首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Besides adhesion: new perspectives of integrin functions in angiogenesis   总被引:1,自引:0,他引:1  
During angiogenic remodelling in embryo and adult life, endothelial cells lining blood vessel walls dynamically modify their integrin-mediated adhesive contacts with the surrounding extracellular matrix. However, besides regulating cell adhesion and migration, integrins dynamically participate in a network with soluble molecules and their receptors. Angiogenesis is characterized by opposing autocrine and paracrine loops of growth factors and semaphorins that regulate the activation of integrins on the endothelial surface through tyrosine kinase receptors (TKR) and the neuropilin/plexin system. Moreover, pro- and anti-angiogenic factors can directly bind integrins and regulate endothelial cell behaviour. This review summarizes the recent progress in understanding the reciprocal interactions between integrins, TKR, and semaphorin receptors.  相似文献   

2.
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.  相似文献   

3.
Interactions between integrins and growth factor receptors play a critical role in the development and healing of the vasculature. This study mapped two binding domains on fibronectin (FN) that modulate the activity of the angiogenic factor, vascular endothelial growth factor (VEGF). Using solid-phase assays and surface plasmon resonance analysis, we identified two novel VEGF binding domains within the N- and C-terminus of the FN molecule. Native FN bound to VEGF enhanced endothelial cell migration and mitogen-activated protein (MAP) kinase activity, but FN that is devoid of the VEGF binding domains failed to do so. Coprecipitation studies confirmed a direct physical association between VEGF receptor-2 (Flk-1) and the FN integrin, alpha5beta1, which required intact FN because FN fragments lacking the VEGF binding domains failed to support receptor association. Thrombin-activated platelets released intact VEGF/FN complexes, which stimulated endothelial cell migration and could be inhibited by soluble high affinity VEGF receptor 1 and antibodies to alpha5beta1 integrin. This study demonstrates that FN is potentially a physiological cofactor for VEGF and provides insights into mechanisms by which growth factor receptors and integrins cooperate to influence cellular behavior.  相似文献   

4.
In this review, we discuss the role of focal adhesion kinase (FAK), an intracellular tyrosine kinase, in endothelial cells in relation to neovascularization. Genetic and in vitro studies have identified critical factors, receptor systems, and their intracellular signaling components that regulate the neovasculogenic phenotypes of endothelial cells. Among these factors, FAK appears to regulate several aspects of endothelial cellular behavior, including migration, survival, cytoskeletal organization, as well as cell proliferation. Upon adhesion of endothelial cells to extracellular matrix (ECM) ligands, integrins cluster on the plane of plasma-membrane, while cytoplasmic domains of integrins interact with cytoskeletal proteins and signaling molecules including FAK. However, FAK not only serves as a critical component of integrin signaling, but is also a downstream element of the VEGF/VEGF-receptor and other ligand-receptor systems that regulate neovascularization. A complete understanding of FAK-mediated neovascularization, therefore, should address the molecular and cellular mechanisms that regulate the biology of FAK. Continued research on FAK may, therefore, yield novel therapies to improve treatment modalities for the pathological neovascularization associated with diseases.  相似文献   

5.
6.
7.
Sweet DT  Chen Z  Wiley DM  Bautch VL  Tzima E 《Blood》2012,119(8):1946-1955
Angiogenesis requires integration of cues from growth factors, extracellular matrix (ECM) proteins, and their receptors in endothelial cells. In the present study, we show that the adaptor protein Shc is required for angiogenesis in zebrafish, mice, and cell-culture models. Shc knockdown zebrafish embryos show defects in intersegmental vessel sprouting in the trunk. Shc flox/flox; Tie2-Cre mice display reduced angiogenesis in the retinal neovascularization model and in response to VEGF in the Matrigel plug assay in vivo. Functional studies reveal a model in which Shc is required for integrin-mediated spreading and migration specifically on fibronectin, as well as endothelial cell survival in response to VEGF. Mechanistically, Shc is required for activation of the Akt pathway downstream of both integrin and VEGF signaling, as well as for integration of signals from these 2 receptors when cells are grown on fibronectin. Therefore, we have identified a unique mechanism in which signals from 2 critical angiogenic signaling axes, integrins and VEGFR-2, converge at Shc to regulate postnatal angiogenesis.  相似文献   

