首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
To characterize the specificity of a novel cholinergic immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor with the cytotoxic protein saporin), coronal sections through the basal forebrain of adult rats, that received a single intracerebro-ventricular injection of 4 pg of 192IgG-saporin conjugate, were subjected to histochemical and immunocytochemical procedures to evaluate cholinergic (choline acetyltransferase (ChAT)-immunoreactive, acetylcholinesterase-positive, NADPH-diaphorase-positive) and GABAergic structures (parvalbumin-immunoreactive, labeling of perineuronal nets with Wisteria floribunda agglutinin) as well as microglia (visualized with Griffonia simplicifolia agglutinin) and astrocytes (immunostaining for glial fibrillary acidic protein). Seven days following injection of the immunotoxin, ChAT-immunoreactive cells nearly completely disappeared throughout the magnocellular basal forebrain complex, including globus pallidus, as compared to vehicle-injected controls. However, there was no significant difference in the number of ChAT-positive cells in the adjacent ventral pallidum and in the caudate-putamen of immunolesioned and control animals. NADPH-diaphorase-containing cells, including a significant subpopulation of cholinergic cells, also strikingly decreased in number by more than 90% in the magnocellular basal forebrain complex following immunolesion, and only a few noncholinergic diaphorase-positive cells survived in the medial septum, vertical and horizontal diagonal band, and nucleus basalis of Meynert. In contrast, the number of parvalbumin-containing GABAergic projection neurons in the septum-diagonal band of Broca complex and nucleus basalis of Meynert from immunolesioned rats was not different from that of vehicle-injected control animals. Immunolesioning also did not result in any change in either number or shape of cells surrounded by perineuronal nets, which are frequently associated with parvalbumin-containing GABAergic neurons. Seven days following injection of the immunotoxin, a very strong activation of microglia with an identical distribution pattern was observed in all experimental animals. Large numbers of activated microglia were found in all magnocellular basal forebrain nuclei, corresponding to the distribution of degenerating cholinergic cells. Additionally, immunolesioning also resulted in a dramatic activation of microglia in the lateral septal nuclei, which are known to be almost free of cholinergic cells, but not of penetrating cholinergic dendrites in adjacent zones, and in the ventral pallidum, where there was no observed loss of cholinergic cells. There was no significant increase in microglia activation in striatum and cortical areas, and no astrocytic response in any of the basal forebrain nuclei at this particular time point of survival. These results suggest that 192IgG-saporin specifically destroys basal forebrain cholinergic neurons and does not suppress their neuronal activity. Therefore, 192IgG-saporin represents a powerful tool for producing cortical cholinergic dysfunction. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The nature and function of previously described perineuronal nets are still obscure. In the present study their polyanionic components were demonstrated in the rat brain using colloidal iron hydroxide (CIH) staining. In subcortical regions, such as the red nucleus, cerebellar, and vestibular nuclei, most neurons were ensheathed by CIH-binding material. In the cerebral cortex perineuronal nets were seen around numerous nonpyramidal neurons. Biotinylated hyaluronectin revealed that hyaluronan occurs in perineuronal nets. Two plant lectins [Wisteria floribunda agglutinin (WFA) and Vicia villosa agglutinin (VVA)] with affinity for N-acetylgalactosamine visualized perineuronal nets similar to those rich in anionic components. Glutamic acid decarboxylase (GAD)-immunoreactive synaptic boutons were shown to occupy numerous meshes of perineuronal VVA-positive nets. Electron microscopically, VVA binding sites were scattered throughout perisynaptic profiles, but accumulated at membranes and in the extra-cellular space except not in synaptic clefts. To investigate the spatial relationship between glial cell processes and perineuronal nets, two astrocytic markers (S100-protein and glutamine synthetase) were visualized at the light and electron microscopic level. Two methods to detect microglia by the use of Griffonia simplicifolia agglutinin (GSA I-B4) and the monoclonal antibody, OX-42, were also applied. Labelled structures forming perineuronal nets were observed with both astrocytic, but not with microglial, markers. It is concluded that perineuronal nets are composed of a specialized type of glia-associated extracellular matrix rich in polyanionic groups and N-acetylgalactosamine. The net-like appearance is due to perisynaptic arrangement of the astrocytic processes and these extracellular components. Similar to the ensheathment of nodes of Ranvier, perineuronal nets may provide a special ion buffering capacity required around various, perhaps highly active, types of neurons. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The extracellular matrix of the brain contains large aggregates of chondroitin sulfate proteoglycans (CSPG), which form lattice-like cell coatings around distinct neuron populations and are termed perineuronal nets. The function of perineuronal nets is not fully understood, but they are often found around neurons containing the calcium-binding protein parvalbumin, suggesting a function in primarily highly active neurons. In the present paper the distribution of perineuronal nets was studied in two functional cell groups of the primate oculomotor system with well-known firing properties: 1) the saccadic omnipause neurons in the nucleus raphe interpositus (RIP) exhibit a high tonic firing rate, which is only interrupted during saccades; they are inhibitory and use glycine as a transmitter; and 2) premotor burst neurons for vertical saccades in the rostral interstitial nucleus of the medial longitudinal fascicle (RiMLF) fire with high-frequency bursts during saccades; they are excitatory and use glutamate and/or aspartate as a transmitter. In the macaque monkey, both cell populations were identified by their parvalbumin immunoreactivity and were studied for the presence of perineuronal nets using CSPG antibodies or lectin binding with Wisteria floribunda agglutinin. In addition, the expression of another calcium-binding protein, calretinin, was studied in both cell groups. Double- and triple-immunofluorescence methods revealed that both omnipause and burst neurons are selectively ensheathed with strongly labeled perineuronal nets. Calretinin was coexpressed in at least 70% of the saccadic burst neurons, but not in the omnipause neurons. Parallel staining of human tissue revealed strongly labeled perineuronal nets around the saccadic omnipause and burst neurons, in corresponding brainstem regions, which specifically highlighted these neurons within the poorly structured reticular formation. These findings support the hypothesis that perineuronal nets may provide a specialized microenvironment for highly active neurons to maintain their fast-spiking activity and are not related to the transmitter or the postsynaptic action of the ensheathed neurons.  相似文献   

