首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A high percentage of galanin-immunoreactive (GAL-I) cells within sexually dimorphic components of the medial preoptic area (MPOA) of the rat also concentrate estrogen and GAL microinjected within the medial preoptic nucleus (MPN) facilitates masculine sexual behavior after testosterone priming. Thus, we determined the distribution of GAL-I cells within the MPOA and their response to gonadal steroids. We report significantly greater numbers of GAL-I cells within the central division of the medial preoptic nucleus (MPNc) and fewer within the anteroventral periventricular nucleus (AVPv), of the gonadectomized male than the gonadectomized female; that GAL-I cell numbers and densities within the AVPv are increased significantly in the intact, testosterone- or estrogen-treated male compared to the gonadectomized male and that GAL-I cell numbers and densities within the MPNc and GAL-I cell densities within the medial division of the MPN (MPNm), are increased significantly by gonadal steroids in rats of both sexez. The results suggest an involvement of galaninergic cells within the MPOA in the regulation of sexually dimorphic, gonadal steroid-sensitive functions.  相似文献   

2.
The distribution of cells and fibers that contain opioid peptides within the preoptic region of the rat was examined immunohistochemically. Cells and/or fibers that contain peptides derived from each of the three major opioid peptide families were differentially stained by using antisera that recognize unique derivatives of each precursor molecule and do not cross-react with members of the other opioid peptide families. A beta-endorphin (beta E) antiserum was used to stain fibers that contain peptides derived from the proopiomelanocortin molecule, and dynorphin-containing cells were identified by using an antiserum directed toward dynorphin B (Dyn B) that does not show detectable cross-reactivity with enkephalin-related peptides. An antiserum raised against peptide E (PE), which does not appear to cross-react significantly with dynorphin peptides, was used to localize enkephalin cells and fibers. Each family of opioid peptides showed a unique distribution in the preoptic region. beta E-immunoreactive fibers were primarily localized to the preoptic part of the periventricular nucleus, with moderate densities of fibers contained in the anteroventral periventricular nucleus (AVPv) and medial preoptic nucleus (MPN). Dyn B-immunoreactive fibers showed a somewhat more uniform distribution throughout the region, and only a few Dyn B-stained cells bodies were found within the medial preoptic area. In contrast, the preoptic region contained hundreds of PE-immunoreactive cells, which were particularly numerous within the AVPv, MPN, and anterodorsal preoptic nucleus. The AVPv and MPN also contained discretely localized plexuses of PE-stained fibers. Although the overall distributions of opioid peptide-containing fibers within the preoptic region were quite similar in male and female rats, differential distributions of fibers were found in certain nuclei such as the AVPv and MPN, and they were correlated with previously identified cytoarchitectonic sexual dimorphisms. Such differential distributions were particularly distinct for enkephalin-containing fibers. Although the AVPv is larger in female rats, it contained more PE-immunoreactive cell bodies in male rats, and we have shown here that this sexual dimorphism appears to be at least partially dependent on perinatal levels of gonadal steroids. In contrast, no difference in the number of PE-stained cells was found within the anterodorsal preoptic nucleus of male and female animals, indicating that sexual differences are not a general characteristic of enkephalinergic cells in the preoptic region of the rat.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Male and female rats have approximately equal numbers of estrogen(E)-concentrating cells within the medial preoptic area (MPOA). Several cell groups within this brain region are sexually dimorphic, however, and these groups may have sexually different numbers of E-containing cells; this, in turn, may reflect sex differences in neural-regulated functions. In order to study this possibility, the distribution of E-concentrating cells was determined using estrogen autoradiography. Except for the lateral portion of the medial preoptic nucleus (MPNl), the density of E-concentrating cells was 3-5-times higher within the most medially situated cell groups of the female than the male, i.e., within the anteroventral periventricular nucleus (AVPv), periventricular preoptic area (PVPO), medial portion of the medial preoptic nucleus (MPNm), and its central portion (MPNc). In addition, we determined whether E-concentrating cells also express the neuropeptide, galanin. An average of 13% of the E-concentrating cells were galanin positive, which represented 15% of the galanin-immunoreactive population. These results demonstrate a frank and dramatic sex difference in the distribution of E-concentrating cells within sexually dimorphic regions of the MPOA, and also suggest that an interaction between galanin and gonadal steroids may be an important means by which cells within the MPOA regulate reproductive function.  相似文献   

