首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We investigated the age-related alterations of calcineurin and Akt1/protein kinase Bα (Akt1/PKBα) immunoreactivity in the mouse hippocampal CA1 sector using immunohistochemistry. Calcineurin and Akt1/PKBα immunoreactivity was measured in 2-, 8-, 18-, 40–42- and 50–59-weeks-old animals. Diffuse calcineurin immunoreactivity was evident in pyramidal neurons of the hippocampal CA1 sector of 8-weeks-old mice. Densities of calcineurin immunoreactivity were lowered significantly in the hippocampal CA1 neurons of 2-weeks-old mice. In contrast, densities of calcineurin immunoreactivity were unchanged in the hippocampal CA1 neurons up to 40–42-weeks-old mice. However, densities of calcineurin immunoreactivity were increased significantly in the dendrites and plasma membranes of the hippocampal CA1 neurons of 50–59-weeks-old mice compared to 8-weeks old animals. Akt1/PKBα immunoreactivity was slightly detectable in the hippocampal CA1 sector of 8-weeks-old mice. A weak Akt1/PKBα immunoreactivity was found in cytoplasm of the hippocampal CA1 neurons and glial cells. Densities of Akt1/PKBα immunoreactivity were unchanged in the hippocampal CA1 neurons and glial cells of 2-weeks-old mice. In contrast, densities of Akt1/PKBα immunoreactivity were increased significantly in cytoplasm of neurons and glial cells of the hippocampal CA1 sector from 40–42 to 50–59 weeks after birth. The present study indicates that densities of calcineurin immunoreactivity and number of Akt1/PKBα immunoreactive cells were increased significantly in the hippocampal CA1 sector during aging processes. Our study also demonstrates that the activation of Akt1/PKBα signaling pathway may act defense mechanism against the neuronal dysfunction of the hippocampal CA1 sector caused by the activation of calcineurin signaling pathway during aging processes. These findings suggest that the calcineurin and Akt1/PKBα signaling pathway may be important targets for the development of novel therapeutic strategies for protection against age-related neurodegeneration.  相似文献   

2.
We investigated postischemic changes of non-pyramidal neurons in the gerbil hippocampus 1 h - 7 days after 10 min of cerebral ischemia, with parvalbumin and microtubule-associated protein 2 (MAP2)-immunohistochemistry. Parvalbumin-immunoreactive interneurons in the hippocampus were unaffected up to 24 h after ischemia. A slight reduction of the immunoreactivity in neuronal processes was seen in the hippocampal CA1 sector 48 h after ischemia. Seven days after ischemia, a marked loss of parvalbumin-immunoreactive interneurons was observed in the hippocampal CA1 and CA3 sectors. Furthermore, reduced staining in the dentate granular and molecular layers was observed. MAP2-immunoreactive pyramidal neurons in the hippocampus were unchanged up to 48 h after ischemia. Seven days after ischemia, a severe loss of MAP2 immunoreactivity was found in the hippocampal CA1 and CA3 neurons and dentate hilar neurons. However, scattered CA1 neurons, most likely interneurons, preserved MAP2 immunoreactivity. The results demonstrate that transient cerebral ischemia can cause a loss of parvalbumin-immunoreactive interneurons in the hippocampus. Furthermore, some interneurons seem to lose parvalbumin synthesis. Although dentate granule cells are resistant to ischemia, considerable reductions of afferent input was suggested by parvalbumin staining.  相似文献   