4.
Chen LW  Wei LC  Liu HL  Qiu Y  Chan YS 《Brain research》2001,904(1):161-166
Cholinergic neurons expressing substance P receptor (SPR, NK(1)) were examined in the rat brain using double immunofluorescence. The distribution of SPR-like immunoreactive (SPR-LI) neurons completely overlapped with that of choline acetyltransferase (ChAT)-LI neurons in the medial septal nucleus, the nucleus of diagonal band of Broca, the magnocellular preoptic nucleus, the substantia innominata of basal forebrain, the caudate-putamen, and the ventral pallidum of the basal ganglia. In the mesopontine tegmentum and the cranial motor nuclei of the brainstem, the distribution of SPR-LI and ChAT-LI neurons was partially overlapping. Neurons showing both SPR-like and ChAT-like immunoreactivities, however, were predominantly found above basal forebrain regions and 82-90% of these ChAT-LI neurons displayed SPR-like immunoreactivity, in addition to the confirmatory observation that 100% of the ChAT-LI neurons exhibit SPR-like immunoreactivity in the basal ganglia. In contrast, neurons double-labeled for SPR-like and ChAT-like immunoreactivities were hardly detected in aforementioned regions of the brainstem. The present study has provided morphological evidence for direct physiological modulation of cholinergic neurons by tachykinins through substance P receptor in the basal forebrain of the rat.  相似文献   

