首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Tumor necrosis factor (TNF) is up-regulated in a variety of central nervous system (CNS) diseases with diverse etiology and pathologic manifestation. TNF mediates multiple biological activities through two membrane receptors, the p55 and p75 TNF receptors (TNFRs). We have shown previously that human transmembrane TNF (tmTNF)p55TNFR signaling in transgenic mice triggers oligodendrocyte apoptosis, endothelial cell activation, parenchymal inflammation, and primary demyelinating lesions similar to those of acute multiple sclerosis. To address the role of the p75TNFR in the CNS, we have generated "humanized" mice that express human tmTNF in astrocytes and a physiologically regulated human p75TNFR transgene, in the absence of the endogenous (murine) p55TNFR. Human tmTNFp75TNFR transgenic mice develop CNS vascular pathology, characterized by endothelial cell activation, meningeal inflammation, and vessel fibrosis. There is no evidence of oligodendrocyte apoptosis or primary demyelination in these mice. Late in disease, vasculitis can result in vessel occlusion and secondary, multifocal CNS ischemic injury. These results identify a proinflammatory role for the p75TNFR at the level of the CNS vascular endothelium, which correlates with the expression pattern of this receptor in the CNS, and indicate that the differential expression patterns of the two TNFRs within the CNS play a significant role in shaping the outcome of TNF signaling during neuroimmune interactions.  相似文献   

2.
Cytokines are thought to be important mediators in physiologic and pathophysiologic processes affecting the central nervous system (CNS). To explore this hypothesis, transgenic mice were generated in which the cytokine interleukin 6 (IL-6), under the regulatory control of the glial fibrillary acidic protein gene promoter, was overexpressed in the CNS. A number of transgenic founder mice and their offspring exhibited a neurologic syndrome the severity of which correlated with the levels of cerebral IL-6 expression. Transgenic mice with high levels of IL-6 expression developed severe neurologic disease characterized by runting, tremor, ataxia, and seizure. Neuropathologic manifestations included neuro-degeneration, astrocytosis, angiogenesis, and induction of acute-phase-protein production. These findings indicate that cytokines such as IL-6 can have a direct pathogenic role in inflammatory, infectious, and neurodegenerative CNS diseases.  相似文献   

3.
Haploidentical hematopoietic stem cell transplant (haplo-HSCT) is an upfront and effective therapy for hematology patients, but it usually has many complications, such as neurological complications. As one of the neurological complications following haplo-HSCT, immune-mediated demyelinating diseases of the central nervous system (CNS) seriously affect a patient’s quality of life. However, the incidence, risk factors, and pathogenesis of CNS demyelination are not very well understood. Thirty of the 1526 patients (1.96%) suffered from CNS demyelination. In univariate analysis, we found that blood-brain barrier (BBB) permeability and the CSF IgG synthesis index (IgG-Syn) were related to the occurrence of CNS demyelination (p?<?0.05). In a multivariate analysis, the IgG-Syn (OR?=?1.017, 95% CI 1.003–1.031, p?=?0.019) and CSF anti-myelin oligodendrocyte glycoprotein antibody (MOG.Ab) (OR?=?12.059, 95% CI 1.141–127.458, p?=?0.038) were independently associated with the onset of CNS demyelination. We also studied the possible pathogenesis of CNS demyelination. Immune reconstitution (the cell proportions of CD19+ B cells, CD3+ T cells, and CD4+ T cells); the counts of leucocytes, lymphocytes, monocytes, and platelets; and the levels of immunoglobulins A, G, and M 30, 60, and 90 days after HSCT showed no significant differences between CNS demyelination and no demyelination (p?>?0.05). The probabilities of overall survival showed no significant differences between patients with and without demyelination (p?>?0.05). Only four deaths in 30 patients, but bringing projected survival to less than 20%.We imply that IgG-Syn and CSF MOG. Ab may be associated with the onset of CNS demyelination during 2 weeks of neurological symptoms in patients with brain or spinal cord MRI abnormality. Immune reconstitution may not be the pathogenesis of CNS demyelination.  相似文献   