4.
Neurotensin release from estrogen-responsive neurons in the rostral preoptic area of the female rat may play an important role in triggering preovulatory secretion of gonadotropin-releasing hormone on proestrus. We investigated the possibility of sexually differentiated biosynthesis of neurotensin in the rostral preoptic area, using in situ hybridization histochemistry to detect neurotensin/neuromedin N (NT/N) mRNA in adult male rats and adult female rats at proestrus and the first day of diestrus. In sections through the anteroventral periventricular nucleus (AVPv), the number of labeled cells in proestrous females was four times that in males. Diestrus females exhibited half the number of labeled cells present at proestrus, and there was evidence for a significant correlation between circulating estradiol level and number of labeled cells in the AVPv. In the rostral portion of the medial preoptic nucleus (MPN), two contiguous groups of labeled cells were especially prominent. One group, in the medial half of the MPN, was located closer to the midline in females than in males and displayed greater labeling in males than in females. Furthermore, labeling in the rostral MPN was greater at proestrus than at diestrus. These results indicate that biosynthesis of neurotensin and neuromedin N in the rostral preoptic area may be sexually differentiated and, in the female, may vary across the estrous cycle in parallel with circulating estradiol levels, consistent with the view that neurotensin neurons in this area are involved in the regulation of preovulatory secretion of gonadotropin-releasing hormone. The sex- and region-specific expression of NT/N mRNA in the rostral preoptic area suggests functional heterogeneity of neurotensin neuronal populations in this area and implies complex regulation of NT/N gene expression in the rat brain.  相似文献   

5.
The anteroventral periventricular nucleus (AVPv), which lies in the periventricular zone of the preoptic region, is critical for normal phasic gonadotropin secretion since lesions of this nucleus abolish the progesterone-induced surge of luteinizing hormone secretion from the anterior pituitary, block ovulation, and induce persistent vaginal estrus in female rats. However, very little is known about the neurotransmitter-specific pathways associated with this nucleus. In the present study we evaluated the distribution of biochemically specific cells and fibers within the AVPv and adjacent regions by using an indirect immunohistochemical method with antisera to serotonin (5-HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin-8 (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (ACTH1-24), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). Our findings indicate that both cells and fibers containing these putative neurotransmitters are differentially distributed in and around the AVPv in accordance with the cytoarchitectonic organization of this part of the preoptic region. The AVPv itself appears to receive strong inputs from SP-, VAS-, CCK-, and SS-containing pathways, whereas the highest densities of L-ENK-, NT-, 5-HT-, NPY-, and DBH-immunoreactive fibers were found in the cell-sparse zone just lateral to the AVPv. The suprachiasmatic preoptic nucleus (PSCh), a small group of cells located ventral to the AVPv just dorsal to the optic chiasm, contained high densities of alpha-MSH- and ACTH-immunoreactive fibers, as well as substantial numbers of fibers containing catecholamines or NPY. In contrast, a dense plexus of VAS-stained fibers was distributed fairly evenly throughout the AVPv and PSCh. Numerous L-ENK-immunoreactive cell bodies, and moderate numbers of CCK-, NT-, and CRF-stained cell bodies were found in the AVPv. The PSCh contained many TH-stained cells (presumably dopaminergic), in addition to a moderate number of CCK-containing cell bodies, while a high density of NT- and CRF-stained cells were found in the cell-sparse zone lateral to the AVPv, in addition to several CCK-, SP-, VIP-, and TH-containing cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Male rat copulatory ability decreases dramatically following castration. This may be due in part to the impairment of medial preoptic area (MPOA) dopamine (DA) release. Previous studies showed that extracellular DA levels in the MPOA of castrates were lower than in intact males, both during basal conditions and in the presence of a receptive female. However, tissue levels of DA in the MPOA were higher in castrates than in intact males, suggesting that DA synthesis may be normal or increased in castrates, but that release may be compromised. The current study found that neither long term (2 months) nor short term (2 weeks) castration had any effect on the number of neurons in the DA A14 area that were immunoreactive (ir) for tyrosine hydroxylase (TH), the rate limiting enzyme for DA synthesis. Therefore, castration may not affect DA synthesis in the MPOA. Tissue levels of neurotransmitter reflect release, as well as synthesis. We previously reported that nitric oxide (NO) may increase DA release in the MPOA. The present study tested whether castration affected the number of NO producing cells in the MPOA. Long term, but not short term, castration significantly decreased the number of NADPH-d (nicotinamide adenine dinucleotide phosphate diaphorase) positive neurons and brain nitric oxide synthase immunoreactive (bNOS-ir) neurons in the medial preoptic nucleus (MPN). This suggests that in gonadally intact animals testosterone may activate NOS, which increases the production of NO. Long or short term castration had no effect on the numbers of bNOS-ir neurons in the paraventricular nucleus (PVN) or medial amygdala. However, short term castration decreased bNOS-ir neurons in the bed nucleus of stria terminalis (BNST). Thus, one means by which testosterone promotes male sexual behavior may be by increasing production of NO in the MPOA, which increases local DA release.  相似文献   