8.
Role of thrombin in angiogenesis and tumor progression   总被引:12,自引:0,他引:12  
Clinical, laboratory, histopathological, and pharmacological evidence support the notion that the coagulation system, which is activated in most cancer patients, plays an important role in tumor biology. Our laboratory has provided evidence that thrombin activates angiogenesis, a process which is essential in tumor growth and metastasis. This event is independent of fibrin formation. At the cellular level many actions of thrombin can contribute to activation of angiogenesis: (1). Thrombin decreases the ability of endothelial cells to attach to basement membrane proteins. (2). Thrombin greatly potentiates vascular endothelial growth factor- (VEGF-) induced endothelial cell proliferation. This potentiation is accompanied by up-regulation of the expression of VEGF receptors (kinase insert domain-containing receptor [KDR] and fms-like tyrosine kinase [Flt-1]). (3). Thrombin increases the mRNA and protein levels of alpha (v)beta (3) integrin and serves as a ligand to this receptor. Furthermore, thrombin increases the secretion of VEGF and enhances the expression and protein synthesis of matrix metalloprotease-9 and alpha (v)beta (3) integrin in human prostate cancer PC-3 cells. These results could explain the angiogenic and tumor-promoting effect of thrombin and provide the basis for development of thrombin receptor mimetics or antagonists for therapeutic application.  相似文献   

9.
During angiogenesis, a combined action between newly secreted extracellular matrix proteins and the repertoire of integrins expressed by endothelial cells contributes in the regulation of their biological functions. Extracellular matrix-engaged integrins influence tyrosine kinase receptors, thus promoting a regulatory cross-talk between adhesive and soluble stimuli. For instance, vitronectin has been reported to positively regulate VEGFR-2. Here, we show that collagen I downregulates VEGF-A-mediated VEGFR-2 activation. This activity requires the tyrosine phosphatase SHP2, which is recruited to the activated VEGFR-2 when cells are plated on collagen I, but not on vitronectin. Constitutive expression of SHP2(C459S) mutant inhibits the negative role of collagen I on VEGFR-2 phosphorylation. VEGFR-2 undergoes internalisation, which is associated with dynamin II phosphorylation. Expression of SHP2(C459S) impairs receptor internalisation suggesting that SHP2-dependent dephosphorylation regulates this process. These findings demonstrate that collagen I in provisional extracellular matrix surrounding nascent capillaries triggers a signaling pathway that negatively regulates angiogenesis.  相似文献   

10.
Recent studies have shown that low serum 25-hydroxyvitamin D (25[OH]D) level is a risk factor for preeclampsia. The clinical significance of in vitro findings that vitamin D regulates vascular endothelial growth factor production is unclear. We sought to determine whether there is an association between midgestation serum 25(OH)D levels and angiogenic factor activity and to compare their predictive value for the development of severe preeclampsia. We conducted a nested case-control study of women with severe preeclampsia (n=41) versus women with uncomplicated term birth (n=123) who had second trimester genetic screening (15-20 weeks). Using banked frozen serum, we measured levels of 25(OH)D, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, and placental growth factor and compared their correlations and predictive values. We found no correlation between serum 25(OH)D and angiogenic factors levels. 25(OH)D alone was comparable to vascular endothelial growth factor and soluble fms-like tyrosine kinase 1/placental growth factor ratio as a predictive marker for severe preeclampsia. A composite of both 25(OH)D level and soluble fms-like tyrosine kinase 1/placental growth factor ratio was more predictive than either alone (area under curve: 0.83 versus 0.74 and 0.67, respectively). In conclusion, combining midpregnancy 25(OH)D level with soluble fms-like tyrosine kinase 1/placental growth factor ratio provides a better prediction for the development of severe preeclampsia.  相似文献   