3.
We investigated the effect of Ca2+ antagonist nilvadipine on age-related immunohistochemical alterations in ubiquitin and S100 protein of the hippocampal CA1 sector in mice using 8-, 18-, 40-, and 59-week-old mice. No significant changes in the number of neuronal cells were observed in the hippocampal CA1 sector up to 59 weeks after birth. The administration of nilvadipine did not affect the number of the hippocampal CA1 cells of 40-week-old mice. Age-dependent increases in ubiquitin immunoreactivity were observed in the hippocampal CA1 neurons up to 59 weeks after birth. The administration of nilvadipine prevented dose-dependently the increases in the number of ubiquitin-immunoreactive neurons in the hippocampal CA1 sector of 40-week-old mice. S100 immunoreactivity was unchanged in the hippocampal CA1 sector up to 40 weeks after birth. In 59-week-old mice, the level of staining of S100-immunoreactive cells increased significantly in the hippocampal CA1 sector. The administration of nilvadipine decreased dose-dependently the number of S100-immunoreactive cells in the hippocampal CA1 sector of 40-week-old mice. The present study demonstrates that age-related increases in ubiquitin system may play a pivotal role in protecting neuronal cell damage during aging. In contrast, our results suggest that expression of S100 protein in the hippocampal CA1 sector may play an exacerbating factor in some neuronal cells damaged by aging. Our results also demonstrate that nilvadipine, a dihydropyridine-type calcium channel blocker, can prevent dose-dependently the increases in the ubiquitin immunoreactive neurons and decrease the number of S100 immunoreactive cells in the hippocampal CA1 neurons of aged mice. These results suggest that nilvadipine may offer a new approach for the treatment of neuronal dysfunction in aged humans.  相似文献   

4.
5.
The effect of intracerebroventricular injection of the mitosis inhibitor colchicine on expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 was studied in the rat brain with in situ hybridization. Colchicine up-regulates mRNA for NGF and BDNF in many of the neuronal systems normally expressing these factors. In addition, after colchicine treatment NGF and BDNF mRNAs were localized in several brain areas where they normally cannot be detected. Thus, NGF mRNA was present, for example, in many motor nuclei and in the basal forebrain, and BDNF mRNA was seen in many nuclei in the brain stem and in catecholamine neurons, including dopamine neurons in the substantia nigra. The latter neurons have recently been shown to be sensitive to BDNF, and the present results show that these neurons can produce this factor themselves. A decrease in mRNA for BDNF and neurotrophin 3 was seen only in the granular-cell layer of the hippocampal formation. A strong hybridization signal for BDNF and neurotrophin 3 mRNA was also observed over several myelinated tracts in treated rats, supporting the hypothesis that glial cells as well as neurons can produce these trophic factors.  相似文献   

6.
Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.  相似文献   

7.
It has been proposed that nitric oxide (NO) serves as a key retrograde messenger during long-term potentiation at hippocampal synapses, linking induction of long-term potentiation in postsynaptic CA1 pyramidal cells to expression of long-term potentiation in presynaptic nerve terminals. However, nitric oxide synthase (NOS), the proposed NO-generating enzyme, has not yet been detected in the appropriate postsynaptic cells. We here demonstrate specific NOS immunoreactivity in the CA1 region of hippocampal sections by using an antibody specific for NOS type I and relatively gentle methods of fixation. NOS immunoreactivity was found in dendrites and cell bodies of CA1 pyramidal neurons. Cultured hippocampal pyramidal cells also displayed specific immunostaining. Control experiments showed no staining with preimmune serum or immune serum that was blocked with purified NOS. These results demonstrate that CA1 pyramidal cells contain NOS, as required were NO involved in retrograde signaling during hippocampal synaptic plasticity.  相似文献   

8.
Although brain-derived neurotrophic factor (BDNF) is known to regulate circuit development and synaptic plasticity, its exact role in neuronal network activity remains elusive. Using mutant mice (TrkB-PV(-/-)) in which the gene for the BDNF receptor, tyrosine kinase B receptor (trkB), has been specifically deleted in parvalbumin-expressing, fast-spiking GABAergic (PV+) interneurons, we show that TrkB is structurally and functionally important for the integrity of the hippocampal network. The amplitude of glutamatergic inputs to PV+ interneurons and the frequency of GABAergic inputs to excitatory pyramidal cells were reduced in the TrkB-PV(-/-) mice. Functionally, rhythmic network activity in the gamma-frequency band (30-80 Hz) was significantly decreased in hippocampal area CA1. This decrease was caused by a desynchronization and overall reduction in frequency of action potentials generated in PV+ interneurons of TrkB-PV(-/-) mice. Our results show that the integration of PV+ interneurons into the hippocampal microcircuit is impaired in TrkB-PV(-/-) mice, resulting in decreased rhythmic network activity in the gamma-frequency band.  相似文献   