7.
The medial preoptic area of the rat exhibits morphologic sex differences and is implicated in the control of sexually dimorphic behavior and function. Neurons expressing calcitonin gene-related peptide (CGRP) within the anteroventral periventricular (AVPV) and medial preoptic nucleus (MPN) of the medial preoptic area exhibit female-dominant sex differences in number through organizational and activational effects of gonadal steroids. The present study used retrograde tracing experiments to establish the projections of the AVPV and MPN CGRP neurons in the female rat. After the intraperitoneal administration of Fluoro-Gold to female rats (n = 5), we were unable to detect retrograde tracer in any CGRP-immunoreactive cells of the hypothalamus. Intracerebral injections of 50- to 100-nl volumes of Fluoro-Gold into the mediobasal hypothalamus resulted in up to 70% of CGRP neurons in the AVPV and MPN containing retrograde tracer. Similar large volume tracer depositions in the lateral septum, periaqueductal gray, two likely CGRP projection sites, resulted in no labeling of preoptic CGRP neurons. Experiments using small volume (30-nl) injections of Fluoro-Gold and green fluorescent microspheres at multiple sites in the mediobasal hypothalamus (n = 18) revealed that approximately 60% of AVPV and 30% of MPN neurons expressing CGRP were projecting to the region of the tuberal and ventral premammillary nuclei, with a minor projection to the dorsomedial nucleus. These findings demonstrate a major projection of the preoptic CGRP neurons to the posterior hypothalamus in the female rat and support further a functional role for these neurons in the sexually dimorphic regulation of reproductive functioning.  相似文献   

8.
Previous studies indicate that the latency to initiate parental behavior in both male and female rats increases with age; weanling (21 days old) rats display parental behavior 0-2 days after exposure to newborn pups, while older juveniles (30 days old) require 5-6 days of pup exposure before they express the behavior. Furthermore, activation of mu-opioid receptors inhibits parental behavior in juvenile and adult rats. We hypothesized that the age-related increase in behavioral latency could be modulated by the induction of mu-receptor expression in the medial preoptic area (MPOA), a region in which mu-receptors regulate parental behavior. In situ hybridization histochemistry was used to measure mu-receptor mRNA expression in the MPOA of male and female Sprague-Dawley rats that were 21, 24, 27, 30, or 33 days old. Using autoradiographic film analysis, we observed that neurons within part of the MPOA expressed very dense mu-receptor mRNA. Comparison of mRNA distribution with histological boundaries indicated that neurons within the medial preoptic nucleus (MPN), excluding the central part, exhibited the highest density of mu-receptor mRNA within the MPOA. High densities of mu-receptor mRNA extended dorsolaterally and caudally from the MPN toward the bed nucleus of the stria terminalis. MPN mu-receptor mRNA expression was not altered with age and no sex difference was observed. The dense presence of mu-receptor mRNA in the MPN suggests that ample substrate exists on which mu-receptor ligands could modulate the latency to begin parental behavior in juvenile rats, but such behavioral expression apparently is not mediated by a change in mu-receptor mRNA production.  相似文献   

