首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 359 毫秒
1.
视神经损伤因缺乏有效治疗手段,预后不良,有关其治疗方法的研究成为眼科学界的热点之一.目前研究认为原发性损伤后,继发的视网膜神经节细胞(RGCs)凋亡是造成视神经损伤的重要机制,及时有效地减少RGCs凋亡对视神经的保护具有重要作用.随着分子生物学技术的发展,视神经损伤的基因治疗备受关注,并有望从实验室走向临床,成为有效治疗手段.本文就视神经损伤基因治疗的现状及前景做一综述.  相似文献   

2.
尹丹萍  柳林 《国际眼科杂志》2013,13(6):1152-1156
视神经损伤后的治疗和功能恢复是医学领域的历史性难题。由于作为中枢神经系统一部分的视神经损伤后缺乏神经修复和再生所需的微环境,为此,有效的神经保护、防止神经元死亡和促进神经修复至关重要。大量研究证明:视功能的恢复与视网膜神经节细胞(retinal ganglion cells,RGCs)的损伤程度、轴浆转运物质合成功能状态、自身修复和再生能力均密切相关。近10a来,随着对神经损伤机制的深入了解,各类神经保护的研究也有了很大进展,在治疗视神经损伤方面展现出诱人的前景。我们通过阅读近年国内外相关文献,针对视神经损伤后RGCs再生及视神经保护相关实验研究和临床治疗方法作一综述。  相似文献   

3.
视神经属于中枢神经的一部分,损伤后难以再生。视神经损伤通常伴随视网膜神经节细胞(retinal ganglioncells,RGCs)的持续性凋亡及视神经变性坏死,引起视力损害甚至完全失明。目前针对视神经再生的基础研究主要集中于保护和维持视神经损伤后RGCs的存活、促进RGCs轴突再生及重建视神经功能。本文以RGCs保护、轴突再生及视神经功能重建等为关键词,查询国内外最新视神经再生研究类文献,并分析整理,从抗氧化应激、提供外源性细胞因子、炎症刺激、抗胶质瘢痕、基因调控等方面阐述近年的视神经再生研究进展,以期对后续的基础研究开展及临床转化有所帮助。  相似文献   

4.
视神经是中枢神经的一部分,损伤后将无法再生,继而引起进一步视力损害。根据目前视神经损伤后视网膜神经节细胞(retinal ganglion cells,RGCs)轴突再生的基础研究,视神经损伤后必须采取以下有效措施:提高RGCs内在的再生潜力,改善生长抑制环境,优化RGCs神经再生,而诱导再生轴突靶向延伸是理想的促进视神经的再生与修复方式。本文查阅国内外最新实验性视神经再生研究类文献,从调控眼内炎症因子、提供合适外源性神秘生长因子、激活RGCs再生潜能、阻断抑制性轴突再生信号传导、给予适当的再生刺激信号、改善抑制性细胞外微环境等方面阐述促进视神经再生的研究现状,以期对早日实现基础研究成果尽快向临床应用转化有所帮助。  相似文献   

5.
目的 观察大鼠视神经横断伤及夹挫伤后,视网膜神经节细胞(RGCs)形态学变化、区别及在不同时间的计数变化,探讨其与视神经损伤经过时间的关系,为视神经损伤的病理机制及损伤经过时间的推断提供一定的依据.方法 采用大鼠球后视神经横断伤/夹挫伤动物模型,在伤后不同时间处死动物并取材,HE 染色,光镜下观察RGCs的动态变化.结果 视神经损伤后RGCs数日均严重下降,2周内RGCs快速减少,3~7 d为RGCs快速减少期,2周以后缓慢减少;但横断伤组3 d以后各个时期RGCs计数下降幅度与夹挫伤组相比更明显.结论 视神经损伤导致了视网膜形态结构的变化,RGCs丢失的严重程度与损伤类型及时问呈相关性.  相似文献   

6.
大鼠视神经再生的组织病理学机制   总被引:1,自引:1,他引:0  
目的探讨大鼠视神经再生的组织病理学机制。方法 40只Wistar大鼠按随机数字表法随机分为正常组(n=8)、单纯视神经损伤组(n=16)和视神经损伤联合晶状体损伤组(n=16)3组。单纯视神经损伤组:单纯的视神经完全性横断性损伤并保存中央血管完好;视神经损伤联合晶状体损伤组:视神经的完全性横断性损伤并保存中央血管完好,同时损伤晶状体形成白内障。4周后处死动物,处死前3d,用毛细玻璃管注入大鼠玻璃体内4~5μL质量分数2.5%的罗丹明B异硫氰酸盐(RITC)。大鼠视神经和视网膜行常规组织病理学检查并计数视网膜神经节细胞(RGCs)的数量。结果正常视神经可以观察到神经纤维及神经胶质细胞。单纯视神经损伤组视神经断端可见呈团块状的胶质瘢痕,细胞较密集,排列紊乱。视神经损伤联合晶状体损伤组视神经断端无胶质瘢痕,且细胞排列较疏松,并有纵向排列的趋势,伴有大量巨噬细胞浸润。视神经损伤联合晶状体损伤组周边部RGCs的数量为4.06±1.45,单纯视神经损伤组为4.06±1.45,2组比较差异有统计学意义(P〈0.01)。结论视神经再生的关键是克服视神经断端作为物理性屏障的胶质瘢痕和提高RGCs的存活数量。  相似文献   