4.
We describe the pathologic alterations of the central nervous system (CNS) observed in experimental tegumentary leishmaniasis in BALB/c and Swiss mice. The mice were subcutaneously infected with 10(4) amastigotes of Leishmania (Leishmania) amazonensis. Animals were killed and brains were removed for histologic and immunocytochemical studies. Histologic examination showed that 66.6% of infected mice had a discrete hyperemia and inflammatory infiltrate in the meninges, composed of mononuclear cells and neutrophils with no detectable parasites. However, parasitized macrophages were detected in the cerebral parenchyma, as well as mast cells, lymphocytes, and polymorphonuclear cells. Necrosis in the cerebral parenchyma was also observed. Confocal fluorescence microscopy showed that CD8+ T lymphocytes are the major component of the inflammatory infiltrate in the CNS. In addition to these cells, CD4+, CD11b, and dendritic cells are present, in small numbers, in the inflammatory processes of the CNS. Thus, L. amazonensis is able to cross the blood-brain barrier and cause significant pathologic changes in the CNS.  相似文献   

5.
Multiple sclerosis (MS) is a human demyelinating disease characterized by multifocal regions of inflammation, progressive myelin loss within the central nervous system (CNS), and eventual failure to remyelinate damaged axons. These problems suggest deficiencies in recruiting and/or maturation of oligodendrocyte progentior cells (OPCs) and highlight cell replacement therapies to promote remyelination. We have used a model of viral-induced demyelination to characterize signaling cues associated with positional migration of transplanted remyelination-competent cells. Although successful transplantation of rodent-derived glial cell types into models of MS has been performed, the mechanisms by which these cells navigate within an inflammatory environment created by a persistent virus has not been defined. Infection of the mouse CNS with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in an immune-mediated demyelinating disease with clinical and histologic similarities to MS. Surgical engraftment of GFP+ neural stem cells (NSCs) into spinal cords of JHMV-infected mice with established demyelination results in migration, proliferation, and differentiation of the cells into OPCs and mature oligodendrocytes that is associated with increased axonal remyelination. Treatment with anti-CXCL12 [stromal derived factor–1α, (SDF-1α)] blocking serum resulted in a marked impairment in migration and proliferation of engrafted stem cells. Moreover, small molecule–mediated antagonism of CXCR4, but not CXCR7, impaired migration and proliferation, to an extent similar to that with anti-CXCL12 treatment. These data highlight the importance of the CXCL12:CXCR4 pathway in regulating homing of engrafted stem cells to sites of tissue damage within the CNS of mice persistently infected with a neurotropic virus undergoing immune-mediated demyelination.  相似文献   

6.
Among the 12 systemic lupus erythematosus (SLE)-related central nervous system (CNS) syndromes defined by the American College of Rheumatology (ACR), demyelinating syndrome and myelopathy are two of the less prevalent and more poorly understood ones. One important issue concerning demyelinating disease in SLE is that it can be easily misdiagnosed with other central nervous system demyelinating disorders such as multiple sclerosis (MS). A clinically isolated neurological syndrome can be the presenting feature before other concomitant symptoms of SLE appear or definite MS is diagnosed. Although challenging, some diagnostic tests used in clinical practice and research may help to differentiate between these entities. These tests have improved the understanding of the pathogenesis in these diseases, but some points, such as the role of antiphospholipid antibodies in SLE-associated transverse myelitis, remain unclear and are a matter of ongoing debate.This review discusses clinical, pathophysiological, radiological and therapeutic concepts of demyelinating disease of the CNS in SLE, focussing on its differentiation from MS and its relation with other CNS demyelinating processes, such as transverse myelitis, optic neuritis and neuromyelitis optica.  相似文献   

