首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1-Chloroethenyl)oxirane is a major mutagenic metabolite of chloroprene, an important large-scale petrochemical used in the manufacture of synthetic rubbers. The reactions of (1-chloroethenyl)oxirane with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, thymidine, and calf thymus DNA have been studied in aqueous buffered solutions. The adducts from the nucleosides were isolated by reversed-phase HPLC, and characterized by their UV absorbance and (1)H and (13)C NMR spectroscopic and mass spectrometric features. The reaction with 2'-deoxyguanosine gave one major adduct, N7-(3-chloro-2-hydroxy-3-buten-1-yl)-guanine (dGI), and eight minor adducts which were identified as diastereoisomeric pairs of N1-(3-chloro-2-hydroxy-3-buten-1-yl)-2'-deoxyguanosine (dGII, dGIII), N3,N7-bis(3-chloro-2-hydroxy-3-buten-1-yl)-guanine (dGIV, dGV), N7,N9-bis(3-chloro-2-hydroxy-3-buten-1-yl)-guanine (dGVI, dGVII), and N1,N7-bis(3-chloro-2-hydroxy-3-buten-1-yl)-guanine (dGVIII, dGIX). The reaction of 2'-deoxyadenosine with (1-chloroethenyl)oxirane gave two adducts: N1-(3-chloro-2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine (dAI) and N(6)-(3-chloro-2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine (dAII). The adduct dAII was shown to arise via a Dimroth rearrangement of adduct dAI. The HPLC analyses of the reaction mixtures of (1-chloroethenyl)oxirane with 2'-deoxycytidine and thymidine showed the formation of one major product in each reaction. The adduct from 2'-deoxycytidine was identified as N3-(3-chloro-2-hydroxy-3-buten-1-yl)-2'-deoxyuridine (dCI) derived by alkylation at N-3 followed by deamination. The adduct from thymidine was identified as N3-(3-chloro-2-hydroxy-3-buten-1-yl)-thymidine (TI). Reaction of (1-chloroethenyl)oxirane with calf thymus DNA gave all of the adducts observed from the individual nucleosides except dGII and dGIII. However, there was selectivity for the formation of dGI and dCI. The adduct levels in DNA were 9,630 (dGI), 240 (dCI), 83 (dAI), 6 (dAII), and 28 (TI) pmol/mg DNA, respectively. The preferred formation of dCI may be relevant to chloroprene mutagenesis.  相似文献   

2.
O(2)-[4-(3-Pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dThd) is the most persistent adduct detected in the lung and liver of rats treated with tobacco specific nitrosamines: N'-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). It is an important biomarker to assess the human exposure to these carcinogens. The only synthetic method reported for O(2)-POB-dThd requires repeated HPLC purifications and could only be used to prepare an analytical standard due to very low yield (0.4%). We have developed for the first time a regioselective and efficient method for the total synthesis of O(2)-POB-dThd and its site-specifically adducted oligonucleotides. The main step in the synthesis of O(2)-POB-dThd was achieved by a novel method. The treatment of O(2)-5'-anhydrothymidine with the sodium salt of 4-(1,3-dithian-2-yl)-4-(3-pyridyl)butan-1-ol gave exclusively the O(2)-alkylated adduct, which was deprotected in one step to furnish the desired O(2)-POB-dThd in excellent yield. The product was characterized by NMR ((1)H and (13)C), high-resolution MS, and HPLC analysis. This work provided for the first time a reliable method for large scale total synthesis of O(2)-POB-dThd that allowed for solid state site-specifically adducted oligomer synthesis. The O(2)-POB-dThd was converted to its phosphoramidite and subsequently used for the synthesis of oligodeoxynucleotides by standard methods. The oligomers were characterized by MS and HPLC analysis. These oligomers will facilitate the elucidation of the mutagenic potential of the O(2)-POB-dThd adduct, which will provide further insight into the role of tobacco-specific nitrosamines in inducing cancers in smokers.  相似文献   

