首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studying the effects of microgravity on cell differentiation will enhance our understanding of fundamental biology and is indispensable for a sustained space program. Rauscher murine erythroleukemic cells were chosen as a model system to study erythroid cell differentiation aboard the International Space Station because these cells undergo differentiation in response to the natural inducer, erythropoietin, as well as various chemical-inducers. We have now developed a method to quantify hemoglobin in Rauscher cells after weeks of fixation and storage required for such space biology experiments. By exploiting the pseudoperoxidase activity of hemoglobin and by using reagents that yield a soluble chromophore that freely passes out of fixed cells, we developed a highly specific and sensitive assay applicable to cells fixed as long as 4 months.  相似文献   

2.
Three-dimensional (3-D) spheroids are widely used for culturing cells. However, 2-dimensional (2-D) monolayer cultures have also been adopted for culture and used in a broad range of cell biology studies. To address the effect of dimensionality on the growth and differentiation of neuroprogenitor cells in 3-D spheroids and 2-D monolayer cultures, cells were isolated from cerebral cortex, cerebella and brainstem of fetal rat brain then cultured in serum-free DMEM/F12 medium or DMEM with 10% FBS. The growth and differentiation of neuroprogenitor cells from three brain regions in spheroids was compared with that in monolayer cultures, and the differentiation components of neuroprogenitor cells were compared with in vivo brain sections. Neuroprogenitor cells in spheroids proliferate actively over 10 days in culture as showed by Ki67 incorporation and increase in spheroid diameter. More neuroprogenitor cells underwent neuronal differentiation in spheroids than in monolayer cultures. In comparison with fixed rat brain sections, the neuron to astrocyte ratio, as shown by neurofilament to glial fibrillary acidic protein immunoreactivity, in spheroids is similar to that found in adult rat tissue sections. Our results suggest that the spheroid culture system mimics the in vivo cytoarchitecture to a greater extent and more closely reflects the cellular composition in adult brain tissue. This supports the notion that the intercellular niche in spheroids is more favorable for the survival and differentiation of neuronal precursors, while the cues in monolayer cultures may favor glial cell survival. It is therefore concluded that dimensionality plays a significant role in determining cellular behavior in vitro.  相似文献   

3.
背景:脂肪干细胞是由中胚层发育而来的多能干细胞,在特殊的生长因子和环境等诱导培养条件下,可以向不同的谱系分化。 目的:详细阐述脂肪干细胞诱导分化的条件及鉴定方法。 方法:应用计算机检索万方数据库及PubMed数据库2005至2014年10年间的文献,中文检索词为“脂肪干细胞,诱导,分化”;英文检索词为“adipose derived stem cells,differentiation”。依据纳入排除标准选择37篇文献进行归纳总结。 结果与结论:脂肪干细胞在抗坏血酸、胰岛素、地塞米松、转化生长因子β作用下可向软骨细胞分化;成脂诱导液的配方包括3-异丁基-1-甲基黄嘌呤(IBMX)、胰岛素、地塞米松、吲哚美辛;成骨分化常用的诱导剂包含地塞米松或维生素D3、抗坏血酸,β-甘油磷酸钠;碱性成纤维细胞生长因子、表皮生长因子及维生素B27可联合应用诱导脂肪干细胞成神经分化;向心肌细胞分化普遍应用的诱导因子是5-氮杂胞苷;血管内皮生长因子和碱性成纤维细胞生长因子共同作用可以诱导脂肪干细胞向血管内皮细胞分化。随着分子生物学和细胞生物学的迅速发展,脂肪干细胞的分化研究也会更加深入,在目前对脂肪干细胞诱导分化现象观察的基础上,应加强对其内在的分子机制及调控脂肪干细胞可塑性的基因和蛋白的研究。中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程全文链接:  相似文献   

4.
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune‐mediated diseases. Here, we summarize studies where high‐throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.  相似文献   