5.
Cholinergic neurons expressing substance P receptor (SPR, NK1) were examined in the rat brain using double immunofluorescence. The distribution of SPR-like immunoreactive (SPR-LI) neurons completely overlapped with that of choline acetyltransferase (ChAT)-LI neurons in the medial septal nucleus, the nucleus of diagonal band of Broca, the magnocellular preoptic nucleus, the substantia innominata of basal forebrain, the caudate-putamen, and the ventral pallidum of the basal ganglia. In the mesopontine tegmentum and the cranial motor nuclei of the brainstem, the distribution of SPR-LI and ChAT-LI neurons was partially overlapping. Neurons showing both SPR-like and ChAT-like immunoreactivities, however, were predominantly found above basal forebrain regions and 82–90% of these ChAT-LI neurons displayed SPR-like immunoreactivity, in addition to the confirmatory observation that 100% of the ChAT-LI neurons exhibit SPR-like immunoreactivity in the basal ganglia. In contrast, neurons double-labeled for SPR-like and ChAT-like immunoreactivities were hardly detected in aforementioned regions of the brainstem. The present study has provided morphological evidence for direct physiological modulation of cholinergic neurons by tachykinins through substance P receptor in the basal forebrain of the rat.  相似文献   

6.
The purpose of this study was to investigate amygdala-related fear and anxiety in two inbred rat lines differing in emotionality (RHA/Verh and RLA/Verh), and to relate the behaviour of the animals to neuronal types in different nuclei of the amygdala. The behavioural tests used were the motility test, elevated plus-maze and fear-potentiated startle response. The neurons investigated were immunoreactive for the anxiogenic peptide corticotropin-releasing factor (CRF-ir), the anxiolytic peptide neuropeptide Y (NPY-ir), and the calcium-binding proteins parvalbumin (PARV-ir) and calbindin (CALB-ir). The NPY-ir, PARV-ir and CALB-ir neurons studied were subpopulations of GABAergic neurons. RLA/Verh rats, which showed a significant fear-potentiation of the acoustic startle response, had more CRF-ir projection neurons in the central nucleus of the amygdala. The same RLA/Verh rats were either less or equally anxious in the motility test (similar to open field) and elevated plus-maze as compared with RHA/Verh rats. In accordance with this behaviour, the RLA/Verh rats had more NPY-ir neurons in the lateral, and more PARV-ir neurons in basal nuclei of the amygdala than RHA/Verh rats, but no differences were detected in the number of CRF-ir and CALB-ir neurons of the basolateral complex. In conclusion, the RLA/Verh rats displayed an opposite behaviour in the fear-potentiated startle model and the exploratory tests measuring anxiety based on choice behaviour. Thus, the anxiogenic systems in the central nucleus and anxiolytic systems in the basolateral complex of the amygdala might be differentially involved in the fear-potentiated startle paradigm and exploratory tests in the Roman rat lines.  相似文献   

7.
The distribution of Fos, the protein product of the immediate early gene c-fos, was studied with immunocytochemistry in the adult male rat brain after nerve growth factor (NGF) administration. NGF was injected in the lateral cerebral ventricle through a previously implanted cannula. The total number of Fos-immunoreactive (ir) neurons in the brain was 2–3 times higher after NGF administration than in control animals (untreated or injected with cytochrome c). With respect to control rats, in the NGF-treated cases Fos-ir cells were more numerous in the anterior olfactory nucleus, in the medial prefrontal and anterior cingulate cortices, in the basal forebrain, in the preoptic and ventromedial nuclei of the hypothalamus, as well as interior hypothalamic area, in the thalamic midline nuclei, and in some brainstem structures, such as the parabrachial nucleus. The relative quantitative increase of Fos-ir neurons varied in the different structures. In addition, Fos-ir neurons were evident after NGF administration in areas devoid of immunopositive cells in control animals. These included: frontoparietal and occipital cortical fields, the hypothalamic arcuate nucleus, and many brainstem structures, such as the dorsal nucleus of the lateral lemniscus, posterodorsal tegmental, medial and lateral vestibular, ventral cochlear, and prepositus hypoglossal nuclei. These findings demonstrate that the intracerebroventricular administration of NGF can induce c-fos expression in neurons in vivo. The distribution of Fos-ir neurons indicates that NGF can induce activation of functionally and chemically hetergeneous neuronal subsets in the brain.  相似文献   