11.
The development of a functional heart depends on the coordinated growth, differentiation, migration, and apoptosis of cell populations of diverse embryological origins. These processes are regulated in part by soluble polypeptide growth factors that exert their effects via binding to cell surface receptors with intrinsic tyrosine kinase activity. In particular, members of this class of receptors and their ligands have been shown to regulate the development of distinctive regions of the heart, such as the mesodermally derived cardiac myocyte, the endocardium, and outflow tract and septa, which depend on cardiac neural crest. The hepatocyte growth factor receptor, c-met the fibroblast growth factor receptors; and the neuregulin receptors have been shown to influence cardiomyocyte proliferation and/or differentiation. Receptors binding to vascular endothelial cell growth factor or angiopoietin have been implicated in the development of the endocardium. Finally, gene-targeting experiments in the mouse have demonstrated functional roles for neurotrophins and their cognate trk receptor tyrosine kinases in the development of outflow tract, septa, and valves that are structures derived from cardiac neural crest.  相似文献   

12.
Semaphorins and tumor angiogenesis   总被引:1,自引:0,他引:1  
Semaphorins belong to a large family of proteins well-conserved along evolution from viruses to mammalians. Secreted and membrane-bound semaphorins participate in a wide range of biological phenomena including development and regeneration of nervous system, cardiovascular development, and immune system activities. Different classes of semaphorins are bifunctional and often exert opposite effects (i.e., repellent or attractive) by acting through the plexin receptor family. However, some classes use other membrane receptors and the same plexin-mediated signals may be modulated by co-receptors, in particular neuropilins or some tyrosine kinase receptors. In cancer, semaphorins have both tumor-suppressor and tumor-promoting functions, by acting on both tumor and stromal components. Here, we review the role of semaphorins in tumor angiogenesis and propose that an unbalance between autocrine loops respectively involving angiogenic inducers and class 3 semaphorin is instrumental for structural and functional abnormalities observed in tumor vasculature. An erratum to this article can be found at  相似文献   

13.
An Eph receptor regulates integrin activity through R-Ras   总被引:1,自引:0,他引:1       下载免费PDF全文
The ability of integrins to mediate cell attachment to extracellular matrices and to blood proteins is regulated from inside the cell. Increased ligand-binding activity of integrins is critical for platelet aggregation upon blood clotting and for leukocyte extravasation to inflamed tissues. Decreased adhesion is thought to promote tumor cell invasion. R-Ras, a small intracellular GTPase, regulates the binding of integrins to their ligands outside the cell. Here we show that the Eph receptor tyrosine kinase, EphB2, can control integrin activity through R-Ras. Cells in which EphB2 is activated become poorly adherent to substrates coated with integrin ligands, and a tyrosine residue in the R-Ras effector domain is phosphorylated. The R-Ras phosphorylation and loss of cell adhesion are causally related, because forced expression of an R-Ras variant resistant to phosphorylation at the critical site made cells unresponsive to the anti-adhesive effect of EphB2. This is an unusual regulatory pathway among the small GTPases. Reduced adhesiveness induced through the Eph/R-Ras pathway may explain the repulsive effect of the Eph receptors in axonal pathfinding and may facilitate tumor cell invasion and angiogenesis.  相似文献   

14.
Human alpha3 chain, a noncollagenous domain of type IV collagen [alpha3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of alpha3(IV)NC1 to alphaVbeta3 and alpha3beta1 integrins. alpha3(IV)NC1 binds alphaVbeta3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of alpha3beta1 and alphaVbeta3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on alpha3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by alpha3(IV)NC1 in endothelial cells, only alpha3beta1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of alpha3(IV)NC1 to alpha3beta1 integrin leads to inhibition of COX-2-mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IkappaBalpha/NFkappaB axis, and is independent of alphaVbeta3 integrin. Furthermore, beta3 integrin-null endothelial cells, when treated with alpha3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in alpha3 integrin-null endothelial cells, indicating that regulation of COX-2 by alpha3(IV)NC1 is mediated by integrin alpha3beta1. Our in vitro and in vivo findings demonstrate that alpha3beta1 integrin is critical for alpha3(IV)NC1-mediated inhibition of COX-2-dependent angiogenic signaling and inhibition of tumor progression.  相似文献   