9.
目的观察胆碱酯酶抑制剂对血管性痴呆(VaD)大鼠海马CA1区细胞凋亡、血管内皮生长因子(VEGF)及神经元型一氧化氮合酶(nNOS)的影响。方法将45只雄性SD大鼠,随机分为假手术组、模型组、治疗组,每组15只大鼠。采用双侧颈总动脉永久性结扎法建立VaD模型,假手术组和模型组用生理盐水2 ml灌胃,治疗组用多奈哌齐进行灌胃。造模后1个月,采用Morris水迷宫检测大鼠的学习记忆能力,用TUNEL检测海马CA1区神经细胞凋亡,用免疫组织化学染色方法检测大鼠海马CA1区VEGF、nNOS阳性细胞表达。结果与模型组比较,假手术组和治疗组大鼠第2天起逃避潜伏期明显缩短;海马CA1区神经细胞凋亡显著减少;海马CA1区VEGF和nNOS阳性细胞表达明显升高,差异有统计学意义(P<0.05)。结论多奈哌齐可能通过减少VaD大鼠海马CA1区细胞凋亡,上调VEGF、nNOS的表达,从而改善VaD大鼠的认知功能。  相似文献   

10.
Abstract:  Melatonin attenuates the short-term consequences of brain ischemia in several animal models. However, there is scant information regarding its efficacy for improving the long-term outcome. To further address that issue, we subjected gerbils to 5-min bilateral carotid occlusion. Some gerbils received acute peri-surgical administration of melatonin while others received continuous melatonin in their water. The gerbils' brains were histologically assessed at 20 wk postsurgery. Chronic but not acute melatonin attenuated ischemia-induced hyperactivity at 3 days postsurgery. Twenty weeks postsurgery, the ischemic gerbils showed varying degrees of bilateral loss of hippocampal CA1 pyramidal cells and elevation of glial fibrillary acidic protein immunoreactivity there. Both the cell loss and the immunoreactivity were markedly asymmetrical for some gerbils. Neither acute nor chronic melatonin altered this pattern of CA1 cell loss and glial immunoreactivity increase. Ischemia increased the number of CA1 cells that were immunoreactive for doublecortin (DCX), a marker for newborn neurons. This increase in CA1 DCX expression was not affected by either melatonin treatment. However, both acute and chronic melatonin reduced the number of DCX immunoreactive neurons in the dentate gyrus. Thus, neither acute nor chronic melatonin altered the long-term neural outcome of forebrain ischemia, although chronic administration seemed to attenuate the short-term behavioral effect. It is suggested that persistently high brain levels of melatonin may be essential for long-term neuroprotection against ischemia. The possibility that melatonin may modulate hippocampal neurogenesis merits further exploration both in normal animals and in models of brain insult.  相似文献   

11.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are neuronal survival molecules which utilize the Trk family of tyrosine kinase receptors. Using double-label in situ hybridization, we demonstrate that mRNAs for BDNF and its high-affinity receptor TrkB are coexpressed in hippocampal and cortical neurons. Also, a large number of neurons in these areas coexpress NGF and BDNF mRNAs. Epileptic seizures lead to increased levels of both BDNF/TrkB and NGF/BDNF mRNAs in double-labeled cells. Our results show that individual neurons of the central nervous system can coexpress neurotrophins and their receptors and produce two neurotrophic factors. These factors could support neuronal survival after brain insults, not only via retrograde transport but also through autocrine mechanisms.  相似文献   