5.
There is increasing demand for automated cell reprogramming in the fields of cell biology, biotechnology and the biomedical sciences. Microfluidic-based platforms that provide unattended manipulation of adherent cells promise to be an appropriate basis for cell manipulation. In this study we developed a magnetically driven cell carrier to serve as a vehicle within an in vitro environment. To elucidate the impact of the carrier on cells, biocompatibility was estimated using the human adenocarcinoma cell line Caco-2. Besides evaluation of the quality of the magnetic carriers by field emission scanning electron microscopy, the rate of adherence, proliferation and differentiation of Caco-2 cells grown on the carriers was quantified. Moreover, the morphology of the cells was monitored by immunofluorescent staining. Early generations of the cell carrier suffered from release of cytotoxic nickel from the magnetic cushion. Biocompatibility was achieved by complete encapsulation of the nickel bulk within galvanic gold. The insulation process had to be developed stepwise and was controlled by parallel monitoring of the cell viability. The final carrier generation proved to be a proper support for cell manipulation, allowing proliferation of Caco-2 cells equal to that on glass or polystyrene as a reference for up to 10 days. Functional differentiation was enhanced by more than 30% compared with the reference. A flat, ferromagnetic and fully biocompatible carrier for cell manipulation was developed for application in microfluidic systems. Beyond that, this study offers advice for the development of magnetic cell carriers and the estimation of their biocompatibility.  相似文献   

6.
目的 研究pirin低表达对人红白血病细胞系K562红系分化和细胞活力的影响.方法 通过短发卡RNA(shRNA)干扰技术,构建pirin低表达细胞稳定株,用Western blot方法对干扰效果进行检测,并用联苯胺染色和MTT法分别检测下扰pirin后对K562细胞的红系分化和增殖的影响.结果 转染了pirin-shRNA的细胞其pirin的表达量明显低于对照组(随机干扰组),pirin低表达与对照组相比对细胞增殖无影响,但在诱导剂诱导分化过程中,血红蛋白的合成出现了显著性的降低(P<0.05).结论 Pirin低表达不影响K562细胞的增殖能力,但能降低其红系分化能力.  相似文献   

7.
In a developing organism, tissues emerge from coordinated sequences of cell renewal, differentiation, and assembly that are orchestrated by spatial and temporal gradients of multiple regulatory factors. The composition, architecture, signaling, and biomechanics of the cellular microenvironment act in concert to provide the necessary cues regulating cell function in the developing and adult organism. With recent major advances in stem cell biology, tissue engineering is becoming increasingly oriented toward biologically inspired in vitro cellular microenvironments designed to guide stem cell growth, differentiation, and functional assembly. The premise is that to unlock the full potential of stem cells, at least some aspects of the dynamic three-dimensional (3D) environments that are associated with their renewal, differentiation, and assembly in native tissues need to be reconstructed. In the general context of tissue engineering, we discuss the environments for guiding stem cell function by an interactive use of biomaterial scaffolds and bioreactors, and focus on the interplay between molecular and physical regulatory factors. We highlight some illustrative examples of controllable cell environments developed through the interaction of stem cell biology and tissue engineering at multiple levels.  相似文献   

8.
Epigenetic factors are known to play a major role in determining stem cell fate and differentiation. Mesenchymal stem cells are the most studied population of stem cells due to their important applications in experimental biology and regenerative medicine. After a brief overview on mesenchymal stem cells, this review aims to highlight the role of epigenetic changes on mesenchymal stem cells biology and differentiation protocols with a focus on osteocytic, chondrocytic and adipocytic differentiation. Chromatin remodeling, DNA methylation, histone modifications and miRNA expression will be investigated. The impact of epigenetics on transdifferentiation of mesenchymal stem cells will also be discussed. Indeed, epigenetic modulation appears to constitute a promising experimental target in stem cell basic and translational research.  相似文献   

9.
Retinal progenitor cells (RPCs) are self-renewing cells capable of differentiating into the different retinal cell types including photoreceptors, and they have shown promise as a source of replacement cells in experimental models of retinal degeneration. We hypothesized that a biodegradable polymer scaffold could deliver these cells to the subretinal space in a more organized manner than bolus injections, while also providing the graft with laminar organization and structural guidance channels. We fabricated highly porous scaffolds from blends of poly(L-lactic acid) and poly(lactic-co-glycolic acid) using a variety of techniques to produce pores oriented normal to the plane of the scaffold. RPCs were seeded on the polymer scaffolds and cultured for 14 days. Seeded scaffolds were then either fixed for characterization or used in an explant or in vivo rat model. The scaffolds were fully covered by RPCs in 3 days. Attachment of RPCs to the polymer scaffold was associated with down-regulation of immature markers and up-regulation of markers of differentiation. This suggests that the scaffold may promote differentiation of RPCs. The seeded cells elaborated cellular processes and aligned in the scaffold in conjunction with degenerating retinal explants. The cells also exhibited morphologies consistent with photoreceptors including a high degree of polarization of the cells. This data suggests that the scaffold may be a means to assist in the promotion of photoreceptor phenotypes. Implantation of the seeded scaffold into the rat eye is associated with increased RPC survival. Taken together, these data suggest that these polymer scaffolds provide a useful means for delivering RPCs to the subretinal space and may assist in the formation of retinal cell phenotypes, although it is clear that more cues are needed to direct the differentiation of RPCs into functional photoreceptors.  相似文献   

