首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
[目的]评价胸椎椎弓根螺钉在脊柱侧凸矫形术中的应用效果。[方法]2008~2010年采用后路胸椎椎弓根螺钉技术治疗特发性和先天性脊柱侧凸患者26例。根据术后临床表现、矫正率和术后X线片判定胸椎椎弓根螺钉置钉情况,对胸椎椎弓根螺钉在脊柱侧凸矫形术中的应用效果进行评价。[结果]本组病例术后平均矫正率为63.81%,术后患者脊柱长度平均增加6.2 cm;术后X线片判定置入的308枚胸椎椎弓根螺钉中,置钉不良率为16.9%;所有患者术后均无胸部脏器及神经系统损伤表现。[结论]在脊柱侧凸临床治疗中,采用胸椎椎弓根螺钉进行侧凸矫形是有效、安全的方式。  相似文献   

2.
目的:探讨青少年脊柱侧凸患者胸椎椎弓根螺钉置入的准确性和安全性,以减少相关手术并发症。方法:32例青少年脊柱侧凸患者术前均对畸形脊柱进行标准俯卧位CT加密扫描,测量进钉点至椎体前缘的深度、进针角度、椎弓根直径和椎体的旋转角度,根据测得数据确定椎弓根螺钉置入的深度和方向,置入螺钉后再行脊柱全长X线片及CT扫描评价置钉的准确性和安全性。结果:32例共置入226枚胸椎椎弓根螺钉,术后CT加密和X线片观察到205枚螺钉(90.7%)完全在椎弓根皮质骨内。10例21枚螺钉(9.3%)发生错置,7枚螺钉(3.1%)偏外,5枚螺钉(2.2%)偏前外侧(其中2枚螺钉靠近节段血管),4枚螺钉(1.8%)偏下,4枚螺钉(1.8%)直径过大导致椎弓根内壁膨胀内移,1枚螺钉(0.4%)误入椎管导致完全性脊髓损伤。T1~T4错置12枚(18.2%),T5~T12错置9枚(6.1%);凸侧椎根螺钉置入的准确率为93.8%,凹侧为83.1%。结论:脊柱畸形患者术前应常规采用标准俯卧位CT加密扫描,根据扫描图像测得的相关数据可为术中准确置入椎弓根螺钉提供重要参考依据。在青少年脊柱侧凸患者胸椎椎弓根螺钉置入有一定的误置率,螺钉发生错置多见于上胸椎和凹侧.术中应高度重视。  相似文献   

3.
特发性脊柱侧凸患者胸椎椎弓根的CT测量及其临床意义   总被引:23,自引:8,他引:15  
目的:测量特发性脊柱侧凸患者胸椎椎弓根的有关数据,探讨其临床应用价值。方法:在30例特发性脊柱侧凸患者术前CT扫描片上测量胸椎椎弓根的宽度、深度、角度、椎体旋转角度等数据,根据所得数据选定置入螺钉的直径、长度.确定置入方向和深度。术后对置入螺钉的胸椎椎弓根节段行CT扫描,判断置钉位置。结果:CT测量的各项数据显示胸椎椎弓根适合椎弓根螺钉的置入。以此为依据术中置入胸椎弓根螺钉共245枚,228枚(93%)置入无误,6枚穿破椎弓根外壁,9枚穿破椎弓根下壁,2枚穿破椎弓根内壁,无神经系统并发症。结论:术前CT扫描测量特发性脊柱侧凸患者的胸椎椎弓根的有关数据可为选择适当长度和直径的螺钉并将其准确置入胸椎椎弓根内提供参考。从而保证螺钉安全置入。  相似文献   

4.
目的 评价徒手胸椎椎弓根螺钉置入技术治疗青少年特发性脊柱侧凸的安全性。方法从2002年7月~2004年6月对38例青少年特发性脊柱侧凸患者,徒手应用胸椎椎弓根螺钉进行后路矫形内固定,所有患者术中进行神经电生理监测及X线透视确认,术后进行X线成像、CAT扫描评估螺钉位置,并对其中35例进行随访,从而评价本技术的安全性。结果共置入胸椎椎弓根螺钉326个,每一水平置入的螺钉数如下:T1,n=2;T2,n=10;T3,n=19;T4,n=27;L,n=28;T6,n=24;T7,n=23;TB,n=25;T9,n=29;T10,n=34;T11,n=48;T12,n=57。通过胸椎CT扫描评价326枚置入畸形胸椎的螺钉位置。共有19枚螺钉(5.8%)有中等程度的皮质穿破,即螺钉的中线在椎弓根壁皮质之外,其中6枚螺钉(1.8%)穿破椎弓根内侧壁。对35例患者进行术后跟踪随访,平均随访时间2年,未发现任何与置入的胸椎椎弓根螺钉(全部326枚螺钉)相关的神经、血管或内脏并发症。结论遵循严格步骤,逐步置入胸椎椎弓根螺钉的徒手技术在治疗青少年特发性脊柱侧凸中具有可靠的安全性。  相似文献   