8.
Previous lectin-histochemical and immunocytochemical investigations using fixed tissue revealed perineuronal nets as lattice-like accumulations of extracellular matrix proteoglycans at the surface of several types of neurons. In the present study, perineuronal nets in the rat brain were labelled for the first time in vivo by stereotaxic injections of biotinylated Wisteria floribunda agglutinin (Bio-WFA), as well as in vitro, by incubation of unfixed brain slices with the same lectin. Six days after Bio-WFA injections into the parietal cortex, medial septum, reticular thalamic nucleus and red nucleus, the lectin remaining bound to perineuronal nets was detected by streptavidin/biotinylated peroxidase complexes or red fluorescent Cy3-streptavidin, respectively. Double-fluorescence labelling showed that Bio-WFA applied in vivo reacted with the chondroitin sulphate proteoglycan immunoreactive perineuronal nets in the injection zone. Labelling of perineuronal nets in unfixed slices was obtained with either Cy3-tagged WFA or Bio-WFA and subsequent visualization by Cy3-streptavidin which confirmed the region-dependent distribution patterns and the structural characteristics of perineuronal nets known from histochemical studies. These results provide support for the role of extracellular matrix proteoglycans to maintain a considerable chemical and, probably, spatial heterogeneity of the extracellular space in vivo. The ability of in vivo and in vitro labelling may promote the functional characterization of the extracellular matrix in various brain structures including its species-dependent neuronal association patterns.  相似文献   

9.
Brevican is one of the most abundant chondroitin sulfate proteoglycans in the adult rat brain. We have recently shown that the C-type lectin domain of brevican binds fibronectin type III domains 3-5 of tenascin-R. Here we report strong evidence for a physiological basis for this interaction. Substantial brevican immunoreactivity was detected in a number of nuclei and in the reticular formations throughout the midbrain and hindbrain, including, but not limited to, the deep cerebellar nuclei, the trapezoid body, the red nucleus, the oculomotor nucleus, the vestibular nucleus, the cochlear nucleus, the gigantocellular reticular nucleus, the motor trigeminal nucleus, and the lateral superior olive. Most of the brevican immunoreactivity exhibited pericellular and reticular staining patterns. In almost all of these sites, brevican immunoreactivity colocalized with that of tenascin-R, which was also substantially codistributed with versican, another member of the lectican family. Detailed analysis revealed that the pericellular staining of brevican resembled that in perineuronal nets in which tenascin-R has been localized. Immunoelectron microscopy identified brevican immunoreactivity in the intercellular spaces surrounding presynaptic boutons and on their surfaces, but not in the synaptic clefts or in their immediate vicinity, a distribution pattern consistent with perineuronal nets. Taken together, our results provide strong evidence that the previously reported interactions between brevican and tenascin-R may play a functional role within the perineuronal nets.  相似文献   

10.
The regional distribution of neurons containing a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR1-4) subunit immunoreactivity, relative to the distribution of cholinergic neurons within the basal forebrain of rats, was assessed using single- and dual-antigen immunocytochemistry. Analysis of serial sections stained with antibodies to nerve growth factor receptor (NGFr) and antibodies against each of the AMPA receptor subunits, GluR1-4, revealed a regional codistribution between NGFr- and GluR1- and GluR4-immunoreactive neurons in the medial septum, diagonal band nuclei and nucleus basalis magnocellularis. Quantitative dual-labelling immunocytochemistry using NGFr in combination with each of the GluR antibodies revealed >65% colocalization between NGFr and GluR4 in each of the major cholinergic nuclei in the basal forebrain and 10–15% colocalization between NGFr, GluR1 and GluR2-3. The reticular nucleus of the thalamus, a structure known to be highly susceptible to AMPA-induced neurotoxicity, expressed GluR4 immunoreactivity exclusively. The observation that cholinergic neurons of the basal forebrain are also highly sensitive to AMPA and express the GluR4 subunit suggests that GluR4 may be important in AMPA receptor-mediated excitotoxicity.  相似文献   