15.
BACKGROUND/AIMS: Angiogenesis is essential in liver regeneration. However, only little is known about sinusoidal endothelial cell proliferation and the role of different angiogenic growth factors and their receptors during regeneration. METHODS: Seventy percent hepatectomy was carried out on male rats. Serial changes in endothelial cell proliferation were evaluated by immunohistochemistry. The mRNA expressions of angiogenic growth factors (vascular endothelial growth factor (VEGF) and angiopoietins 1 and 2) and their receptors (flt-1, flk-1, Tie-1 and Tie-2) in the whole liver were evaluated by semi-quantitative RT-PCR. RESULTS: Significant elevation of endothelial cell proliferation started at 48 h and peaked at 72 h after hepatectomy. The ratio of sinusoids to liver tissue area initially decreased at 72 h, and thereafter, significantly increased at 96 h. VEGF related factors had early peaks, which coincided with the endothelial proliferation. flt-1, flk-1 and VEGF expressions peaked at 24, 48 and 72 h, respectively. angiopoietin/Tie factors peaked at 96 h, except Ang-2, which gradually increased and peaked at 168 h. CONCLUSIONS: During liver regeneration, hepatocyte proliferation was followed by endothelial cell proliferation. The VEGF family and angiopoietin/Tie system may have distinct roles in angiogenesis, with an enhanced expression of the VEGF family in the early phase of regeneration followed by angiopoietin/Tie expression.  相似文献   

16.
Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor for growth factors of the VEGF family. Endothelial cells express a membrane-bound and a soluble variant of this protein, the latter being mainly considered as a negative regulator of VEGF-A signaling. We previously reported that the soluble form is deposited in the extracellular matrix produced by endothelial cells in culture and is able to promote cell adhesion and migration through binding to alpha5beta1 integrin. In this study, we demonstrate that the Ig-like domain II of VEGFR-1, which contains the binding determinants for the growth factors, is involved in the interaction with alpha5beta1 integrin. To identify domain regions involved in integrin binding, we designed 12 peptides putatively mimicking the domain II surface and tested their ability to inhibit alpha5beta1-mediated endothelial cell adhesion to soluble VEGFR-1 and directly support cell adhesion. One peptide endowed with both these properties was identified and shown to inhibit endothelial cell migration toward soluble VEGFR-1 as well. This peptide directly binds alpha5beta1 integrin, but not VEGF-A, inducing endothelial cell tubule formation in vitro and neoangiogenesis in vivo. Alanine scanning mutagenesis of the peptide defined which residues were responsible for its biologic activity and integrin binding.  相似文献   

17.
Angiogenesis entails new vessel formation from preexisting vessels. It follows vasculogenesis during embryo development. In post-natal life, it occurs both in physiological conditions (wound repair and cyclically in the female genital system) and pathological conditions such as tumors. Several sequential steps are involved, including basement membrane degradation by proteolytic enzymes secreted by the endothelial cells, chemotaxis toward the stimulus and proliferation of these cells, canalization, branching and formation of vascular loops, stabilization and functional maturation of neovessels following perivascular apposition of pericytes and smooth muscle cells, and neosynthesis of basement membrane constituents. Tumor angiogenesis is regulated by several factors, mainly growth factors for the endothelial cells secreted by both the tumor and host inflammatory cells, and mobilized from extracellular matrix stores by proteases secreted by tumor cells. Regulatory factors also include the extracellular matrix components and endothelial cell integrins, hypoxia, oncogenes and tumor suppressor genes. Angiogenesis is mandatory to the process of tumor progression (growth, invasion and metastasis), since it conveys oxygen and metabolites, whereas endothelial cells secrete growth factors for tumor cells and a variety of proteinases which facilitate invasion and increase opportunities for tumor cells to enter the circulation. We present our results concerning the relationship between angiogenesis and progression in patients with melanoma, multiple myeloma, B-cell non-Hodgkin's lymphomas and mycosis fungoides. Lastly, it is becoming increasingly evident that agents interfering with blood vessel formation also interfere with tumor progression. These include antagonists of angiogenic growth factors, angiogenic receptors, endothelial cell integrins, and proteolytic enzymes, as well as non-specific toxic agents for vessels and low-dose chemotherapeutic agents. Their recent applications in preclinical models and in neoplastic patients are reviewed.  相似文献   