5.
[目的]探讨术中实施三维导航在脊柱侧凸病人椎弓根螺钉置入的应用价值.[方法] 38例脊柱侧凸病人行三维导航引导下椎弓根螺钉固定术,其中青少年特发性脊柱侧凸18例,老年退行性脊柱侧凸20例.手术中脊柱CT三维扫描后向导航系统输入患者信息资料,用导航棒按导航指引下在最佳位置、直径和长度立体、动态地置入椎弓根螺钉.[结果]三维导航引导下成功对38例脊柱侧凸病人共置入236枚椎弓根螺钉,复查X线片和CT,无螺钉松动和断裂,按分类法:A级227枚,B级7枚,C级2枚,D级0枚.术后侧凸平均26°(21°~118°),矫正率(61%);术后后凸平均14°(5°~29°),矫正率39%.38例平均随访18个月(12 ~25个月),术后无脊髓或神经根损伤.[结论]三维导航引导下的脊柱侧凸椎弓根钉置入方法精确可靠.  相似文献   

6.
目的:评价多节段椎弓根螺钉内固定系统矫正胸椎侧凸畸形的有效性和安全性。方法:回顾我院1994年3月~2002年3月应用椎弓根钉-棒系统矫治的118例胸椎侧凸畸形患者的临床资料,分析评价其手术并发症、侧凸矫正率及长期随访结果。结果:胸椎椎弓根总计置入螺钉916枚,术中及术后螺钉松动16枚;螺钉位置不良12枚;椎弓根骨折7例;脑脊液漏3例;1例术后螺钉松动压迫脊髓。术后平均随访5年,脊柱侧凸畸形平均矫正率为75%,平均矫正度丢失率1.2%,1例出现交界性后凸再次手术治疗。结论:多节段椎弓根螺钉内固定系统是矫正脊柱侧凸畸形一种较安全、有效的三维内固定方式。  相似文献   

7.
个体化导航模板在胸椎椎弓根螺钉置入中的初步临床应用   总被引:1,自引:0,他引:1  
目的:通过临床应用评价个体化导航模板辅助胸椎椎弓根螺钉置入的准确性和安全性。方法:2008年7月~2009年9月,对11例需要行胸椎椎弓根螺钉置入手术的患者(青少年特发性脊柱侧凸7例,先天性脊柱侧凸2例,胸椎结核后凸畸形1例,多发性胸椎骨折1例)术前根据CT三维重建图像利用计算机辅助设计及快速成型技术设计制作46个胸椎个体化导航模板,术中应用个体化导航模板辅助在T2~T12置入椎弓根螺钉92枚,术后CT扫描评价螺钉位置,记录有无与螺钉置入相关的并发症。结果:通过个体化导航模板辅助置入的92枚胸椎椎弓根螺钉中,83枚完全在椎弓根内,9枚穿破椎弓根壁(其中椎弓根内侧壁穿破2枚、椎弓根外侧壁穿破7枚),其中5枚螺钉因椎弓根宽度小于4mm(3.0~3.8mm)而采用椎弓根旁固定方法(椎弓根螺钉轻度穿破椎弓根外侧壁经胸肋关节内侧进入椎体),椎弓根壁非故意穿破率为4.3%,置钉准确率为95.7%,所有穿破椎弓根壁的螺钉的穿出距离均小于2mm,螺钉位置可接受率为100%。无与螺钉置入有关的神经、血管、内脏损伤等并发症的发生。结论:个体化导航模板辅助胸椎椎弓根螺钉置入的置钉准确率高,安全、可行。  相似文献   