11.
12.
It has been proposed that nerve growth factor (NGF) provides critical trophic support for the cholinergic neurons of the basal forebrain and that it becomes available to these neurons by retrograde transport from distant forebrain targets. However, neurochemical studies have detected low levels of NGF mRNA within basal forebrain areas of normal and experimental animals, thus suggesting that some NGF synthesis may actually occur within the region of the responsive cholinergic cells. In the present study with in situ hybridization and immunohistochemical techniques, the distribution of cells containing NGF mRNA within basal forebrain was compared with the distribution of cholinergic perikarya. The localization of NGF mRNA was examined by using a 35S-labeled RNA probe complementary to rat preproNGF mRNA and emulsion autoradiography. Hybridization of the NGF cRNA labeled a large number of cells within the anterior olfactory nucleus and the piriform cortex as well as neurons in a continuous zone spanning the lateral aspects of both the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus. In the latter regions, large autoradiographic grain clusters labeled relatively large Nissl-pale nuclei; it did not appear that glial cells were autoradiographically labeled. Comparison of adjacent tissue sections processed for in situ hybridization to NGF mRNA and immunohistochemical localization of choline acetyltransferase (ChAT) demonstrated overlapping fields of cRNA-labeled neurons and ChAT-immunoreactive perikarya in both the horizontal limb of the diagonal band and magnocellular preoptic regions. However, no hybridization of the cRNA probe was observed in other principal cholinergic regions including the medial septum, the vertical limb of the diagonal band, or the nucleus basalis of Meynert. These results provide evidence for the synthesis of NGF mRNA by neurons within select fields of NGF-responsive cholinergic cells and suggest that the generally accepted view of “distant” target-derived neurotrophic support should be reconsidered and broadened.  相似文献   

13.
The cellular distribution of choline acetyltransferase (ChAT) mRNA within the adult rat central nervous system was evaluated using in situ hybridization. In forebrain, hybridization of a 35S-labeled rat ChAT cRNA densely labeled neurons in the well-characterized basal forebrain cholinergic system including the medial septal nucleus, diagonal bands of Broca, nucleus basalis of Meynert and substantia innominata, as well as in the striatum, ventral pallidum, and olfactory tubercle. A small number of lightly labeled neurons were distributed throughout neocortex, primarily in superficial layers. No cellular labeling was detected in hippocampus. In the diencephalon, dense hybridization labeled neurons in the ventral aspect of the medial habenular nucleus whereas cells in the lateral hypothalamic area and supramammillary region were more lightly labeled. Hybridization was most dense in neurons of the motor and autonomic cranial nerve nuclei including the oculomotor, Edinger-Westphal, and trochlear nuclei of the midbrain, the abducens, superior salivatory, trigeminal, facial and accessory facial nuclei of the pons, and the hypoglossal, vagus, and solitary nuclei and nucleus ambiguus of the medulla. In addition, numerous cells in the pedunculopontine and laterodorsal tegmental nuclei, the ventral nucleus of the lateral lemniscus, the medial and lateral divisions of the parabrachial nucleus, and the medial and lateral superior olive were labeled. Occasional labeled neurons were distributed in the giantocellular, intermediate, and parvocellular reticular nuclei, and the raphe magnus nucleus. In the medulla, light to moderately densely labeled cells were scattered in the nucleus of Probst's bundle, the medial vestibular nucleus, the lateral reticular nucleus, and the raphe obscurus nucleus. In spinal cord, the cRNA densely labeled motor neurons of the ventral horn, and cells in the intermediolateral column, surrounding the central canal, and in the spinal accessory nucleus. These results are in good agreement with reports of the immunohistochemical localization of ChAT and provide further evidence that cholinergic neurons are present within neocortex but not hippocampus.  相似文献   