3.
The (32)P-postlabeling assay is an extremely sensitive technique for detecting carcinogen-DNA adducts. However, for the assignment of DNA adduct structures and the accurate determination of DNA adduct levels by (32)P-postlabeling, authentic adduct standards are needed. For most (32)P-postlabeling applications, such verified synthetic standard compounds are required in the form of their deoxynucleoside 3'-phosphates because they represent substrates for the polynucleotide kinase for transfer of [(32)P]phosphate from [gamma-(32)P]ATP. Three N-(deoxyguanosin)-4-aminobiphenyl 3'-phosphate adducts were prepared and fully characterized by (1)H NMR and mass spectroscopy to serve as standards for the (32)P-postlabeling assay. Apart from the C8- and the N(2)-deoxyguanosine 3'-phosphate adducts of the mutagenic human bladder carcinogen 4-aminobiphenyl (dG3'p-C8-4-ABP and dG3'p-N(2)-4-ABP), the C8-deoxyguanosine 3'-phosphate adduct of the nonmutagenic 4'-tert-butyl-4-aminobiphenyl (dG3'p-C8-4'tBu-4-ABP) was included in the study. Both C8-deoxyguanosine 3'-phosphate adducts were prepared by the in situ formation of deoxyguanosine 3'-phosphate and its subsequent reaction with the appropriate electrophilic amination agent (N-acetoxy compound). The N(2)-deoxyguanosine 3'-phosphate adduct was obtained by a modification of a previously described procedure for the synthesis of N(2)-deoxyguanosine adducts of aromatic amines. The three adduct standards were added at different concentrations to calf thymus DNA, and adduct recoveries were determined by the (32)P-postlabeling assay under conditions routinely used in the standard methodology, enhancement by nuclease P1 digestion and enhancement by butanol extraction. The dG3'p-C8-4-ABP adduct was recovered irrespective of the concentration with approximately 30% in both the standard and the butanol extraction version of the assay. Both C8-deoxyguanosine 3'-phosphate adducts were sensitive to nuclease P1 digestion resulting in recoveries of only 1-3%. In contrast, the dG3'p-N(2)-4-ABP adduct was resistant to nuclease P1 digestion; however, recovery in all three versions was poor (1-2%) resulting in a detection limit of one adduct/10(6) nucleotides. These results demonstrate that the (32)P-postlabeling assay underestimates the level of DNA adducts formed by 4-ABP and indicates that there is a need to determine the recovery for each adduct to be analyzed by the (32)P-postlabeling technique.  相似文献   

4.
The tobacco-specific carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are metabolically activated to DNA binding intermediates, partially via 4-(3-pyridyl)-4-oxobutanediazohydroxide (7) or related carbonium ions. Previous studies have shown that generation of 7 from 4-(carbethoxynitrosamino)-1-(3-pyridyl)-1-butanone (11) in the presence of deoxyguanosine yields a major adduct identified as 2'-deoxy-N-[1-methyl-3-oxo-3-(3-pyridyl)propyl]guanosine (adduct 1). These results suggested that adduct 1 should be present in DNA of tissues that can metabolically activate NNK and NNN. In the present study, we evaluate the formation of adduct 1 and its structurally related straight-chain analogue 2'-deoxy-N-[4-oxo-4-(3-pyridyl)butyl]guanosine (adduct 2) in DNA of tissues of rats treated with [5-3H]NNK or [5-3H]NNN, and in DNA of nasal mucosa that had been cultured in medium containing [5-3H]NNK or [5-3H]NNN. Hepatic DNA from rats treated with [5-3H]NNK was enzymatically hydrolyzed to deoxyribonucleosides and analyzed by HPLC. One of the radioactive peaks, peak E, coeluted with adduct 1. However, treatment of peak E with NaBH4 resulted in the formation of products different from those produced by NaBH4 treatment of adduct 1, demonstrating that adduct 1 could not be detected under these conditions. Hydrolysis of peak E with acid produced 4-hydroxy-1-(3-pyridyl)-1-butanone (9), suggesting that peak E might be adduct 2. Therefore, adduct 2 was synthesized by reaction of deoxyguanosine with 1-(3-pyridyl)butane-1,4-dione (5) in the presence of NaCNBH3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Analysis of the reaction between 2'-deoxycytidine and 4-oxo-2-nonenal by LC/MS revealed the presence of three major products (adducts A(1), A(2), and B; [M + H](+) = 364). Adducts A(1) and A(2) were isomeric, and each dehydrated to form adduct B. The structure of adduct B was shown by LC/MS and NMR spectroscopy to be an etheno-2'-deoxycytidine adduct 1' '-[1-(2'-deoxy-beta-d-erythro-pentofuranosyl)-1H-imidazo[2,1-c]pyrimidin-2-oxo-4-yl]heptane-2' '-one. A time course experiment performed at 65 degrees C (pH 5-8) showed that the transformation of both A(1) and A(2) was pH-dependent. In acidic conditions, adducts A(1) and A(2) dehydrated primarily to adduct B. In contrast, in basic conditions, adducts A(1) and A(2) hydrolyzed primarily to dCyd. The data are consistent with adducts A(1) and A(2) being substituted ethano adducts that dehydrate to adduct B, a substituted 3,N(4)-etheno-2'-deoxycytidine adduct.  相似文献   