10.
力学刺激对细胞的生长和功能起着重要调节作用。随着空间生命科学与空间生物技术的迅速发展,空间条件下细胞的生物学行为特征、规律及其相关分子机理逐渐成为空间生物学研究的热点和前沿。骨髓间充质干细胞(bone marrow mesenchymal stem cells,MSCs)是一种具有自我更新和多向分化潜能的多能干细胞,在组织修复中起重要作用,是临床细胞治疗的主要材料。近年来,人们利用空间模拟技术在细胞响应微重力环境的生物学特征研究方面取得了重要进展。本文介绍了目前常用的几种地基微重力效应模拟装置,结合相关研究成果对微重力作用下MSCs增殖、分化行为的改变及其相关的分子机理进行简要综述,为预防和治疗微重力相关疾病提供理论参考。  相似文献   

11.
Colorectal cancers (CRCs) form a disorganized hierarchy of heterogeneous cell populations on which current chemotherapy regimens fail to exert their distinctive cytotoxicity. A small sub-population of poorly differentiated cancer stem-like cells (CSCs), also known as cancer initiating cells, may exhibit embryonic and/or adult stem-cell gene expression signatures. Self-renewal and survival signals are also dominant over differentiation in CSCs. However, inducers of differentiation exclusive to CSC may affect cellular pathways required for the formation and progression of a tumor, which are not utilized in normal adult stem-cells. Nevertheless, assays for targeting CSCs have been hindered by expanding and maintaining rare CSCs in vitro. However, CRC-CSCs are able to form floating spheroids (known as colonospheres) 3-dimentinionally (3D) in a serum-free defined medium. Therefore, great efforts have been paid to improve colonosphere forming assay as a preclinical model to study tumor biology and to conduct drug screening in cancer research. The 3D-colonosphere culture model may also represent in vivo conditions for the spontaneous aggregation of cancer cells in spheroids. This protocol describes the development of an enrichment/culture assay using CRC-CSCs to facilitate colorectal cancer research through immunofluorescence staining of colonospheres. We have developed colonospheres from HCT116 CRC cell line to compare and link CRC-CSC markers to the NANOG expression level using an immunofluorescence assay. Our data also show that the immunostaining assay of colonosphere is a useful method to explore the role and dynamics of CRC-CSCs division between self-renewal and cell lineage differentiation of cancer cells. In principle, this method is applicable to a variety of primary cells and cell lines of epithelial origin. Furthermore, this protocol may also allow screening of libraries of compounds to identify bona fide CRC-CSC differentiation inducers.  相似文献   

12.
Embryonic stem cells: prospects for developmental biology and cell therapy   总被引:35,自引:0,他引:35  
Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.  相似文献   

13.
Keller G 《Genes & development》2005,19(10):1129-1155
The discovery of mouse embryonic stem (ES) cells >20 years ago represented a major advance in biology and experimental medicine, as it enabled the routine manipulation of the mouse genome. Along with the capacity to induce genetic modifications, ES cells provided the basis for establishing an in vitro model of early mammalian development and represented a putative new source of differentiated cell types for cell replacement therapy. While ES cells have been used extensively for creating mouse mutants for more than a decade, their application as a model for developmental biology has been limited and their use in cell replacement therapy remains a goal for many in the field. Recent advances in our understanding of ES cell differentiation, detailed in this review, have provided new insights essential for establishing ES cell-based developmental models and for the generation of clinically relevant populations for cell therapy.  相似文献   

14.
《Seminars in immunology》2016,28(5):514-524
Recent advances in the field of immunometabolism support the concept that fundamental processes in T cell biology, such as TCR-mediated activation and T helper lineage differentiation, are closely linked to changes in the cellular metabolic programs. Although the major task of the intermediate metabolism is to provide the cell with a constant supply of energy and molecular precursors for the production of biomolecules, the dynamic regulation of metabolic pathways also plays an active role in shaping T cell responses. Key metabolic processes such as glycolysis, fatty acid and mitochondrial metabolism are now recognized as crucial players in T cell activation and differentiation, and their modulation can differentially affect the development of T helper cell lineages. In this review, we describe the diverse metabolic processes that T cells engage during their life cycle from naïve towards effector and memory T cells. We consider in particular how the cellular metabolism may actively support the function of T cells in their different states. Moreover, we discuss how molecular regulators such as mTOR or AMPK link environmental changes to adaptations in the cellular metabolism and elucidate the consequences on T cell differentiation and function.  相似文献   