14.
The neuronal distribution of argininosuccinate synthetase (ASS) was mapped in the rat brain. Argininosuccinate synthetase is one of the enzymes of the arginine metabolic pathway and catabolizes the synthesis of argininosuccinate from aspartate and citrulline. Since arginine is the precursor of nitric oxide, argininosuccinate synthetase may act as part of the nitric oxide producing pathway. Argininosuccinate is also suggested to have a messenger function in the nervous system. Therefore, the localization of ASS is of great interest. Polyclonal antisera against purified rat liver argininosuccinate synthetase revealed a characteristic distribution pattern of argininosuccinate synthetase-like immunoreactivity: (1) many neurons with strong argininosuccinate synthetase-like immunoreactivity were observed in the septal area, basal forebrain, anterior medial and premammillary nuclei of the hypothalamus, anterior and midline thalamic nuclei, dorsal endopiriform nucleus of the amygdala, basal nucleus of Meynert, subthalamic nucleus, laterodorsal tegmental nucleus, raphe nuclei, nucleus ambiguus, and the area postrema, (2) neuropile staining was dense in the septal areas, hypothalamus, area postrema, nucleus of the solitary tract, and the laminae I and II of the caudal subnucleus of the spinal trigeminal nucleus and the spinal dorsal horn, (3) relay nuclei of the specific sensory systems such as the dorsal lateral geniculate nucleus and the ventral nuclei of the thalamus were devoid of argininosuccinate synthetase-like immunoreactivity, (4) no staining was seen in the large white matter structures such as the internal capsule, corpus callosum, and the anterior commissure, and (5) most of the neurons stained were small or medium in size and appeared to be interneurons. The results suggest that argininosuccinate synthetase affects the widely distributed, neuromodulatory system in the brain.  相似文献   

15.
Neurogenesis of basal forebrain cholinergic neurons in rat   总被引:1,自引:0,他引:1  
The basal forebrain cholinergic system embodies a heterogeneous group of neurons distributed in the basal telencephalon that project topographically to the cortical mantle. We sought to examine the generation of these neurons to determine whether basal forebrain neurons have unique patterns of neurogenesis or, if, in contrast, they are born along general neurogenic gradients. The techniques of tritiated thymidine autoradiography and choline acetyltransferase (ChAT) immunocytochemistry were combined to determine the birthdays and neurogenic gradients of cholinergic cells in this region of rat brain. Cholinergic neurogenesis throughout the basal forebrain ranged from embryonic days 12 to 17 (E12-17). Neurogenesis in the nucleus basalis magnocellularis occurred over E12-16, with a peak day of generation on E13. The horizontal limb nucleus of the diagonal band which is located rostral to the nucleus basalis was generated over E12-17, with the majority of cells arising on E14-15. The rostral-most nuclei of the basal forebrain cholinergic system, the vertical limb of the diagonal band and the medial septum, were generated between E13-17, with peak days of neurogenesis on E15 and E15-16, respectively. These results were evaluated quantitatively and demonstrated that the basal forebrain cholinergic neurons were generated along the general caudal-to-rostral gradient previously described for all neurons in this brain region. The results of this study, in combination with those of similar investigations, emphasize that position-dependent epigenetic factors appear to be more potent determinants of the time of neuronal origin than factors which influence a cell's transmitter phenotype.  相似文献   

