首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Flying locusts perform a characteristic gliding dive in response to predator-sized stimuli looming from one side. These visual looming stimuli trigger trains of spikes in the descending contralateral movement detector (DCMD) neuron that increase in frequency as the stimulus gets nearer. Here we provide evidence that high-frequency (>150 Hz) DCMD spikes are involved in triggering the glide: the DCMD is the only excitatory input to a key gliding motor neuron during a loom; DCMD-mediated EPSPs only summate significantly in this motor neuron when they occur at >150 Hz; when a looming stimulus ceases approach prematurely, high-frequency DCMD spikes are removed from its response and the occurrence of gliding is reduced; and an axon important for glide triggering descends in the nerve cord contralateral to the eye detecting a looming stimulus, as the DCMD does. DCMD recordings from tethered flying locusts showed that glides follow high-frequency spikes in a DCMD, but analyses could not identify a feature of the DCMD response alone that was reliably associated with glides in all trials. This was because, for a glide to be triggered, the high-frequency spikes must be timed appropriately within the wingbeat cycle to coincide with wing elevation. We interpret this as flight-gating of the DCMD response resulting from rhythmic modulation of the flight motor neuron's membrane potential during flight. This means that the locust's escape behavior can vary in response to the same looming stimulus, meaning that a predator cannot exploit predictability in the locust's collision avoidance behavior.  相似文献   

2.
The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation to repeated stimuli suggest that this pathway should be sensitive to approaches of individual objects within a complex visual scene. We presented locusts with compound looming objects while recording from the DCMD to test the effects of nonuniform edge expansion on looming responses. We also presented paired objects approaching from different regions of the visual field at nonoverlapping, closely timed and simultaneous approach intervals to study DCMD responses to multiple looming stimuli. We found that looming compound objects evoked characteristic responses in the DCMD and that the time of peak firing was consistent with predicted values based on a weighted ratio of the half size of each distinct object edge and the absolute approach velocity. We also found that the azimuthal position and interval of paired approaches affected DCMD firing properties and that DCMDs responded to individual objects approaching within 106 ms of each other. Moreover, comparisons between individual and paired approaches revealed that overlapping approaches are processed in a strongly sublinear manner. These findings are consistent with biophysical mechanisms that produce nonlinear integration of excitatory and feed-forward inhibitory inputs onto the LGMD that have been shown to underlie responses to looming stimuli.  相似文献   

3.
We investigated in vivo the characteristics of spike-frequency adaptation and the intrinsic membrane properties of an identified, looming-sensitive interneuron of the locust optic lobe, the lobula giant movement detector (LGMD). The LGMD had an input resistance of 4-5 MOmega, a membrane time constant of about 8 ms, and exhibited inward rectification and rebound spiking after hyperpolarizing current pulses. Responses to depolarizing current pulses revealed the neuron's intrinsic bursting properties and pronounced spike-frequency adaptation. The characteristics of adaptation, including its time course, the attenuation of the firing rate, the mutual dependency of these two variables, and their dependency on injected current, closely followed the predictions of a model first proposed to describe the adaptation of cat visual cortex pyramidal neurons in vivo. Our results thus validate the model in an entirely different context and suggest that it might be applicable to a wide variety of neurons across species. Spike-frequency adaptation is likely to play an important role in tuning the LGMD and in shaping the variability of its responses to visual looming stimuli.  相似文献   

4.
Neural circuits are strongly affected by temperature and failure ensues at extremes. However, detrimental effects of high temperature on neural pathways can be mitigated by prior exposure to high, but sublethal temperatures (heat shock). Using the migratory locust, Locusta migratoria, we investigated the effects of heat shock on the thermosensitivity of a visual interneuron [the descending contralateral movement detector (DCMD)]. Activity in the DCMD was elicited using a looming stimulus and the response was recorded from the axon using intracellular and extracellular methods. The thoracic region was perfused with temperature-controlled saline and measurements were taken at 5 degrees intervals starting at 25 degrees C. Activity in DCMD was decreased in control animals with increased temperature, whereas heat-shocked animals had a potentiated response such that the peak firing frequency was increased. Significant differences were also found in the thermosensitivity of the action potential properties between control and heat-shocked animals. Heat shock also had a potentiating effect on the amplitude of the afterdepolarization. The concurrent increase in peak firing frequency and maintenance of action potential properties after heat shock could enhance the reliability with which DCMD initiates visually guided behaviors at high temperature.  相似文献   