9.
Electrolytic lesions were made in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis (BNST) to evaluate their participation in the neural regulation of copulatory and chemoinvestigatory behaviors in male hamsters. Damage to either the MPOA or the BNST caused severe deficits in copulatory performance in a subset of the animals in each group. In the MPOA group all males displaying severe deficits had lesions which included a small central region of the caudal MPOA. In the BNST group, animals with severe copulatory deficits all had large lesions which covered most of both the medial and lateral parts of the nucleus. In contrast, MPOA and BNST lesions differentially affected chemoinvestigatory behaviors. MPOA lesions did not affect any of the males' anogenital investigation rates or attraction to female odors, even though some of these hamsters had stopped mating completely. Males with BNST lesions, on the other hand, all displayed significant reductions in their chemoinvestigatory responding even though the majority of them continued to mate normally. We suggest that the MPOA and BNST may in part regulate male sexual behavior by differentially responding to 'attractant' and 'mounting' substances within female hamster vaginal secretion.  相似文献   

10.
L A Lumley  E M Hull 《Brain research》1999,829(1-2):55-68
The medial preoptic nucleus (MPN) of the medial preoptic area (MPOA) and the medial amygdala are two brain regions in which male rat sexual behavior increased Fos-like immunoreactivity (Fos-Li). Dopamine is released in the MPOA during male rat sexual behavior and facilitates copulation. Psychostimulants, which increase dopamine levels, induce Fos-Li in the striatum through D1 receptors. We examined whether copulation-induced Fos-Li in the MPN was also mediated through D1 receptors. In Experiment 1, sexually inexperienced male rats that received the D1 antagonist Schering 39166 prior to their first sexual experience had fewer Fos-Li cells in the MPN than did those that received vehicle. In Experiment 2, no significant effect of the D1 antagonist was observed on copulation-induced Fos-Li in male rats that had received repeated sexual experiences prior to the drug test day. Sexual experience increases copulatory efficiency; the mechanisms by which this improvement occurs are unclear. In Experiment 3, copulation by highly experienced male rats led to greater Fos-Li in the MPN than did copulation by sexually naive males. Although there were no differences between groups in amygdala Fos-Li in these studies, in several groups Fos-Li in the medial amygdala was positively correlated with the post-ejaculatory interval. These experiments indicate that (1) stimulation of D1 receptors may contribute to the transient copulation-induced increase in Fos-Li in the MPN, and (2) repeated sexual experiences enhanced copulation-induced Fos-Li in the MPN, which may represent a marker of altered responsiveness of neurons in the MPN to sexual or conditioned stimuli.  相似文献   

11.
Sex steroid hormones act on developing neural circuits regulating the hypothalamic‐pituitary‐gonadal axis and are involved in hormone‐sensitive behaviours. These hormones act mainly via nuclear receptors, such as oestrogen receptor (ER)‐α and androgen receptor (AR). By using immunohistochemistry, we analysed the expression level of ERα and AR throughout perinatal life [at embryonic (E) day 19 and postnatal (P) days 5, 15 and 25] and in adulthood in several hypothalamic nuclei controlling reproduction in both wild‐type and aromatase knockout (ArKO) (i.e. which cannot convert testosterone into oestradiol) mice to determine whether there are sex differences in hypothalamic ERα and AR expression and, if so, whether these are established by the action of oestradiol. As early as E19, ERα immunoreactivity (‐IR) was observed at same expression levels in both sexes in the anteroventral periventricular nucleus (AVPv), the medial preoptic area (MPOA), the bed nucleus of the stria terminalis (BnST), the ventrolateral part of the ventromedial hypothalamic nucleus and the arcuate nucleus (ARC). Sex differences (female > male) in ERα‐IR were observed not only during the prepubertal period in the BnST (P5 to P25) and the MPOA (P15), but also in adulthood in these two brain regions. Sex differences in AR‐IR (male > female) were observed at P5 in the AVPv and ARC, and at P25 in the MPOA and ARC, as well as in adulthood in all hypothalamic regions analysed. In adulthood, gonadectomy and hormonal treatment (oestradiol or dihydrotestosterone) also strongly modulated ERα‐IR and AR, respectively. Taken together, sex differences in ERα‐IR and AR‐IR were observed in all hypothalamic regions analysed, although they most likely do not reflect the action of oestradiol because ArKO mice of both sexes showed expression levels very similar to wild‐type mice throughout perinatal development.  相似文献   