7.
视神经损伤是眼科常见疾病,多并发于颅脑外伤,预后不良,常致患者失明。由于视神经损伤的发病机制尚未完全明了,所以迄今为止其治疗仍是国内外眼科界的一大难题。现将视神经损伤后视网膜神经节细胞(retinal ganglion cells,RGCs)凋亡及氨基胍(Aminogunidine,AG)对其保护性作用做一综述。  相似文献   

8.
庄静  马林昆  曹霞 《国际眼科杂志》2013,13(12):2411-2413
近年来,基因治疗(gene therapy)在临床试验上越来越受到重视,正成为常规方法难以治愈的中枢神经系统疾病的新的治疗手段。单纯疱疹病毒(herpes simplex virus,HSV)是自然界普遍存在的人类病原体,具有天然的神经趋向性,能自然感染有丝分裂后的神经元,可从外周神经逆行感染进入中枢神经系统(CNS)并在其中长期潜伏,是外源大容量基因常用的的运载工具。视神经属于中枢神经系统,因此,HSV载体可考虑用于视神经损伤后的基因治疗。本文综述了HSV作为载体用于CNS损伤后的基因治疗的研究进展并阐述用于视神经损伤后基因修复的可行性。  相似文献   

9.
背景大鼠Miiller细胞提取液能够促进离体培养的视网膜神经节细胞(RGCs)存活及轴突的再生,伴晶状体损伤的视神经外伤眼RGCs存活率提高,但Milller细胞和晶状体损伤在促进RGCs存活方面的关系鲜见报道。目的探讨伴晶状体损伤的视神经外伤眼Mtiller细胞对RGCs存活的促进作用及其机制。方法清洁级成年Wistar大鼠48只按随机数字表法随机分为伪手术组、视神经损伤组、晶状体联合视神经损伤组。伪手术组大鼠手术中暴露但不损伤视神经,视神经损伤组大鼠行视神经横断伤,晶状体联合视神经损伤组行视神经横断伤联合晶状体针刺伤,并导致晶状体混浊。术后7d及14d各组分别取8只大鼠处死后制备视网膜标本。采用苏木精一伊红染色观察各组大鼠视网膜和RGCs的形态学改变,采用免疫组织化学法检测各组大鼠视网膜内核层胶质纤维酸性蛋白(GFAP)标记的Muller细胞,光学显微镜下计数各组大鼠RGCs数量及GFAP阳性标记的Muller细胞数量。结果术后7d及14d,伪手术组大鼠RGCs的数量分别为(52.98±1.90)个/高倍视野和(51.81±3.09)个/高倍视野,差异无统计学意义(t=0.910,P=0.378);术后14d视神经损伤组大鼠RGCs数量为(22.67±1.94)个/高倍视野,明显少于术后7d的(36.61±1.69)个/高倍视野,差异有统计学意义(t=15.312,P=0.000);术后14d晶状体联合视神经损伤组RGCs数量为(35.69±1.80)个/高倍视野,明显少于术后7d的(50.76±2.77)个/高倍视野,差异有统计学意义(t=12.920,P=0.000)。术后7d及14d,晶状体联合视神经损伤组存活的RGCs数量均多于视神经损伤组,差异均有统计学意义(7d:t=102.840,P=0.000;14d:t=164.020,P=0.000);术后14d晶状体联合视神经损伤组存活的RGCs:牧量少于伪手术组,差异有统计学意义(t=187.04,P=0.034)。术后7d及14d,伪手术组大鼠视网膜内核层均未见GFAP阳性标记的Muller细胞;视神经损伤组大鼠内核层GFAP阳性标记Muller细胞数量分别为(29.38+2.04)个/高倍视野和(19.07±2.14)个/高倍视野,差异有统计学意义(t=-9.868,P=0.000)。晶状体联合视神经损伤组大鼠内核层GFAP阳性标记的Muller细胞数量分别为(48.96±2.80)个/高倍视野和(46.73±1.50)个/高倍视野,差异无统计学意义(t=1.987,P=0.067)。术后7d及14d,晶状体联合视神经损伤组大鼠内核层GFAP阳性Muller细胞数量均较视神经损伤组增多,差异均有统计学意义(7d:t=-15.997,P=0.000;14d:t=-29.938,P=0.000)。结论在视神经损伤合并晶状体刺伤时,晶状体损伤可诱导Muller细胞活化,进而促进视神经损伤后RGCs的存活。  相似文献   