5.
6.
Experimental acute lung injury mediated by reactive metabolites of oxygen can be inhibited by the antioxidant enzymes catalase and Superoxide dismutase (SOD). However, the specific time interval during which these enzymes must be present in order to cause protection is not well defined. Using two experimental models of oxidant-dependent acute lung injury, one involving the intratracheal injection of glucose, glucose oxidase, and lactoperoxidase and the other involving the intravenous injection of cobra venom factor (CVF), we investigated the effects of delaying antioxidant administration on the outcome of the inflammatory response. In both cases, the protective effects of catalase and SOD were rapidly attenuated when their administration was delayed for a short period of time. For example, intratracheal catalase resulted in 98% protection when given simultaneously with the glucose oxidase and lactoperoxidase, but only 13% protection when the catalase was delayed 4 min. Likewise, in the CVF-induced lung injury model, intravenous catalase resulted in 40% protection when given simultaneously with the CVF, but only 2% protection when the catalase was delayed 20 min, even though the peak of the injury occurred hours after the initiation of the injury. A similar time dependence was seen with SOD. These results indicate that antioxidant therapy is required early in the course of oxygen radical-mediated acute lung injury for effective protection.Supported in part by the National Institutes of Health grants HL34635 and HL42607.  相似文献   

7.
ABSTRACT: BACKGROUND: Therapeutic hypothermia is one of the neuroprotective strategies that improve neurological outcomes after brain damage in ischemic stroke and traumatic brain injury. Microglial cells become activated following brain injury and play an important role in neuroinflammation and subsequent brain damage. The aim of this study was to determine the time-dependent effects of hypothermia on microglial cell activation and migration, which are accompanied by neuroinflammation. METHODS: Microglial cells in culture were subjected to mild (33degreesC) or moderate (29degreesC) hypothermic conditions before, during, or after lipopolysaccharide (LPS) or hypoxic stimulation, and the production of nitric oxide (NO), proinflammatory cytokines, reactive oxygen species, and neurotoxicity was evaluated. Effects of hypothermia on microglial migration were also determined in in vitro as well as in vivo settings. RESULTS: Early-, co-, and delayed-hypothermic treatments inhibited microglial production of inflammatory mediators to varying degrees: early treatment was the most efficient, and delayed treatment showed time-dependent effects. Delayed hypothermia also suppressed the mRNA levels of proinflammatory cytokines and iNOS, and attenuated microglial neurotoxicity in microglia-neuron co-cultures. Furthermore, delayed hypothermia reduced microglial migration in the Boyden chamber assay and wound healing assay. In a stab injury model, delayed local hypothermia reduced migration of microglia toward the injury site in the rat brain. CONCLUSION: Taken together, our results indicate that delayed hypothermia is sufficient to attenuate microglial activation and migration, and provide the basis of determining the optimal time window for therapeutic hypothermia. Delayed hypothermia may be neuroprotective by inhibiting microglia-mediated neuroinflammation, indicating the therapeutic potential of post-injury hypothermia for patients with brain damages exhibiting some of the inflammatory components.  相似文献   

8.
9.
Hefft S  Jonas P 《Nature neuroscience》2005,8(10):1319-1328
Hippocampal GABAergic interneurons show diverse molecular and morphological properties. The functional significance of this diversity for information processing is poorly understood. Here we show that cholecystokinin (CCK)-expressing interneurons in rat dentate gyrus release GABA in a highly asynchronous manner, in contrast to parvalbumin (PV) interneurons. With a gamma-frequency burst of ten action potentials, the ratio of asynchronous to synchronous release is 3:1 in CCK interneurons but is 1:5 in parvalbumin interneurons. N-type channels trigger synchronous and asynchronous release in CCK interneuron synapses, whereas P/Q-type Ca(2+) channels mediate release at PV interneuron synapses. Effects of Ca(2+) chelators suggest that both a long-lasting presynaptic Ca(2+) transient and a large distance between Ca(2+) source and sensor of exocytosis contribute to the higher ratio of asynchronous to synchronous release in CCK interneuron synapses. Asynchronous release occurs at physiological temperature and with behaviorally relevant stimulation patterns, thus generating long-lasting inhibition in the brain.  相似文献   