8.
目的:评估10岁及以下脊柱侧凸患儿侧凸矫正术中椎弓根螺钉置入的精确性及安全性,并分析其相关影响因素。方法:回顾性分析2008年2月~2008年7月我院收治的行后路椎弓根螺钉固定的10岁及以下脊柱侧凸41例患儿的临床资料,所有患者术前、术后均行CT检查,男26例,女15例,年龄2~10岁,平均5.4岁。先天性脊柱侧凸36例,特发性脊柱侧凸2例,神经肌肉源性脊柱侧凸2例,先天性软骨发育不全伴脊柱侧凸1例。术中根据解剖标志徒手置入椎弓根螺钉。在PACS系统上通过Pacs Client软件测量螺钉尖距椎弓根内壁、外壁、上壁、下壁以及椎体前缘的距离。若左侧椎弓根螺钉穿破椎弓根外壁或椎体前缘,测量钉尖与主动脉的距离。根据椎弓根螺钉所在位置(节段、凹凸侧、脊椎发育是否异常)分析其破壁率差别。不良置钉定义为椎弓根螺钉穿破椎弓根内、外壁或椎体前缘的距离超过2mm,和椎弓根螺钉进入椎间孔或穿破终板进入椎间盘。结果:本组病例共置入242枚椎弓根螺钉,胸椎128枚,腰椎114枚,平均每例患者置入5.8枚螺钉。螺钉完全在椎弓根内208枚,占86.0%。破壁34枚(占14.0%),其中不良置钉18枚(占7.4%),18枚中有5枚穿破外壁,8枚穿破内壁,5枚穿破椎体前缘。形态异常椎和凹侧的椎弓根螺钉的破壁率较高(分别为24.1%和17.9%)。术中一枚螺钉拔出,未出现其他螺钉置入相关并发症。穿破椎体前缘螺钉距离主动脉距离平均2.3mm。结论:10岁及以下儿童椎弓根螺钉的徒手置入有较高的精确性和安全性,但在发育不良椎体及凹侧置钉时应谨慎。  相似文献   

9.
术前CT引导胸腰椎椎弓根螺钉置入改良技术   总被引:2,自引:1,他引:1  
目的:探讨总结以术前CT扫描椎弓根轴心来获得螺钉置入解剖参数引导胸腰段椎弓根螺钉置入的改良方法。方法:使用改良置钉技术对56例脊柱损伤患者置入胸腰椎弓根螺钉242枚,其中男32例,女24例;年龄21~69岁,平均43岁。以术前CT扫描确定椎弓根轴心线,轴心线附近的解剖标志为参照确定螺钉入点,内聚E角、螺钉长度、直径均可在CT椎弓根轴心片上读出,而矢状F角可由X线侧位片上读出或观察脊突线得出。结果:242枚螺钉术后均拍摄椎弓根CT片复查,238枚螺钉完全置入椎弓根内,仅4枚有穿破椎弓根皮质,失误率1.65%,但穿破较小,均无神经根症状。结论:术前CT扫描椎弓根引导胸腰椎椎弓根螺钉的置入是一个较好的改良方法,能有效降低不良置钉率。  相似文献   

10.
个体化选择脊柱侧凸患者胸椎椎弓根螺钉进钉点的研究   总被引:4,自引:1,他引:3  
目的:探讨个体化选择脊柱侧凸患者胸椎椎弓根螺钉进钉点对置钉准确性的影响.方法:2006年3月至2008年6月手术治疗脊柱侧凸患者57例,其中青少年特发性脊柱侧凸44例,先天性脊柱侧凸12例,马凡综合征1例.根据患者术前CT设计拟固定胸椎的椎弓根螺钉进钉点并用于指导术中的进钉点选择,术后根据螺钉是否突破椎弓根的皮质壁来判断置钉准确性.结果:全部患者共置入椎弓根螺钉591枚,胸椎417枚,腰椎174枚,术后530枚螺钉的轴线完全位于椎弓根皮质内,准确率为89.7%, 其中胸椎置钉准确率为86.8%(362,417).61枚螺钉的轴线突破椎弓根皮质壁,胸椎55枚,腰椎6枚.55枚偏置的胸椎椎弓根螺钉中52枚螺钉的实际进钉点与术前设计一致,其中19枚钉尖位于椎体内;3枚螺钉为术中实际进钉点选择失误,螺钉轴线突破椎弓根皮质壁的距离均不超过4mm.无脊髓、大血管及脏器损伤等严重并发症发生.结论:个体化选择胸椎椎弓根螺钉进钉点可提高脊柱侧凸患者胸椎置钉的准确率,减少术中进钉点选择失误所致的并发症.  相似文献   

11.