6.
3-(2-Deoxy-beta-D-erythro-pentofuranosyl)-6-hydroxy-5,6,7,8-tetrahydropyrimido[1,2-a]purin-10(3H)-one is formed in low yield by the reaction of acrolein with 2'-deoxyguanosine. The nucleoside and an oligodeoxynucleotide containing it have been synthesized. For preparation of the nucleoside 2'-deoxyguanosine was alkylated at the N1 position using 1-bromo-3-butene to give 1-(3-butenyl)-2'-deoxyguanosine. Oxidation with OsO(4) and N-methylmorpholine-N-oxide to give the 3,4-dihydroxybutyl adduct followed by oxidation with NaIO(4) gave the 1-(3-oxopropyl) adduct which cyclized spontaneously to yield the title compound as a rapidly epimerizing mixture of two diastereomers. Reduction of the nucleoside with NaBH(4) gave the unfunctionalized compound plus 1-(3-hydroxypropyl)-2'-deoxyguanosine showing that epimerization was occurring via both the imine and the 1-(3-oxopropyl) adduct. Reduction with NaCNBH(3) gave exclusively unfunctionalized 3-(2-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydropyrimido[1,2-a]purin-10(3H)-one. The phosphoramidite reagent needed for preparation of oligonucleotides was prepared from 1-(3-butenyl)-2'-deoxyguanosine by glycolation after protection of the 3' and 5' hydroxyl groups as silyl derivatives. Acetylation of the vicinal hydroxyl groups and the exocyclic amino group followed by removal of silyl protection gave the protected nucleoside. Protection of the 5' hydroxyl group as the 4,4'-dimethoxytrityl ether followed by phosphitylation with 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite gave the prosphoramidite reagent which was used to prepare a 12-mer oligodeoxynucleotide.  相似文献   

7.
The promutagenic etheno DNA adducts have been detected in tissue DNA of rodents and humans from various exogenous and endogenous sources. While other etheno DNA adducts have been detected and quantified by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry (GC/NICI/MS), similar analysis for 3,N(4)-ethenocytosine (epsilonCyt) has not been available. In this report, a GC/NICI/MS assay was developed for detection and quantification of epsilonCyt in DNA and in human urine samples. The stable isotope of epsilonCyt with 7 mass units higher than the normal epsilonCyt was synthesized and used as internal standard of the assay. The adduct-enriched fraction of DNA hydrolysate was derivatized with pentafluorobenzyl bromide before GC/NICI/MS analysis with selective ion monitoring at [M - 181](-) fragments of pentafluorobenzylated epsilonCyt and its isotope analogue. One femtogram (S/N > 40) of pentafluorobenzylated epsilonCyt was detected when injected on column with selective ion monitoring mode. The limit of quantification for the entire assay was 7.4 fmol of epsilonCyt, which was approximately one thousand times lower than that of the HPLC/fluorescence assay for the nucleoside 3,N(4)-etheno-2'-deoxycytidine in DNA. Analysis of chloroacetaldehyde-treated calf thymus DNA by both GC/NICI/MS and HPLC/fluorescence methods provided similar adduct levels and thus verified the assay. This GC/NICI/MS method was used for analysis of epsilonCyt in two smokers' urine samples and the average level of epsilonCyt was 101 +/- 17 pg/mL/g of creatinine. Thus, quantification of epsilonCyt in DNA and in urine by this highly specific and ultrasensitive isotope dilution GC/NICI/MS assay may facilitate research on the role of epsilonCyt in carcinogenesis and in cancer development.  相似文献   

8.
trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N(2)-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N(2)-dGuo (1,N(2)-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N(2)-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N(2)-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, the (6S,8R,11S)-1,N(2)-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either dGTP or dATP, was positioned with Watson-Crick pairing opposite the template 5'-neighbor base, dCyt or dThy, respectively. In contrast, for the 18-mer:14-mer template-primers with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, ring opening of the adduct to the corresponding N(2)-dGuo aldehyde species occurred. This allowed Watson-Crick base pairing at the (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair.  相似文献   