7.
The liver is known to be a classical immunoprivileged site with a relatively high resistance against immune responses. Here we demonstrate that highly activated liver-specific effector CD8+ T cells alone were not sufficient to trigger immune destruction of the liver in mice. Only additional innate immune signals orchestrated by TLR3 provoked liver damage. While TLR3 activation did not directly alter liver-specific CD8+ T cell function, it induced IFN-alpha and TNF-alpha release. These cytokines generated expression of the chemokine CXCL9 in the liver, thereby enhancing CD8+ T cell infiltration and liver disease in mice. Thus, nonspecific activation of innate immunity can drastically enhance susceptibility to immune destruction of a solid organ.  相似文献   

8.
BACKGROUND & AIMS: Few data exist regarding mechanisms of mucosal CD8+ T-cell reactivity to epithelial-specific antigen. To dissect the immunologic mechanisms underlying CD8+ T-cell dysregulation, reactivity to a self-antigen expressed in intestinal epithelium of mice bearing a major histocompatibility complex class I-restricted T-cell receptor specific for this antigen was studied. In addition, antigen-specific regulatory CD4+ T cells induced in vivo were tested to control these autoreactive CD8+ T cells. METHODS: Transgenic VILLIN-HA mice were mated with CL4-TCR transgenic mice. Alternatively, adoptive transfer of CL4-TCR transgenic CD8+ T cells into VILLIN-HA transgenic mice was performed to mimic spontaneous encounter of neoantigen. Mucosal CD8+ T cells were characterized under different conditions of tolerance, immunopathology, and active immunosuppression. RESULTS: Transgenic CD8+ T cells from VILLIN-HA x CL4-TCR transgenic mice preferentially migrated and expanded in mucosal lymphoid tissues. Although transgenic CD8+ T cells showed signs of T-cell activation, they failed to cause tissue damage. This was accompanied by the induction/expansion of CD4+ and CD8+, Foxp3-expressing T cells. In contrast, adoptive transfer of naive transgenic CD8+ T cells from CL4-TCR transgenic mice into VILLIN-HA transgenic mice induced severe intestinal inflammation with poor clinical course of disease. Transgenic CD8+ T cells secreted vigorous amounts of proinflammatory cytokines like interferon gamma/tumor necrosis factor alpha. Strikingly, this acute wasting disease was significantly ameliorated by cotransfer of antigen-specific regulatory CD4+ T cells. CONCLUSIONS: Epithelial-specific antigen expression is sufficient to trigger severe antigen-specific CD8+ T-cell-mediated intestinal inflammation; this might be controlled by antigen-specific regulatory T cells under physiological conditions.  相似文献   

9.
Only a very few systematic studies have investigated the frequency of neurologic disorders in patients with Crohn’s disease(CD) and ulcerative colitis(UC), which are the two main types of inflammatory bowel disease(IBD). Results have been inconsistent and variable, owing to differences in case-finding methods and evaluated outcomes in different studies. The most frequent neurologic manifestations reported in CD and UC populations are cerebrovascular disease(with either arterial or venous events), demyelinating central nervous system disease, and peripheral neuropathy(whether axonal or demyelinating); however, the literature describes numerous nervous system disorders as being associated with IBD. The pathogenesis of nervous system tissue involvement in IBD has yet to be elucidated, although it seems to be related to immune mechanisms or prothrombotic states. The recently-introduced tumor necrosis factor(TNF) inhibitors have proven successful in controlling moderate to severe IBD activity. However, severe neurologic disorders associated with TNF inhibitors have been reported, which therefore raises concerns regarding the effect of anti-TNF-α antibodies on the nervous system. Although neurological involvement associated with IBD is rarely reported, gastroenterologists should be aware of the neurologic manifestations of IBD in order to provide early treatment, which is crucial for preventing major neurologic morbidity.  相似文献   