Introduction

Although pedicle screw fixation is a well-established technique for the lumbar spine, screw placement in the thoracic spine is more challenging because of the smaller pedicle size and more complex 3D anatomy. The intraoperative use of image guidance devices may allow surgeons a safer, more accurate method for placing thoracic pedicle screws while limiting radiation exposure. This generic 3D imaging technique is a new generation intraoperative CT imaging system designed without compromise to address the needs of a modern OR.

Aim

The aim of our study was to check the accuracy of this generic 3D navigated pedicle screw implants in comparison to free hand technique described by Roy-Camille at the thoracic spine using CT scans.

Material and methods

The material of this study was divided into two groups: free hand group (group I) (18 patients; 108 screws) and 3D group (27 patients; 100 screws). The patients were operated upon from January 2009 to March 2010. Screw implantation was performed during internal fixation for fractures, tumors, and spondylodiscitis of the thoracic spine as well as for degenerative lumbar scoliosis.

Results

The accuracy rate in our work was 89.8 % in the free hand group compared to 98 % in the generic 3D navigated group.

Conclusion

In conclusion, 3D navigation-assisted pedicle screw placement is superior to free hand technique in the thoracic spine.  相似文献   

12.
It is a retrospective analytic study of 1,009 transpedicular screws (689 thoracic and 320 lumbosacral), inserted with free-hand technique in neuromuscular scoliosis using postoperative CT scan. The aim of paper was to determine the accuracy and safety of transpedicular screw placement with free-hand technique in neuromuscular scoliosis and to compare the accuracy at different levels in such population. All studies regarding accuracy and safety of pedicle screw in scoliosis represent idiopathic scoliosis using various techniques such as free-hand, navigation, image intensifier, etc., for screw insertion. Anatomies of vertebrae and pedicle are distorted in scoliosis, hence accurate and safe placement of pedicle screw is prerequisite for surgery. Between 2004 and 2006, 37 consecutive patients, average age 20 years (9–44 years), of neuromuscular scoliosis were operated with posterior pedicle screw fixation using free-hand technique. Accuracy of pedicle screws was studied on postoperative CT scan. Placement up to 2 mm medial side and 4 mm lateral side was considered within-safe zone. Of the 1,009 screws, 273 screws were displaced medially, laterally or on the anterior side showing that 73% screws (68% in thoracic and 82.5% in lumbar spine) were accurately placed within pedicle. Considering the safe zone, 93.3% (942/1009, 92.4% in thoracic and 95.3% in lumbar spine) of the screws were within the safe zone. Comparing accuracy according to severity of curve, accuracy was 75% in group 1 (curve <90°) and 69% in group 2 (curve >90°) with a safety of 94.8 and 91.2%, respectively (P = 0.35). Comparing the accuracy at different thoracic levels, it showed 67, 64 and 72% accuracy in upper, middle and lower thoracic levels with safety of 96.6, 89.2 and 93.1%, respectively, exhibiting no statistical significant difference (P = 0.17). Pedicle screw placement in neuromuscular scoliosis with free-hand technique is accurate and safe as other conditions.  相似文献   

13.
OBJECTIVES: To determine the safety of pedicle screw fixation in thoracic spine deformity correction. METHODS: One hundred twelve pedicle screws were surgically placed in 25 patients with degenerative, posttraumatic, and Scheuermann kyphosis and idiopathic and neuromuscular scoliosis. Screw position was evaluated using intraoperative and postoperative radiographs and thin-slice computed tomography. RESULTS: Of the total 112 thoracic pedicle screws that were inserted, 98 screws (87.5%) were fully contained within the cortical boundaries of the pedicle. When comparing proximal screws (T1-T8) with distal screws (T9-T12) and convex placed screws with concave ones, a statistically significant difference in screw placement was evident (P < 0.05). More misplaced screws were seen proximally and on the concave side. Of the 14 malpositioned screws, 2 (1.8%) demonstrated aortic abutment. There were no neurologic deficits, vascular injuries, or mechanical failures recorded. CONCLUSIONS: Placement of thoracic pedicle screws is both feasible and safe.  相似文献   