10.
Recent studies have suggested that defects in the ubiquitin-proteasome system (UPS) contribute to the etiopathogenetic mechanisms underlying dopaminergic neuronal degeneration in Parkinson's disease. The present study aims to study the effects of proteasome inhibition in the nerve terminals of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNpc). Following a unilaterally intrastriatal injection of lactacystin, a selective proteasome inhibitor, dopaminergic neurons in the ipsilateral SNpc progressively degenerated with alpha-synuclein-immunopositive intracytoplasmic inclusions. When lactacystin was administered at a high concentration, the striatum was simultaneously involved, and alpha-synuclein-immunopositive extracytoplasmic granules appeared extensively within the SN pars reticulata (SNpr). In addition, during the retrograde neuron degeneration in SN, the level of heme oxygenase-1 immunopositivity, an oxidative stress marker, was markedly increased in SNpc neurons. These results reveal that intrastriatal proteasome inhibition sufficiently induces retrograde dopaminergic neuronal degeneration with abundant accumulation of alpha-synuclein in the SN.  相似文献   

11.
12.
13.
Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the approach of paired objects and approaches at different time intervals (Guest BB, Gray JR. J Neurophysiol 95: 1428-1441, 2006) suggest that this pathway may also be affected by more complicated movements in the locust's visual environment. To test this possibility we presented stationary locusts with disks traveling along combinations of colliding (looming), noncolliding (translatory), and near-miss trajectories. Distinctly different responses to different trajectories and trajectory changes demonstrate that DCMD responds to complex aspects of local visual motion. DCMD peak firing rates associated with the time of collision remained relatively invariant after a trajectory change from translation to looming. Translatory motion initiated in the frontal visual field generated a larger peak firing rate relative to object motion initiated in the posterior visual field, and the peak varied with simulated distance from the eye. Transition from translation to looming produced a transient decrease in the firing rate, whereas transition away from looming produced a transient increase. The change in firing rate at the time of transition was strongly correlated with unique expansion parameters described by the instantaneous angular acceleration of the leading edge and subtense angle of the disk. However, response time remained invariant. While these results may reflect low spatial resolution of the compound eye, they also suggest that this motion-sensitive pathway may be capable of monitoring dynamic expansion properties of objects that change the trajectory of motion.  相似文献   

14.
Several lines of evidence point to a significant role of neuroinflammation in Parkinson's disease (PD) and other neurodegenerative disorders. In the present study we examined the protective effect of celecoxib, a selective inhibitor of the inducible form of cyclooxygenase (COX-2), on dopamine (DA) cell loss in a rat model of PD. We used the intrastriatal administration of 6-hydroxydopamine (6-OHDA) that induces a retrograde neuronal damage and death, which progresses over weeks. Animals were randomized to receive celecoxib (20 mg/kg/day) or vehicle starting 1 hour before the intrastriatal administration of 6-OHDA. Evaluation was performed in vivo using micro PET and selective radiotracers for DA terminals and microglia. Post mortem analysis included stereological quantification of tyrosine hydroxylase, astrocytes and microglia. 12 days after the 6-OHDA lesion there were no differences in DA cell or fiber loss between groups, although the microglial cell density and activation was markedly reduced in animals receiving celecoxib (p < 0.01). COX-2 inhibition did not reduce the typical astroglial response in the striatum at any stage. Between 12 and 21 days, there was a significant progression of DA cell loss in the vehicle group (from 40 to 65%) that was prevented by celecoxib. Therefore, inhibition of COX-2 by celecoxib appears to be able, either directly or through inhibition of microglia activation to prevent or slow down DA cell degeneration.  相似文献   