12.
Disturbed calcium homeostasis plays a crucial role in the aetiology of Alzheimer's disease (AD) and the aging process. We evaluated immunoreactivity of secretagogin, a recently cloned calcium binding protein, in hippocampus and adjacent entorhinal cortex of 30 neuropathologically examined post mortem brains (m:f=12:18; mean age, 79.8+/-15.1 years). The study group consisted of 15 cases fulfilling the criteria for high probability of AD according to the NIA-Reagan Institute Criteria and 15 cases with no to medium probability. Sections were incubated with secretagogin-specific antibodies and the number of immunoreactive neurons as well as staining intensities in both neurons and neuropil were assessed. Both cellular and neuropil immunoreactivity were restricted to subiculum and Ammons horn. Cellular immunoreactivity was further restricted to pyramidal neurons and showed a hierarchical distribution: the mean percentage of immunoreactive neurons was highest in sector CA3 (64.41%), followed by CA2 (44.09%), CA4 (34.38%), CA1 (10.9%), and the subiculum (2.92%; P<0.001, except CA2-CA4, P>0.05), while it did not differ significantly between groups with different degrees of AD pathology. The pattern of secretagogin immunoreactivity resembles that of calcium sensor proteins as it is restricted to a subset of neurons and therefore secretagogin could serve highly specialized tasks in neuronal calcium signalling.  相似文献   

13.
14.
Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca(2+) permeability of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca(2+) influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca(2+)-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF) gene family, has been shown to influence the survival and differentiation of specific classes of neurons in vitro and in vivo. The possibility that neurotrophins are also involved in processes of neuronal plasticity has only recently begun to receive attention. To determine whether BDNF has a function in processes such as long-term potentiation (LTP), we produced a strain of mice with a deletion in the coding sequence of the BDNF gene. We then used hippocampal slices from these mice to investigate whether LTP was affected by this mutation. Homo- and heterozygous mutant mice showed significantly reduced LTP in the CA1 region of the hippocampus. The magnitude of the potentiation, as well as the percentage of cases in which LTP could be induced successfully, was clearly affected. According to the criteria tested, important pharmacological, anatomical, and morphological parameters in the hippocampus of these animals appear to be normal. These results suggest that BDNF might have a functional role in the expression of LTP in the hippocampus.  相似文献   

16.
Allopregnanolone (ALLO), synthesized by pyramidal neurons, is a potent positive allosteric modulator of the action of GABA at GABA(A) receptors expressing specific neurosteroid binding sites. In the brain, ALLO is synthesized from progesterone by the sequential action of two enzymes: 5alpha-reductase type I (5alpha-RI) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). In the cortex, hippocampus, and amygdala, these enzymes are colocalized in principal glutamatergic output neurons [Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Proc Natl Acad Sci USA 103:14602-14607], but they are not detectable in GABAergic interneurons. Using RT-PCR and in situ hybridization, this study compares 5alpha-RI and 3alpha-HSD mRNA brain expression levels in group housed and in socially isolated male mice for 4 weeks. In these socially isolated mice, the mRNA expression of 5alpha-RI was dramatically decreased in hippocampal CA3 glutamatergic pyramidal neurons, dentate gyrus granule cells, glutamatergic neurons of the basolateral amygdala, and glutamatergic pyramidal neurons of layer V/VI frontal (prelimbic, infralimbic) cortex (FC). In contrast, 5alpha-RI mRNA expression failed to change in CA1 pyramidal neurons, central amygdala neurons, pyramidal neurons of layer II/III FC, ventromedial thalamic nucleus neurons, and striatal medium spiny and reticular thalamic nucleus neurons. Importantly, 3alpha-HSD mRNA expression was unchanged by protracted social isolation (Si). These data suggest that, in male mice, after 4 weeks of Si, the expression of 5alpha-RI mRNA, which is the rate-limiting-step enzyme of ALLO biosynthesis, is specifically down-regulated in glutamatergic pyramidal neurons that converge on the amygdala from cortical and hippocampal regions. In socially isolated mice, this down-regulation may account for the appearance of behavioral disorders such as anxiety, aggression, and cognitive dysfunction.  相似文献   