10.
One hypothesis for the etiology of behavioral disorders is that infection by a virus induces neuronal cell dysfunctions resulting in a wide range of behavioral abnormalities. However, a direct linkage between viral infections and neurobehavioral disturbances associated with human psychiatric disorders has not been identified. Here, we show that transgenic mice expressing the phosphoprotein (P) of Borna disease virus (BDV) in glial cells develop behavioral abnormalities, such as enhanced intermale aggressiveness, hyperactivity, and spatial reference memory deficit. We demonstrate that the transgenic brains exhibit a significant reduction in brain-derived neurotrophic factor and serotonin receptor expression, as well as a marked decrease in synaptic density. These results demonstrate that glial expression of BDV P leads to behavioral and neurobiological disturbances resembling those in BDV-infected animals. Furthermore, the lack of reactive astrocytosis and neuronal degeneration in the brains indicates that P can directly induce glial cell dysfunction and also suggests that the transgenic mice may exhibit neuropathological and neurophysiological abnormalities resembling those of psychiatric patients. Our results provide a new insight to explore the relationship between viral infections and neurobehavioral disorders.  相似文献   

11.
《Gut microbes》2013,4(2):103-108
We have recently shown that alteration of the gut commensal microbiota with antibiotics can modify the susceptibility to autoimmune demyelinating processes of the central nervous system. Treatment of mice with a broad spectrum of antibiotics not only induced significant changes in the regulatory T cell populations of the gut associated lymphoid tissues (GALT) and peripheral lymphoid organs but reduced the susceptibility to EAE, the most widely used animal model for human multiple sclerosis. Here, we show further that oral antibiotic treatment of EAE mice induced a CD5+B cell subpopulation that conferred protection against the disease. Protection was associated with an enhanced frequency of CD5+B cells in distal lymphoid sites such as cervical LN. In vitro stimulation with LPS increased the production of IL-10 by splenic CD5+B cells. Adoptive transfer of CD5+B cells from antibiotic treated mice reduced significantly the severity of EAE by shifting the immune responses from Th1/Th17 towards anti-inflammatory Th2-type responses. Our results demonstrate that this specific B cell population appears to be involved in the immune regulation of autoimmunity, in particular this experimental demyelinating disease of the central nervous system by gut commensal microflora.  相似文献   

12.
Perinatal exposure to infectious agents and toxins is linked to the pathogenesis of neuropsychiatric disorders, but the mechanisms by which environmental triggers interact with developing immune and neural elements to create neurodevelopmental disturbances are poorly understood. We describe a model for investigating disorders of central nervous system development based on neonatal rat infection with Borna disease virus, a neurotropic noncytolytic RNA virus. Infection results in abnormal righting reflexes, hyperactivity, inhibition of open-field exploration, and stereotypic behaviors. Architecture is markedly disrupted in hippocampus and cerebellum, with reduction in granule and Purkinje cell numbers. Neurons are lost predominantly by apoptosis, as supported by increased mRNA levels for pro-apoptotic products (Fas, caspase-1), decreased mRNA levels for the anti-apoptotic bcl-x, and in situ labeling of fragmented DNA. Although inflammatory infiltrates are observed transiently in frontal cortex, glial activation (microgliosis > astrocytosis) is prominent throughout the brain and persists for several weeks in concert with increased levels of proinflammatory cytokine mRNAs (interleukins 1alpha, 1beta, and 6 and tumor necrosis factor alpha) and progressive hippocampal and cerebellar damage. The resemblance of these functional and neuropathologic abnormalities to human neurodevelopmental disorders suggests the utility of this model for defining cellular, biochemical, histologic, and functional outcomes of interactions of environmental influences with the developing central nervous system.  相似文献   