16.
The present study focused on cholinergic neurons in the lateral septal region of the raccoon detected by choline acetyltransferase (ChAT)-immunostaining. For comparison of the cholinergic neurons of the medial and lateral septal nuclei, soma sizes were measured, and several antibodies were applied that differentially characterize these cells in several species: low-affinity neurotrophin receptor p75 (p75(NTR)), calbindin-D(28k) (CALB), and constitutive nitric oxide synthase (cNOS). To compare the basic organization of the raccoon septum with that in other mammals, parvalbumin (PARV) immunocytochemistry and Wisteria floribunda-agglutinin (WFA) lectin histochemistry also were used in double-staining experiments. The ChAT-immunoreactive neurons of the rostral lateral septum are arranged in laminae. Accumulations of cholinergic varicosities, often clearly ensheathing noncholinergic neurons, occupy small territories of the rostral septum. Such regions become larger in the caudal septum. They are assumed to correspond to the septohippocampal and septofimbrial nuclei of the rat. In contrast to the large medial septal cholinergic neurons of the raccoon that contain p75(NTR), CALB, and cNOS, the cholinergic neurons of the lateral septum are smaller and do not express these markers. A further peculiarity is that the region of the lateral septum that contains cholinergic neurons corresponds to WFA-labelled extracellular matrix zones that contain chondroitin sulfate proteoglycans. In addition to clustered thread- or ring-like accumulations of the WFA, sparsely labelled perineuronal nets surround the lateral septal cholinergic neurons. Similar to other species that have been investigated, perineuronal nets are completely absent around cholinergic cells of the medial septum. The PARV-containing neurons of this region, however, are enwrapped by perineuronal nets as they are in the rat. Within the medial septum, the PARV-containing neurons are restricted to ventral bilateral territories that are devoid of cholinergic cells. In this respect, they differ from the more vertically arranged PARV-containing medial septal cells in rodents and primates. Apart from striking differences in numbers and distribution patterns, the raccoon lateral septal cholinergic neurons resemble those detected by Kimura et al. (Brain Res [1990] 533:165-170) in the ventrolateral septal region of rat and monkey. Their participation in the functions of the lateral septum remains to be elucidated.  相似文献   

17.
The distribution of choline acetyltransferase-immunoreactive (ChAT-IR) neurons was studied in the brain of the common marmoset by using immunohistochemistry. ChAT-IR neurons were found in the medial septal nucleus, vertical and horizontal limb nuclei of the diagonal band, the nucleus basalis of Meynert, pedunculopontine nucleus and laterodorsal tegmental nucleus, and also in the striatum, habenula, and brainstem cranial nerve motor nuclei. The organization of ChAT-IR neurons in the basal forebrain, midbrain, and pons is consistent with the Ch1-Ch6 nomenclature introduced by Mesulam et al. ('83). The combination of the retrograde transport of HRP-WGA with ChAT immunohistochemistry revealed the distribution of neurons in the Ch4 cell group projecting to the dorsolateral prefrontal cortex. The activity of ChAT was highest in limbic cortical structures, such as the hippocampus, and lowest in association areas of the neocortex. Lesions at various loci in the basal forebrain resulted in differential patterns of ChAT loss in the cortex, which suggests some degree of topographical organization of Ch4 projections to the cortical mantle.  相似文献   

18.
Basal forebrain cholinergic neurons project to diverse cortical and hippocampal areas and receive reciprocal projections therefrom. Maintenance of a fine-tuned synaptic communication between pre- and postsynaptic cells in neuronal circuitries also requires feedback mechanisms to control the probability of neurotransmitter release from the presynaptic terminal. Release of endocannabinoids or glutamate from a postsynaptic neuron has been identified as a means of retrograde synaptic signalling. Presynaptic action of endocannabinoids is largely mediated by type 1 cannabinoid (CB1) receptors, while fatty-acid amide hydrolase (FAAH) is involved in inactivating some endocannabinoids postsynaptically. Alternatively, vesicular glutamate transporter 3 (VGLUT3) controls release of glutamate from postsynaptic cells. Here, we studied the distribution of CB1 receptors, FAAH and VGLUT3 in cholinergic basal forebrain nuclei of mouse and rat. Cholinergic neurons were devoid of CB1 receptor immunoreactivity. A fine CB1 receptor-immunoreactive (ir) fibre meshwork was present in medial septum, diagonal bands and nucleus basalis. In contrast, the ventral pallidum and substantia innominata received dense CB1 receptor-ir innervation and cholinergic neurons received CB1 receptor-ir presumed synaptic contacts. Consistent with CB1 receptor distribution, FAAH-ir somata were abundant in basal forebrain and appeared in contact with CB1 receptor-containing terminals. Virtually all cholinergic neurons were immunoreactive for FAAH. A significant proportion of cholinergic cells exhibited VGLUT3 immunoreactivity in medial septum, diagonal bands and nucleus basalis, and were in close apposition to VGLUT3-ir terminals. VGLUT3 immunoreactivity was largely absent in ventral pallidum and substantia innominata. We propose that specific subsets of cholinergic neurons may utilize endocannabinoids or glutamate for retrograde control of the efficacy of input synapses, and the mutually exclusive complementary distribution pattern of CB1 receptor-ir and VGLUT3-ir fibres in basal forebrain suggests segregated input-specific signalling mechanisms by cholinergic neurons.  相似文献   