14.
STUDY DESIGN: Retrospective radiographic and clinical consecutive case series. OBJECTIVE: The objective of this study was to identify patients treated with posterior spinal fusion and pedicle screw instrumentation for adolescent idiopathic scoliosis (AIS) in whom it was not possible to place a planned pedicle screw, and describe the possible difficulties in screw placement. SUMMARY OF BACKGROUND DATA: Despite the knowledge of anatomic characteristics of upper thoracic spine pedicles and considerable experience in thoracic pedicle screw placement, inserting pedicle screws in some patients with AIS may be difficult. METHODS: We reviewed 96 patients with AIS in whom the intent was to use an all-screw construct in 2004. Placement of the pedicle screws was usually by the freehand method, with intraoperative fluoroscopy used as needed. If a screw could not be safely placed after multiple attempts, a down-going supralaminar or transverse process hook was placed. Medical records were reviewed and radiographs were measured by one of the authors. RESULTS: We identified 17 cases (18%) in which a hook had been placed. All cases had a major thoracic curve (Lenke 1, 2, and 3) and the single hook had always been placed at the most cephalad level of the construct on the patient's right side. The most common levels for hook placement were T3 and T4; these pedicles were noted to be sclerotic, narrow, and have a moderate amount of rotation on the preoperative posterior-anterior and side bending radiographs. CONCLUSIONS: Care should be exercised during pedicle screw instrumentation in the apical region of the proximal thoracic curve, whether structural or nonstructural, especially in the concavity. The preoperative radiographs may give helpful clues to intraoperative challenges of pedicle screw insertion at the uppermost level of instrumentation. Hook fixation was satisfactory in this scenario.  相似文献   

15.
Wang HC  Yang YL  Lin WC  Chen WF  Yang TM  Lin YJ  Rau CS  Lee TC 《Surgical neurology》2008,69(6):597-601; discussion 601
BACKGROUND: The objective of the study was to improve the accuracy of computer-assisted pedicle screw installation in the spine. This study evaluates the accuracy of computer-assisted pedicle screw placement with separate spinal reference clamp placement and registration on each instrumented vertebra for thoracolumbar spine fractures. METHODS: Postoperative radiographs and CT scans assessed the accuracy of pedicle screw placement in 21 adult patients on each instrumented vertebra. Screw placements were graded as good if the screws were placed in the central core of the pedicle and the cancellous portion of the body. Screw placements were graded as fair if the screws were placed slightly eccentrically, causing erosion of the pedicular cortex, and with less than a 2-mm perforation of the pedicular cortex. Screw placements were graded as poor if screws were placed eccentrically with a large portion of the screw extending outside the cortical margin of the pedicle and with more than a 2-mm perforation of the pedicular cortex. RESULTS: A total of 140 image-guided pedicle screws were placed in 21 patients: 78 in the thoracic and 62 in the lumbar spine. Of the 140 pedicle screw placements, 96.4% (135/140) were categorized as good; 3.6% (5/140), fair; and 0% were poor. All 5 fair placement screws were placed in the thoracic spine without any mobility. CONCLUSION: Separate registration increases accuracy of screw placement in thoracolumbar pedicle instrumentation. Separate spinal reference clamp placement in the instrumented vertebra provides real-time virtual imaging that decreases the possibility of downward displacement during manual installation of the screw.  相似文献   

16.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

17.
Hu Y  Xu RM  Xie H  Jia LS  Ruan YP  Ma WH 《中华外科杂志》2006,44(24):1663-1666
目的探讨胸椎椎弓根螺钉置入技术治疗胸椎骨折的准确性和安全性。方法50例胸椎骨折患者术前均行脊柱标准俯卧位CT加密扫描,测量进针点、入钉点至椎体前缘的深度、进针角度和直径,根据测得数据确定椎弓根螺钉置入的深度和方向,术后再行脊柱X线片及CT加密扫描评价置钉的准确性和安全性。结果50例患者共置入240枚胸椎椎弓根螺钉,术后CT加密扫描和X线片观察到220枚(91.7%)螺钉完全在椎弓根皮质骨内;20枚(8.3%)螺钉发生错置,其中7枚(2.9%)螺钉偏外;5枚(2.1%)螺钉偏前外侧,有2枚(0.8%)螺钉靠近主动脉;3枚(1.3%)螺钉偏下;3枚(1.3%)螺钉直径过大导致椎弓根内壁膨胀内移;2枚(0.8%)螺钉误入椎管内。螺钉完全在椎弓根皮质内的百分比在不同的胸椎节段之间有显著性差异。结论术前CT扫描测量胸椎骨折患者椎弓根的有关数据可为术中准确置入螺钉提供重要参考依据。术中标准的X线透视指导和解剖标记定位是保证胸椎椎弓根螺钉准确置入的关键因素。术后CT加密扫描能准确地反映椎弓根螺钉位置偏差,并能反映椎弓根螺钉与相邻结构的位置和关系。螺钉发生错置多见于上胸椎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号