9.
DNA pyridyloxobutylation occurs during the metabolic activation of the tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). This pathway contributes significantly to the carcinogenic and mutagenic activity of these nitrosamines. In general, the chemical structure of pyridyloxobutyl adducts are not well understood. Recently, an AGT reactive pyridyloxobutyl adduct was identified as O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG). To better understand the importance of this adduct to the biological activity of pyridyloxobutylating agents, we developed a method for site-specifically incorporating O6-pobG into DNA oligonucleotides. They were synthesized using the phosphoramidite of the precursor 2'-deoxy-O6-{3-[2-(3-pyridyl)-1,3-dithian-2-yl]propyl}guanosine. The dithiane group was oxidatively removed with N-chlorosuccinimide in a final postoligomerization reaction to generate the desired product. Human AGT with a polyhistidine tag was able to repair the O6-pobG-containing DNA oligonucleotide, generating unmodified oligonucleotide. These results are consistent with an alkyl group transfer mechanism for the repair of O6-pobG by AGT.  相似文献   

10.
The anti-cancer agent, cyclophosphamide, metabolises to the cytotoxic alkylating agent phosphoramide mustard, which can be dephosphoramidated to give nornitrogen mustard. A rat liver mitochondrial supernatant system was used to study the binding of [chloroethyl 3H]cyclophosphamide to DNA. The reacted DNA was acid-hydrolysed and one major adduct was identified using Sephadex G-10 chromatography, followed by HPLC, using reversed-phase or ion-exchange systems. Further studies, using [14C]guanine as reaction substrate for [chloroethyl 3H]cyclophosphamide, phosphoramide mustard or nornitrogen mustard, demonstrated the main adduct from each reaction had identical chromatographic properties in these systems. The radiolabelled ratio in the [3H]cyclophosphamide-[14C]guanine reaction demonstrated a monoadducted product. From this evidence and from 1H NMR data, the common adduct was putatively identified as a hydroxylated nornitrogen mustard adduct (N-(2-hydroxyethyl)-N-[2-(7-guaninyl)ethyl]amine). In in vivo studies, rats were injected intraperitoneally with 2.775 MBq [3H]cyclophosphamide. Total organ [3H] content and DNA binding levels were ascertained. Maximal levels of [3H] binding to DNA were seen between 1-4 hr with the highest binding levels observed in the bladder. The in vivo adduct was shown, using various HPLC systems, to co-chromatograph with the in vitro adduct and thus the main in vivo adduct was putatively identified as N-(2-hydroxyethyl)-N-[2-(7-guaninyl)ethyl]amine.  相似文献   

11.
3-Chloro-4-(chloromethyl)-5-hydroxy-2(5H)-furanone (CMCF) is a strong direct acting bacterial mutagen found in chlorine-disinfected drinking water. We studied the reaction of CMCF with 2-deoxyadenosine in buffered aqueous solutions and found that three main adducts were formed. The adducts were isolated and purified by C18 column chromatography and HPLC, and characterized on the basis of their UV absorbance, fluorescence emission, (1)H and (13)C NMR spectroscopic, and mass spectrometric features. The adducts were identified as 3-(2-deoxy-beta-D-ribofuranosyl)-7H-8-formyl[2, 1-i]pyrimidopurine (pfA-dR), 3-(2-deoxy-beta-D-ribofuranosyl)-7H-8-carboxy[2,1-i]pyrimidopurine++ + (pcA-dR), and 4-(N(6)-2-deoxyadenosinyl)-3-formyl-2-hydroxy-3-butenoic acid (OH-fbaA-dR). In the reactions performed at pH 7.4 and 37 degrees C, the yields of pfA-dR, pcA-dR, and OH-fbaA-dR were 1.1, 6.7, and 5.5 mol %, respectively. The adduct pfA-dR was detected also in calf thymus DNA reacted with CMCF. The yield was about six adducts per 10(5) bases. To elucidate the mechanisms of formation of the adducts, (13)C-3-labeled CMCF was reacted with 2'-deoxyadenosine. The adducts are structurally related to the adducts previously identified in the reactions of structurally analogous chlorohydroxyfuranones with 2-deoxyadenosine.  相似文献   

12.
A novel glutathione-conjugated metabolite of morphine has been isolated from the bile of guinea pigs given morphine. The metabolite was separated by preparative HPLC on a reverse phase column (YMC-GEL C18) using methanol/water (1:4, v/v) as eluate and purified by HPLC on another reverse phase column (mu-Bondapak phenyl) using water/acetonitrile/trimethylamine/acetic acid (150:3:2:1, v/v) as a mobile phase. The unambiguous structure assignment of the metabolite was performed by fast atom bombardment mass spectrometry and 400 MHz fourier transform NMR spectrometric analysis, and it was identified as (8S)-glutathion-S-yl)dihydromorphinone, in comparison with the synthetic morphinone-glutathione adduct.  相似文献   