12.
The hypothalamic distribution of cholecystokinin-immunoreactive (CCKI) cell bodies in colchicine-treated male and female rats was studied. Immunoreactive neurons were visualized along the anterior two-thirds of the third ventricle but were especially numerous in the preoptic periventricular nucleus. Dense aggregations of CCKI cells were found in the anterior magnocellular, posterior magnocellular, medial parvicellular, and posterior parvicellular divisions of the paraventricular nucleus. Both the supraoptic nucleus and the central, cell-dense part of the dorsomedial nucleus contained large numbers of CCKI cells. CCKI cells in the preoptic periventricular nucleus were more numerous in the female, as was a population of labeled cells in the dorsal medial preoptic area. However, CCKI cell bodies in this part of the medial preoptic area were larger in males than in females. Males had more CCKI cells in the central part of the medial preoptic nucleus and in the posterior magnocellular subdivision of the paraventricular nucleus. Both males and females had similar numbers of immunoreactive cells in the anterior magnocellular and the parvicellular divisions of the paraventricular nucleus as well as in the anterior hypothalamus, dorsal areas, dorsomedial nucleus, and supramammillary region. These data provide morphological evidence for a sexually differentiated hypothalamic CCKI system.  相似文献   

13.
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is larger in male than in female rats, the male phenotype requiring the presence of circulating androgens perinatally. These experiments investigated the intracellular electrophysiology and morphology of SDN-POA neurons and compared these properties with those of other medial preoptic area (MPOA) neurons. Biocytin-injected cells in the SDN-POA either had one or two primary dendrites, or they had multipolar dendritic arrays; dendrites were aspiny or sparsely spiny and displayed limited branching. Neurons in other parts of the MPOA were similar morphologically. Regardless of morphology, neurons situated in either the SDN-POA or surrounding MPOA had low-threshold potentials and linear or nearly linear current-voltage relations. In most (73%) cells, stimulation of the dorsal preoptic region evoked a fast excitatory postsynaptic potential followed by a fast inhibitory postsynaptic potential (IPSP). Bicuculline blocked the fast IPSPs, which reversed near the Cl2 equilibrium potential (-71 ± 5mV), indicating their mediation by gamma-aminobutyric acid (GABA)A receptors. Neurons in the SDN-POA have electrophysiological properties similar to those of other medial preoptic cells. When compared with the hypothalamic paraventricular nucleus, the MPOA appears relatively homogeneous electrophysiologically. This is despite the morphological variability within this population of neurons and heterogeneities that are also apparent at other levels of analysis. Finally, GABA-mediated, inhibitory synaptic contacts are widespread among medial preoptic neurons, consistent with indications from earlier reports that GABA provides a link in the feedback actions of gonadal steroids on the release of gonadotropic hormones. © 1994 Wiley-Liss, Inc.  相似文献   

14.
The medial preoptic nucleus (MPN) of the medial preoptic area (MPOA) and the medial amygdala are two brain regions in which male rat sexual behavior increased Fos-like immunoreactivity (Fos-Li). Dopamine is released in the MPOA during male rat sexual behavior and facilitates copulation. Psychostimulants, which increase dopamine levels, induce Fos-Li in the striatum through D1 receptors. We examined whether copulation-induced Fos-Li in the MPN was also mediated through D1 receptors. In Experiment 1, sexually inexperienced male rats that received the D1 antagonist Schering 39166 prior to their first sexual experience had fewer Fos-Li cells in the MPN than did those that received vehicle. In Experiment 2, no significant effect of the D1 antagonist was observed on copulation-induced Fos-Li in male rats that had received repeated sexual experiences prior to the drug test day. Sexual experience increases copulatory efficiency; the mechanisms by which this improvement occurs are unclear. In Experiment 3, copulation by highly experienced male rats led to greater Fos-Li in the MPN than did copulation by sexually naive males. Although there were no differences between groups in amygdala Fos-Li in these studies, in several groups Fos-Li in the medial amygdala was positively correlated with the post-ejaculatory interval. These experiments indicate that (1) stimulation of D1 receptors may contribute to the transient copulation-induced increase in Fos-Li in the MPN, and (2) repeated sexual experiences enhanced copulation-induced Fos-Li in the MPN, which may represent a marker of altered responsiveness of neurons in the MPN to sexual or conditioned stimuli.  相似文献   