17.
Using antibodies that react selectively with peptide sequences unique to endothelial nitric oxide synthase (eNOS), we demonstrate localizations to neuronal populations in the brain. In some brain regions, such as the cerebellum and olfactory bulb, eNOS and neuronal NOS (nNOS) occur in the same cell populations, though in differing proportions. In the hippocampus, localizations of the two enzymes are strikingly different, with eNOS more concentrated in hippocampal pyramidal cells than in any other brain area, whereas nNOS is restricted to occasional interneurons. In many brain regions NADPH diaphorase staining reflects NOS catalytic activity. Hippocampal pyramidal cells do not stain for diaphorase with conventional paraformaldehyde fixation but stain robustly with glutaraldehyde fixatives, presumably reflecting eNOS catalytic activity. eNOS in hippocampal pyramidal cells may generate the NO that has been postulated as a retrograde messenger of long-term potentiation.  相似文献   

18.
We have used a pool of degenerate oligonucleotides representing all possible codons in regions of homology between brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) to prime rat hippocampal cDNAs in the polymerase chain reaction. The amplified DNA included a product with significant similarity to NGF and BDNF, which was used to isolate a 1020-nucleotide-long cDNA from a rat hippocampal library. From the nucleotide sequence, a 282-amino-acid-long protein with approximately 45% amino acid similarity to both pig BDNF and rat NGF was deduced. In the adult brain, the mRNA for this protein was predominantly expressed in hippocampus, where it was confined to a subset of pyramidal and granular neurons. The developmental expression in brain showed a clear peak shortly after birth, 1 and 2 weeks earlier than maximal expression of BDNF and NGF, respectively. It was also expressed in several peripheral tissues with the highest level in kidney. The protein, transiently expressed in COS cells, was tested on chicken embryonic neurons and readily stimulated fiber outgrowth from explanted Remak's ganglion and, to a lesser extent, the nodose ganglion. A weak, but consistent, fiber outgrowth response was also seen in the ciliary ganglion and in paravertebral sympathetic ganglia. Moreover, the protein displaced binding of NGF to its receptor, suggesting that it can interact with the NGF receptor. Thus, this factor, although structurally and functionally related to NGF and BDNF, has unique biological activities and represents a member of a family of neurotrophic factors that may cooperate to support the development and maintenance of the vertebrate nervous system.  相似文献   

19.
Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.  相似文献   

20.
Mutation in superoxide dismutase 1 (SOD1), a Cu/Zn enzyme that removes oxygen radicals and protects against oxidative injury, has been implicated in some cases of familial amyotrophic lateral sclerosis (FALS). As a first approach to examining the mechanism(s) through which these mutations cause specific degeneration of motor neurons, we have used immunocytochemistry to identify the distribution of SOD1 in populations of cells in the peripheral and central nervous systems. In the spinal cord, intense SOD1 immunoreactivity was present in motor neurons, interneurons, and substantia gelatinosa. In motor neurons, SOD1 immunoreactivity was abundant in perikarya, dendrites, and axons; most of this activity appeared to be free in the cytoplasm, although a portion was associated with membranous vesicles, presumably peroxisomes. Since a variety of central nervous system neurons, including pyramidal cells in cerebral cortex and neurons of the CA3 and CA4 sectors of the hippocampus, showed high immunoreactivity but are unaffected in ALS, the apparent abundance of SOD1 does not predict vulnerability of neurons to mutations in SOD1. Rather, SOD1 accumulates in many neuronal populations but is particularly abundant in motor neurons. Consistent with recent studies of FALS-linked SOD1 mutations in vitro and in transgenic mice, our findings offer further support for the view that the mutations confer a gain of adverse function. In this view, high, rather than limiting, levels of SOD1 may place motor neurons selectively at risk in FALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号