10.
大鼠视神经夹挫伤视网膜视神经病理学动态观察及功能检测   总被引:11,自引:0,他引:11  
目的 :动态观察视神经夹挫伤后视网膜、视神经形态学和视功能变化 ,揭示其病理过程的内在规律 ,为视神经保护研究提供依据。方法 :应用光镜、电镜观察正常及视神经夹挫伤 2 4、4 8、72小时 ,1、2、4周大鼠的视神经和视网膜形态学改变 ,闪光视觉诱发电位检测正常及视神经损伤后 1小时、4周大鼠的视功能状况。结果 :视神经部分损伤诱导视网膜神经节细胞 (RGCs)严重下降 ,损伤后的前 2周RGCs快速减少 ,2周以后缓慢减少 ;电镜下可见RGCs染色质明显聚集 ,胞体皱缩 ,核膜、胞膜完整 ;也可见核膜溶解 ,细胞器水肿、崩解 ;视神经纤维在损伤过程交错存在着轴突空泡样变 ,髓鞘崩解、消失 ,胶质细胞增生 ;视神经急性损伤F VEP波形较正常变得低而宽 ,损伤 4周波形消失。结论 :神经元继发性损伤是视功能进行性下降的重要原因 ,保护神经元免受继发性损伤是视神经保护的重要方面 ,对改善视功能有极其重要的意义  相似文献   

11.
Gene therapy and transplantation in CNS repair: the visual system   总被引:4,自引:0,他引:4  
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.  相似文献   

12.
A hallmark of glaucomatous optic nerve damage is retinal ganglion cell (RGC) death. RGCs, like other central nervous system neurons, have a limited capacity to survive or regenerate an axon after injury. Strategies that prevent or slow down RGC degeneration, in combination with intraocular pressure management, may be beneficial to preserve vision in glaucoma. Recent progress in neurobiological research has led to a better understanding of the molecular pathways that regulate the survival of injured RGCs. Here we discuss a variety of experimental strategies including intraocular delivery of neuroprotective molecules, viral-mediated gene transfer, cell implants and stem cell therapies, which share the ultimate goal of promoting RGC survival after optic nerve damage. The challenge now is to assess how this wealth of knowledge can be translated into viable therapies for the treatment of glaucoma and other optic neuropathies.  相似文献   

13.
PURPOSE: To investigate the in vivo effects of trophic factors on the axonal regeneration of axotomized retinal ganglion cells in adult hamsters. METHODS: The left optic nerve was transected intracranially or intraorbitally, and a peripheral nerve graft was apposed or sutured to the axotomized optic nerve to enhance regeneration. Trophic factors were applied intravitreally every 5 days. Animals were allowed to survive for 3 or 4 weeks. Regenerating retinal ganglion cells (RGCs) were labeled by applying the dye Fluoro-Gold to the distal end of the peripheral nerve graft 3 days before the animals were killed. RESULTS: Intravitreal application of ciliary neurotrophic factor substantially enhanced the regeneration of damaged axons into a sciatic nerve graft in both experimental conditions (intracranial and intraorbital optic nerve transections) but did not increase the survival of distally axotomized RGCs. Basic fibroblast growth factor and neurotrophins such as nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 failed to enhance axonal regeneration of distally axotomized RGCs. CONCLUSIONS: Neurons of the adult central nervous system can regenerate in response to trophic supply after injury, and ciliary neurotrophic factor is at least one of the trophic factors that can promote axonal regeneration of axotomized RGCs.  相似文献   

14.
髓鞘相关抑制分子和视神经再生   总被引:1,自引:0,他引:1  
Lü LQ  Lu YC 《中华眼科杂志》2006,42(9):854-858
哺乳动物视神经损伤后不能成功再生,除了视网膜神经节细胞再生能力低下外,与中枢神经系统中存在抑制微环境密切相关。少突胶质细胞产生的髓鞘相关抑制分子是构成这种抑制微环境的重要成分。目前已经鉴定的抑制分子主要有Nogo、髓磷脂相关糖蛋白及少突胶质细胞髓磷脂糖蛋白,他们通过同一受体复合体转导抑制信号。通过阻滞抑制分子及其受体或改变神经元的内在状态,可以克服抑制分子的抑制作用,促进视网膜神经节细胞轴索再生,为人类视神经损伤修复带来希望。  相似文献   

15.
The mechanisms of regeneration and protection of optic nerve, the represent of central nerves, are researched more and more profoundly and extensively in recent years. The retinal ganglion cells(RGCs) protection after injury is stopping or preventing it from apoptosis mainly. The methods include glutamic acid inhibitor, nitric oxide (NO) inhibitor, neurotrophic factor, gene therapy, acupuncture, traditional Chinese medicine and so on. However, there are no medicines or operations that play definite curative role in the RGCs protection after injury up to now. So the ganglion cells protection is at its exploratory research stage, which will shoulder heavy responsibilities  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号