15.
The medial preoptic nucleus (MPN) is a sexually dimorphic complex with three major subdivisions. The cell-dense central (MPNc) and medial (MPNm) subdivisions are larger in male rats, while the cell-sparse lateral subdivision (MPNl) occupies a majority of the nucleus in females. In the present study we evaluated the distribution of possible monoaminergic and peptidergic cells and fibers within the MPN, as well as in adjacent regions of the medial preoptic area of the adult male rat. For this, we used an indirect immunohistochemical method with antisera to serotonin (5HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (1-24; ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). The results suggest that cell bodies and/or fibers crossreacting with all of these putative neurotransmitters are differentially distributed within the MPN. Within the MPNm, the densest plexuses of fibers were stained with antisera to SP and NPY, while moderate densities of fibers were stained with anti-DBH, SS, CCK, CGRP, ACTH, and alpha-MSH, and only a few fibers were stained with anti-5HT, TH, NT, VAS, and L-ENK. Moderate numbers of SP- and L-ENK-immunoreactive cell bodies, and a few SS-, NT-, CRF-, and TRH-stained cell bodies were also found within the MPNm. The MPNc contained a dense plexus of CCK-immunoreactive fibers, as well as a few CRF-immunoreactive fibers. Both fiber types were localized almost exclusively to this subdivision, while most of the others studied here appeared to avoid it selectively. This suggests that there are relatively few inputs to the MPNc, and that they tend to avoid other parts of the nucleus, although moderate densities of DBH- and NPY-immunoreactive fibers were found in both the MPNm and MPNc. The MPNc contained several CCK-immunoreactive cell bodies as well as a moderate number of TRH-stained cell bodies. Both cell types were nearly completely localized to the MPNc. The major inputs to the MPNl studied here appear to be stained with antisera to 5HT and L-ENK, although moderate numbers of NT- and CRF- immunoreactive fibers were also found in this part of the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), and medial amygdaloid nucleus (Me) are essential for male sexual behavior in the Syrian hamster. These nuclei received chemosensory stimuli and gonadal steroid signals, both of which are required for mating behavior. The objective of this study was to compare the distribution of androgen- and estrogen-concentrating neurons in MPOA, BNST, and Me in the adult male hamster using steroid autoradiography for estradiol (E2), testosterone (T) and dihydrotestosterone (DHT). Adult males (n = 4 per group) received two i.p. injections of tritiated steroid 4-7 days after castration. Six-microns frozen sections through the brain were mounted onto emulsion-coated slides, and exposed for 11-16 months. In MPOA, BNST, and Me, neurons were more abundant and heavily labelled after [3H]E2 treatment than after either [3H]T or [3H]DHT. Tritiated estradiol- and DHT-labeled cells were found throughout the rostrocaudal extent of Me, with a high concentration in posterodorsal Me. Tritiated testosterone treatment labelled cells largely within posterodorsal Me. In MPOA, the majority of E2-, T-, and DHT-labelled neurons were in the medial preoptic nucleus (MPN) and the preoptic continuation of the posteromedial bed nucleus of the stria terminalis (BNSTpm). Few T-labelled cells were present outside these subdivisions. In the BNST, E2- and DHT-labelled neurons were present in all subdivisions, whereas T labelling was confined to the antero- and posteromedial subdivisions of BNST. These results suggest that the distribution of androgen- and estrogen receptor-containing neurons overlap considerably in nuclei which transmit chemosensory signals in the control of mating behavior.  相似文献   

17.
K Yuri  M Kawata 《Brain research》1992,578(1-2):282-288
The effects of 17 beta-estradiol (E2) on calcitonin gene-related peptide (CGRP)- and methionine-enkephalin (Met-Enk)-immunoreactive (IR) nerve fibers in the periventricular preoptic nucleus (Pe) and the medial preoptic area, including the medial preoptic nucleus (MPN), of the female rat were studied semi-quantitatively by using a computer-based image analysis system. The area occupied by CGRP- and Met-Enk-IR fibers was significantly increased in the Pe and the MPN after 28-day exposure to E2. Computer-based analysis of CGRP- and Met-Enk-IR fibers in an area of 50-microns intervals from the wall of the third ventricle showed a low flat histogram pattern in ovariectomized rats, but E2 treatment caused a diphasic pattern, corresponding to the Pe and the MPN, respectively. Since the Pe and the MPN contain a high population of estrogen receptors, it is suggested that E2 may have an influence on the neuronal configuration of afferent fibers to these areas.  相似文献   