13.
To examine the physiological importance of brain angiotensin II type 1 (AT1) receptors, we developed a novel transgenic mouse model with rat AT1a receptors targeted selectively to neurons of the central nervous system (CNS). A transgene consisting of 2.8 kb of the rat neuron-specific enolase (NSE) 5' flanking region fused to a cDNA encoding the full open-reading frame of the rat AT1a receptor was constructed and transgenic mice (NSE-AT1a) were generated. Two of six transgenic founder lines exhibited brain-selective expression of the transgene at either moderate or high levels. Immunohistochemistry revealed widespread distribution of AT1 receptors in neurons throughout the CNS. This neuron-targeted overexpression of AT1a receptors resulted in enhanced cardiovascular responsiveness to intracerebroventricular (ICV) angiotensin II (Ang II) injection but not to other central pressor agents, demonstrating functional overexpression of the transgene in NSE-AT1a mice. Interestingly, baseline blood pressure (BP) was not elevated in either transgenic line. However, blockade of central AT1 receptors with ICV losartan caused significant falls in basal BP in NSE-AT1a mice but had no effect in nontransgenic controls. These results suggest that whereas there is an enhanced contribution of central AT1 receptors to the maintenance of baseline BP in NSE-AT1a mice, particularly effective baroreflex buffering prevents hypertension in this model. Used both independently, and in conjunction with mice harboring gene-targeted deletions of AT1a receptors, this new model will permit quantitative and relevant investigations of the role of central AT1a receptors in cardiovascular homeostasis in health and disease.  相似文献   

14.
Multiple sclerosis is a neurodegenerative disease characterized by episodes of autoimmune attack of oligodendrocytes leading to demyelination and progressive functional deficits. Because many patients exhibit functional recovery in between demyelinating episodes, understanding mechanisms responsible for repair of damaged myelin is critical for developing therapies that promote remyelination and prevent disease progression. The chemokine CXCL12 is a developmental molecule known to orchestrate the migration, proliferation, and differentiation of neuronal precursor cells within the developing CNS. Although studies suggest a role for CXCL12 in oligodendroglia ontogeny in vitro, no studies have investigated the role of CXCL12 in remyelination in vivo in the adult CNS. Using an experimental murine model of demyelination mediated by the copper chelator cuprizone, we evaluated the expression of CXCL12 and its receptor, CXCR4, within the demyelinating and remyelinating corpus callosum (CC). CXCL12 was significantly up-regulated within activated astrocytes and microglia in the CC during demyelination, as were numbers of CXCR4+NG2+ oligodendrocyte precursor cells (OPCs). Loss of CXCR4 signaling via either pharmacological blockade or in vivo RNA silencing led to decreased OPCs maturation and failure to remyelinate. These data indicate that CXCR4 activation, by promoting the differentiation of OPCs into oligodendrocytes, is critical for remyelination of the injured adult CNS.  相似文献   

15.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.  相似文献   

16.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). The appearance of demyelinating patches in the CNS of patients with MS is associated with an inflammatory infiltrate mainly composed of macrophages and T lymphocytes. In this review, we focus on the evidence linking the development of the disease and the cell populations of the adaptative immune system. This evidence arises from anatomopathological, genetical and immunological studies, both on human and the animal model of the disease. Hence, we detail the implication of the effector lymphocytes, i.e. CD4+ and CD8+ T lymphocytes, but also B lymphocytes, in the disease. The implication of the regulatory T and B lymphocytes is also approached. Finally, the main hypotheses proposing an explanation to the development of MS are presented.  相似文献   

17.
Tumor necrosis factor beta (TNF-beta) (lymphotoxin) may play an important role in the immune response and pathologic inflammatory diseases. Insulitis is an important early step in the development of insulin-dependent diabetes mellitus. To understand better the role of TNF-beta in the regulation of inflammation and type 1 diabetes, we produced transgenic mice in which the murine TNF-beta gene was regulated by the rat insulin II promoter. The transgene was expressed in the pancreas, kidney, and skin of transgenic mice. The expression of TNF-beta in the pancreas of transgenic mice resulted in a leukocytic inflammatory infiltrate consisting primarily of B220+ IgM+ B cells and CD4+ and CD8+ T cells. The insulitis is reminiscent of the early stages of diabetes, though the mice did not progress to diabetes.  相似文献   