19.
Using [3H]para-aminoclonidine, α2 adrenergic binding sites have been mapped in the rat and human CNS using in vitro labeling autoradiographic techniques. In both the rat and human thoracic spinal cord, high densities of α2 binding sites were associated with the substantia gelatinosa and the intermediolateral cell column. In the rat medulla, high binding site density was observed in the medial nucleus of the solitary tract, dorsal motor nucleus of the vagus, raphe pallidus and the substantia gelatinosa of the trigeminal nucleus, while lower levels of specific binding were found in the lateral and ventrolateral medulla. In the human, a similar distribution was observed. However, significantly lower levels of specific binding were seen in the medial nts as opposed to the dmv. In the rat, high levels of specific binding were seen at pontine and midbrain levels in the locus coeruleus, parabrachial nucleus and periaqueductal gray. In the forebrain, several hypothalmic and limbic regions, including the paraventricular and arcuate nuclei of the hypothalamus, the central, medial and basal nuclei of the amygdala, lateral septum and bed nucleus of the stria terminalis and pyriform, entorhinal and insular cortex were labeled. Each of these regions are involved in either modulating autonomic functions directly or integrating somatosensory and/or affective function with autonomic mechanisms. Further, these regions are interrelated by reciprocal connections, and neurons that utilize nor-adrenaline or adrenaline as their neurotransmitter form a vital part of these connections. Thus, these functional, anatomical and neurochemical correlates of the α2 binding site distribution establish a neurological basis for the complex pharmacological effects of centrally acting α2 agonists.  相似文献   

20.
We have recently shown that spinal muscular atrophy (SMA), an autosomal recessive disorder characterized by motor neuron loss, is associated with deletion of a gene that encodes the neuronal apoptosis inhibitory protein (NAIP). In the present study, we have examined the distribution of NAIP-like immunoreactivity (NAIP-LI) in the rat central nervous system (CNS) by using an affinity-purified polyclonal antibody against NAIP. In the forebrain, immunoreactive neurons were detected in the cortex, the hippocampus (pyramidal cells, dentate granule cells, and interneurons), the striatum (cholinergic interneurons), the basal forebrain (ventral pallidum, medial septal nucleus, and diagonal band), the thalamus (lateral and ventral nuclei), the habenula, the globus pallidus, and the entopenduncular nucleus. In the midbrain, NAIP-LI was located primarily within neurons of the red nucleus, the substantia nigra pars compacta, the oculomotor nucleus, and the trochlear nucleus. In the brainstem, neurons containing NAIP-LI were observed in cranial nerve nuclei (trigeminal, facial, vestibular, cochlear, vagus, and hypoglossal nerves) and in relay nuclei (pontine, olivary, lateral reticular, cuneate, gracile nucleus, and locus coeruleus). In the cerebellum, NAIP-LI was found within both Purkinje and nuclear cells (interposed and lateral nuclei). Finally, within the spinal cord, NAIP-LI was detected in Clarke's column and in motor neurons. Taken together, these results indicate that NAIP-LI is distributed broadly in the CNS. However, high levels of NAIP-LI were restricted to those neuronal populations that have been reported to degenerate in SMA. This anatomical correspondence provides additional evidence for NAIP involvement in the neurodegeneration observed in acute SMA. J. Comp. Neurol. 382:247-259, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号