18.
The integrin family of cell adhesion receptors mediates many of the interactions between cells and the extracellular matrix. Because the extracellular matrix has profound influences on cell behavior, it seems likely that integrins transduce biochemical signals across the cell membrane. The nature of these putative signals has, thus far, remained elusive. Antibody-mediated clustering of integrin receptors was used to mimic the integrin clustering process that occurs during formation of adhesive contacts. Human epidermal carcinoma (KB) cells were incubated with an anti-beta 1 integrin monoclonal antibody for 30 min on ice followed by incubation at 37 degrees C with anti-rat IgG. This treatment, which induced integrin clustering, stimulated the phosphorylation on tyrosine residues of a 115- to 130-kDa complex of proteins termed pp130. When integrins were clustered in the presence of the phosphatase inhibitor sodium orthovanadate, pp130 showed a substantial increase in phosphorylation compared to the case in which integrins were clustered in the absence of vanadate. Maximal pp130 phosphorylation was observed 10-20 min after initiation of integrin clustering in the absence of vanadate or after 5-10 min in its presence. These time courses roughly parallel the formation of integrin clusters on the cell surface as observed by fluorescence microscopy. pp130 phosphorylation depended on the amount of anti-integrin antibody present. Additionally, the tyrosine phosphorylation of pp130 showed specificity since it was stimulated by antibodies to the integrin alpha 3 and beta 1 subunits but not by antibodies to other integrin alpha subunits or to nonintegrin cell surface proteins. Immunoprecipitation experiments clearly demonstrated that pp130 is not itself a beta 1 integrin. It is postulated, therefore, that the integrin-stimulated tyrosine phosphorylation of pp130 may reflect part of an important signal transduction process between the extracellular matrix and the cell interior.  相似文献   

19.
The migration of vascular smooth muscle cells (SMCs) from the media into the neointima and their subsequent proliferation is important in the pathogenesis of atherosclerosis. This process is regulated by multiple factors, including growth factors, and involves changes in the interaction of SMCs with the extracellular matrix and in intracellular signaling cascades that regulate cell movement. We demonstrated previously that hepatocyte growth factor (HGF) is expressed in human atherosclerotic plaques. Although HGF has been shown to promote SMC migration, the mechanisms involved in this process have not been characterized fully. In this study, inhibitory antibodies were used to determine which integrins mediated HGF-induced SMC migration. Inhibition of beta1 or beta3 integrin resulted in a significant decrease in migration. Subsequent experiments were performed to characterize additional biochemical mechanisms involved in HGF-mediated migration. HGF induced the redistribution of focal adhesions, the activation of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and their increased association with beta1 and beta3 integrins, and the production of pro-matrix metalloproteinase-2. Migration levels were significantly reduced by cotreatment of SMCs with the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, UO126, the p38 inhibitor, SB203580, or the phosphatidylinositol-3 kinase inhibitor, LY294002. In HGF-treated SMCs, focal adhesion redistribution and FAK and Pyk2 activation were decreased by ERK1/2 inhibition. Neither SB203580 nor LY294002 inhibited HGF-induced ERK1/2 activation. Thus, ERK1/2 signaling may play an important role in HGF-mediated SMC migration by contributing to focal adhesion redistribution and FAK and Pyk2 activation.  相似文献   

20.
VEGF-integrin interplay controls tumor growth and vascularization   总被引:8,自引:0,他引:8       下载免费PDF全文
Cross-talk between the major angiogenic growth factor, VEGF, and integrin cell adhesion receptors has emerged recently as a critical factor in the regulation of angiogenesis and tumor development. However, the molecular mechanisms and consequences of this intercommunication remain unclear. Here, we define a mechanism whereby integrin alpha v beta3, through activation, clustering, and signaling by means of p66 Shc (Src homology 2 domain containing), regulates the production of VEGF in tumor cells expressing this integrin. Tumors with "activatable" but not "inactive" beta3 integrin secrete high levels of VEGF, which in turn promotes extensive neovascularization and augments tumor growth in vivo. This stimulation of VEGF expression depends upon the ability of alpha v beta3 integrin to cluster and promote phosphorylation of p66 Shc. These observations identify a link between beta3 integrins and VEGF in tumor growth and angiogenesis and, therefore, may influence anti-integrin as well as anti-VEGF therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号