15.
Directing stem cell differentiation into the chondrogenic lineage in vitro   总被引:13,自引:0,他引:13  
A major area in regenerative medicine is the application of stem cells in cartilage tissue engineering and reconstructive surgery. This requires well-defined and efficient protocols for directing the differentiation of stem cells into the chondrogenic lineage, followed by their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages upon transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying chondrogenesis and cartilaginous tissue biology. The development of pharmacokinetic and cytotoxicity/genotoxicity screening tests for cartilage-related biomaterials and drugs could also utilize protocols developed for the chondrogenic differentiation of stem cells. Hence, this review critically examines the various strategies that could be used to direct the differentiation of stem cells into the chondrogenic lineage in vitro.  相似文献   

16.
Efforts to study the development and function of the human cerebral cortex in health and disease have been limited by the availability of model systems. Extrapolating from our understanding of rodent cortical development, we have developed a robust, multistep process for human cortical development from pluripotent stem cells: directed differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to cortical stem and progenitor cells, followed by an extended period of cortical neurogenesis, neuronal terminal differentiation to acquire mature electrophysiological properties, and functional excitatory synaptic network formation. We found that induction of cortical neuroepithelial stem cells from human ES cells and human iPS cells was dependent on retinoid signaling. Furthermore, human ES cell and iPS cell differentiation to cerebral cortex recapitulated in vivo development to generate all classes of cortical projection neurons in a fixed temporal order. This system enables functional studies of human cerebral cortex development and the generation of individual-specific cortical networks ex vivo for disease modeling and therapeutic purposes.  相似文献   

17.
Molecular insights into the function, fate, and prospects of stem cells   总被引:1,自引:0,他引:1  
This article forms a review and an appraisal of the third annual meeting of the International Society for Stem Cell Research (http://www.isscr.org), held in San Francisco on June 23-25, 2005. The focus of the meeting was recent advances in stem cell biology. More than 2,000 scientists from around the world met to discuss stem cell research, clinical applications, and the ethical hurdles facing the field. Major topics highlighted during the meeting included the self-renewal and differentiation of embryonic stem cells as well as adult stem cells. Presentations included diverse topics such as cancer stem cells, tissue-specific stem cells, technology development, and clinical aspects of stem cells. Given the excitement the field has generated, linking basic stem cell research and clinical applications was paramount for discussion at the meeting. With the current resources in molecular biology research, improvements in genetic engineering, postgenomic capabilities, and biotechnological advances, it appears timely that stem cell biology research is headed toward making a major therapeutic contribution to human health.  相似文献   

18.
Natural killer (NK) cells, which can exert early and powerful anti‐tumour and anti‐viral responses, are important components of the innate immune system. DNAX accessory molecule‐1 (DNAM‐1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM‐1 is a critical regulator of NK cell biology. DNAM‐1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune‐related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM‐1 activity by targeting the DNAM‐1 receptor–ligand system. We have reviewed the roles of DNAM‐1, and its biological functions, with respect to NK cell biology and DNAM‐1 chimeric antigen receptor‐based immunotherapy.  相似文献   

19.
《Seminars in immunology》2014,26(3):191-202
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.  相似文献   

20.
Platelet factor 4 (PF4) is a megakaryocyte-/platelet-derived chemokine with diverse functions as a regulator of vascular and immune biology. PF4 has a central role in vessel injury responses, innate immune cell responses, and T-helper cell differentiation. We have now discovered that PF4 has a direct role in B cell differentiation in the bone marrow. Mice lacking PF4 (PF4?/? mice) had fewer developing B cells in the bone marrow beginning after the pre-pro-B cell stage of differentiation. In vitro, PF4 increased the differentiation of hematopoietic progenitors to B cell lineage cells, indicating that PF4 has a direct effect on B cell differentiation. STAT5 activation is essential in early B cell development and PF4 increased the phosphorylation of STAT5. Taken together, these data demonstrate that PF4 has an important role in increasing B cell differentiation in the bone marrow environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号