18.
Dobrzynski E  Mingozzi F  Liu YL  Bendo E  Cao O  Wang L  Herzog RW 《Blood》2004,104(4):969-977
Immune responses to the therapeutic gene product are a potentially serious complication in treatment of genetic disease by gene therapy. Induction and maintenance of immunologic hypo-responsiveness to the therapeutic antigen is therefore critical to the success of gene-based treatment of inherited protein deficiency. Here, we demonstrate induction of antigen-specific CD4+ T-cell tolerance to a secreted transgene product (ovalbumin, ova) in ova-specific T-cell receptor (TCR) transgenic mice by hepatic adeno-associated virus (AAV)-mediated gene transfer. Transduced mice maintained stable circulating ova levels without evidence of an immune response. Lymph node cells and splenocytes were hypo-responsive to ova as early as day 10 after gene transfer. Numbers of TCR+CD4+ cells were reduced in secondary lymphoid organs and in the thymus by 1 to 2 months after vector administration. The remaining TCR+CD4+ cell population was anergic to ova antigen in vitro and enriched for CD25+ cells. These data provide direct evidence that transgene expression following in vivo viral gene transfer can induce CD4+ T-cell tolerance to the transgene product, involving anergy and deletion mechanisms.  相似文献   

19.
A severe immunodeficiency involving a complete loss of T lymphocytes and natural killer cells was observed in independent lines of transgenic mice containing > 30 copies of the human CD3E gene (pL12). T-cell- natural killer (NK)- mice could also be generated by using a gene fragment pL12 delta 1 (without exons 4A and 5) coding for the CD3-epsilon transmembrane region and its 55-amino acid nonenzymatic cytoplasmic tail. The abnormally small thymus gland in the homozygous transgenic animals, which was approximately 1% the size of a wild-type thymus, contained only a few (2-4%) prethymocytes with a Thy-1+Pgp-1+IL-2R alpha- CD3-4-8- phenotype. In mice with lower copy numbers of the transgene thymocyte development was blocked at the Thy-1+Pgp-1-IL-2R alpha+CD3-4-8- stage, and normal NK activity was detected. Mice generated with high-copy numbers of a transgene pL12 delta 2 (pL12 delta 1 minus exons 6), coding for a truncated protein from which the CD3-epsilon extracellular domain, its transmembrane region, and most of its cytoplasmic region were absent, contained normal numbers of T lymphocytes and NK cells. These transgene effects suggested that recruitment of signal-transduction molecules by the cytoplasmic tail of this protein played an important role in the abrogation of both lineages. Taken together these observations support the notion that T lymphocytes and NK cells stemmed from a common precursor.  相似文献   

20.
Sj?gren's syndrome (SS) is an autoimmune disease that is characterized by infiltration of exocrine tissues, resulting in xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). Here, we show that mice with T cell-specific loss of class IA phosphoinositide 3-kinase function develop organ-specific autoimmunity that resembles the human disease SS. Most mutant mice aged 3-8 months develop corneal opacity and eye lesions due to irritation and constant scratching. These mice display cardinal signs of primary SS such as marked lymphocytic infiltration of the lacrimal glands, antinuclear antibodies in the serum, and elevated titer of anti-SS-A antibody, in the absence of kidney pathology. Immunofluorescence studies show the presence of numerous CD4+ T cells with a smaller number of CD8+ T cells and B cells in the lacrimal glands. CD4+ T cells from these mice exhibit aberrant differentiation in vitro. These results indicate that aberrant T cells with impaired class IA phosphoinositide 3-kinase signaling can lead to organ-specific autoimmunity. In addition, the mouse model described here represents a tool to study the pathogenesis and treatment of SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号