18.
Struthers WM 《Neuroreport》2001,12(14):3065-3068
Sexual activity results in cells displaying Fos-like Immunoreactivity (FLI) in the medial preoptic area (MPOA) of male rats. This study combined retrograde tracing techniques with FLI to determine if MPOA cells displaying sex-induced FLI project to known efferent sites of the MPOA. FluoroGold was injected into the dorsal central gray, lateral central gray, ventral tegmental area, medial central tegmental field, or lateral central tegmental field of male rats that later engaged in sexual activity. Examination of FLI and FluoroGold in the MPOA revealed that the lateral region of the MPOA projected to the lateral central gray and contained smaller projections to the other regions. These findings suggest that the lateral MPOA contains secondary sex-relevant projections to the midbrain.  相似文献   

19.
To determine the extent of colocalization of substance P (SP) and prodynorphin peptides within neurons of the medial nucleus of the amygdala (AMe), medial bed nucleus of the stria terminalis (BNSTm) and medial preoptic area (MPOA), we incubated colchicine-treated Syrian hamster brain tissue in an antiserum mixture containing rat anti-SP antibody combined with 1 of 3 rabbit antibodies against prodynorphin peptides: anti-dynorphin A(1-17), anti-dynorphin B(1-13) or anti-C-peptide. This was followed by incubation in a secondary antiserum mixture containing fluorescein-labelled anti-rabbit and rhodamine-labelled anti-rat antibodies. Sections were viewed with an epifluorescence microscope using blue light excitation for fluorescein and green light excitation for rhodamine. Colocalization of SP and prodynorphin labelling was observed in neurons of the caudal parts of AMe, BNSTm and MPOA, areas which are essential for male mating behavior. The colocalization was most extensive in the dorsolateral part of the caudal MPOA, the caudodorsal part of the BNSTm, and in the posterodorsal subdivision of AMe. Although all 3 dynorphin peptides coexisted with SP in these areas, dynorphin B did so less than C-peptide, and dynorphin A less than dynorphin B.  相似文献   

20.
The amygdaloid neurons of origin and the trajectory of amygdaloid fibers to the medial preoptic area of the adult male Syrian hamster were identified by using horseradish peroxidase (HRP) histochemistry. After iontophoresis of HRP into the medial preoptic area, retrogradely labeled amygdaloid neurons were located in the dorsal and caudal parts of the medial amygdaloid nucleus and throughout the amygdalohippocampal area. No amygdaloid neurons were labeled after HRP applications confined to the most rostral portion of the medial preoptic area (anterior to the body of the anterior commissure). Following more caudal medial preoptic area injections (body of the anterior commissure to the suprachiasmatic nucleus) the distribution of retrogradely labeled cells in the medial amygdaloid nucleus and the amygdalohippocampal area revealed no topographic organization of the amygdalopreoptic connections. When amygdaloid neurons were labeled, the amygdalohippocampal area contained two to five times as many HRP-filled cells as the medial amygdaloid nucleus. Retrogradely transported HRP could be followed from the medial preoptic area to the amygdala through fibers in the dorsomedial quadrant of the stria terminalis. In addition, electrolytic lesions of the stria terminalis prior to iontophoresis of HRP into the medial preoptic area prevented retrograde transport to neurons in both the dorsocaudal medial amygdaloid nucleus and the amygdalohippocampal area. These results confirm earlier observations describing the location of autoradiographically labeled efferents from the medial amygdaloid nucleus to the medial preoptic area and provide new information about the restricted region within the medial amygdaloid nucleus from which these projections arise. They also suggest that, unlike the projections from the medial amygdaloid nucleus to the bed nucleus of the stria terminalis, the efferents to the medial preoptic area travel entirely in the stria terminalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号