15.
16.
17.
Silybin inhibition of human T-lymphocyte activation   总被引:2,自引:0,他引:2  
Silybin, a 3-oxyflavone occurring in the thistle Silybum marianum, displays a dose-dependent inhibition of in-vitro lymphocyte blastogenesis induced by lectins (phytohaemagglutinin, Concanavalin A and pokeweed) and by anti-CD3 monoclonal antibody. The drug has no effect on cell viability and spontaneous 3H-thymidine incorporation, suggesting that the inhibitory activity is not due to aspecific toxicity. Since all the T-cell responses investigated require cell-membrane-associated events, the effect of silybin is probably at the level of the cell membrane, as for other flavonoids. Addition of CuSO4 prevents the inhibitory activity of silybin on PHA-induced proliferative response, indicating that the drug could exert its activity also by virtue of a chelation mechanism.  相似文献   

18.
19.
Sacchi O  Rossi ML  Canella R  Fesce R 《Neuroscience》2008,154(4):1360-1371
Nicotinic responses to endogenous acetylcholine and to exogenously applied agonists have been studied in the intact or denervated rat sympathetic neuron in vitro, by using the two-microelectrode voltage-clamp technique. Preganglionic denervation resulted in progressive decrease of the synaptic current (excitatory postsynaptic current, EPSC) amplitude, which disappeared within 24 h. These effects were accompanied by changes in ion selectivity of the nicotinic channel (nAChR). The extrapolated EPSC null potential (equilibrium potential for acetylcholine action, E(Syn)) shifted from a mean value of -15.9+/-0.7 mV, in control, to -7.4+/-1.6 mV, in denervated neurons, indicating a decrease of the permeability ratio for the main components of the synaptic current (P(K)/P(Na)) from 1.56 to 1.07. The overall properties of AChRs were investigated by applying dimethylphenylpiperazinium or cytisine and by examining the effects of endogenous ACh, diffusing within the ganglion after preganglionic tetanization in the presence of neostigmine. The null potentials of these macrocurrents (equilibrium potential for dimethylphenylpiperazinium action, E(DMPP); and equilibrium potential for diffusing acetylcholine, E(ACh), respectively) were evaluated by applying voltage ramps and from current-voltage plots. In normal neurons, E(Syn) (-15.9+/-0.7 mV) was significantly different from E(DMPP) (-26.1+/-1.0) and E(ACh) (-31.1+/-3.3); following denervation, nerve-evoked currents displayed marked shifts in their null potentials (E(Syn)=-7.4+/-1.6 mV), whereas the amplitude and null potential of the agonist-evoked macrocurrents were unaffected by denervation and its duration (E(DMPP)=-26.6+/-1.2 mV). It is suggested that two populations of nicotinic receptors, synaptic and extrasynaptic, are present on the neuron surface, and that only the synaptic type displays sensitivity to denervation.  相似文献   

20.
Previous electrophysiological studies have shown that the commissural connections between the two superior colliculi are mainly inhibitory with fewer excitatory connections. However, the functional roles of the commissural connections are not well understood, so we sought to clarify the physiology of tectal commissural excitation and inhibition of tectoreticular neurons (TRNs) in the "fixation " and "saccade " zones of the superior colliculus (SC). By recording intracellular potentials, we identified TRNs by their antidromic responses to stimulation of the omnipause neuron (OPN) and inhibitory burst neuron (IBN) regions and analyzed the effects of stimulation of the contralateral SC on these TRNs in anesthetized cats. TRNs in the caudal SC (saccade neurons) projected to the IBN region, and received mono- or disynaptic inhibition from the entire rostrocaudal extent of the contralateral SC. In contrast, TRNs in the rostral SC projected to the OPN or IBN region and received monosynaptic excitation from the most rostral level of the contralateral SC, and mono- or disynaptic inhibition from its entire rostrocaudal extent. Among the rostral TRNs with commissural excitation, IBN-projecting TRNs also projected to Forel's field H (vertical gaze center), suggesting that they were most likely saccade neurons related to vertical saccades. In contrast, TRNs projecting only to the OPN region were most likely fixation neurons. Most putative inhibitory neurons in the rostral SC had multiple axon branches throughout the rostrocaudal extent of the contralateral SC, whereas excitatory commissural neurons, most of which were rostral TRNs, distributed terminals to a discrete region in the rostral SC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号