of the total dose delivered to a 0.6 cm3 ion chamber. Isodose lines could be shifted by as much as 3 mm. The results are consistent with the explanation that beam hold-offs in gated delivery allowed the lagging leaves to catch up with the delivered monitor units each time that the beam was interrupted. Low dose rates, slow leaf speeds and low frequencies of beam interruptions reduce the effect of this delay-and-catch-up cycle. For gated IMRT it is therefore important to find a good balance between the conflicting requirements of rapid dose delivery and delivery accuracy.  相似文献   

17.
18.
19.
In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2?mm × 2?mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ? 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2?mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8?mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5?cm × 5?cm area is under development.  相似文献   

20.
A convolution-based calibration procedure has been developed to use an amorphous silicon flat-panel electronic portal imaging device (EPID) for accurate dosimetric verification of intensity-modulated radiotherapy (IMRT) treatments. Raw EPID images were deconvolved to accurate, high-resolution 2-D distributions of primary fluence using a scatter kernel composed of two elements: a Monte Carlo generated kernel describing dose deposition in the EPID phosphor, and an empirically derived kernel describing optical photon spreading. Relative fluence profiles measured with the EPID are in very good agreement with those measured with a diamond detector, and exhibit excellent spatial resolution required for IMRT verification. For dosimetric verification, the EPID-measured primary fluences are convolved with a Monte Carlo kernel describing dose deposition in a solid water phantom, and cross-calibrated with ion chamber measurements. Dose distributions measured using the EPID agree to within 2.1% with those measured with film for open fields of 2 x 2 cm2 and 10 x 10 cm2. Predictions of the EPID phantom scattering factors (SPE) based on our scatter kernels are within 1% of the SPE measured for open field sizes of up to 16 x 16 cm2. Pretreatment verifications of step-and-shoot IMRT treatments using the EPID are in good agreement with those performed with film, with a mean percent difference of 0.2 +/- 1.0% for three IMRT treatments (24 fields).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号