13.
The enantiomers of the previously reported racemic 6-amino-3-(chloromethyl)-1-[(5,6,7-trimethoxyindol-2-yl)carbonyl] indoline (amino-seco-CI-TMI) were prepared via resolution of a precursor by chiral HPLC. The only detectable product isolated from reaction of the racemic compound with calf thymus DNA, followed by thermal cleavage, was shown by mass spectrometry and two-dimensional NMR spectroscopy to be the adenine N3 adduct. Polyacrylamide gel electrophoresis assays with the racemate and with each enantiomer also showed adenine to be the only site of alkylation. While the racemic amino compound exhibited sequence selectivity identical to that of the previously characterized phenol analogue, the enantiomers exhibited distinctly different sequence selectivities, allowing the (+) enantiomer to be assigned the "natural" S configuration. The (+)-(S) enantiomer is 3-fold more cytotoxic than the (-)-(R) enantiomer (IC(50) values of 240 and 700 nM, respectively, in AA8 cells, after exposure for 4 h).  相似文献   

14.
A synthetic route to oligonucleotides containing N(2)-deoxyguanosine adducts at C-10 of the enantiomeric 7,8-diol 9,10-epoxides of 7,8,9,10-tetrahydrobenzo[a]pyrene in which the epoxide oxygen and the 7-hydroxyl group are trans is described. The present adducts result from the trans addition of N(2) of deoxyguanosine to the epoxide at C-10. Our synthesis proceeds via preparation of the 3'-H-phosphonate of a suitably protected deoxyguanosine N(2)-adduct. The blocking groups consisted of O(6)-allyl on the deoxyguanosine, acetates on the 7-, 8-, and 9-hydroxyl groups of the hydrocarbon moiety, and dimethoxytrityl on the 5'-hydroxyl group of the sugar. These blocking groups are well suited to oligonucleotide synthesis on solid supports. The free 3'-hydroxyl group of this nucleoside adduct was readily converted to its 3'-H-phosphonate with diphenyl phosphite in pyridine in high yield for both the 10R and 10S isomers. For synthesis of oligonucleotides, the first several nucleotides were incorporated onto the solid support with an automated synthesizer using standard phosphoramidite chemistry. The adducted deoxyguanilic acid residue was introduced as the H-phosphonate in a manual step (80% yield), followed by completion of the sequence on the synthesizer. Although a 10-fold excess of the 3'-H-phosphonate was used in the manual coupling step, as much as 70% of the reactant could be recovered. The 3'-H-phosphonate of the protected 10S nucleoside adduct was converted to the unblocked nucleotide adduct, various salts of which failed to form crystals suitable for X-ray analysis. Although submilligram quantities of this compound have been formed as mixed diastereomers by direct reaction of deoxyguanylic acid with racemic diol epoxide, the present study represents the first actual synthesis of the major DNA adduct formed from benzo[a]pyrene in mammals as its 3'-phosphate.  相似文献   

15.
2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine found in cooked meats. The major DNA adduct of IQ is at the C8-position of dGuo. We have previously reported the incorporation of the C8-IQ adduct into oligonucleotides, namely, the G1-position of codon 12 of the N-ras oncogene sequence (G1G2T) and the G3-position of the NarI recognition sequence (G1G2CG3CC) (Elmquist et al. (2004) J. Am. Chem. Soc. 126, 11189-11201). Ultraviolet spectroscopy and circular dichroism studies indicated that the conformation of the adduct in the two oligonucleotides was different, and they were assigned as groove-bound and base-displaced intercalated, respectively. The conformation of the latter was subsequently confirmed through NMR and restrained molecular dynamics studies (Wang et al. (2006) J. Am. Chem. Soc. 128, 10085-10095). We report here the incorporation of the C8-IQ adduct into the G1- and G2-positions of the NarI sequence. A complete analysis of the UV, CD, and NMR chemical shift data for the IQ protons are consistent with the IQ adduct adopting a minor groove-bound conformation at the G1- and G2-positions of the NarI sequence. To further correlate the spectroscopic data with the adduct conformation, the C8-aminofluorene (AF) adduct of dGuo was also incorporated into the NarI sequence; previous NMR studies demonstrated that the AF-modified oligonucleotides were in a sequence-dependent conformational exchange between major groove-bound and base-displaced intercalated conformations. The spectroscopic data for the IQ- and AF-modified oligonucleotides are compared. The sequence-dependent conformational preferences are likely to play a key role in the repair and mutagenicity of C8-arylamine adducts.  相似文献   

16.
Chloroethylene oxide and chloroacetaldehyde, reactive intermediates derived from vinyl chloride, and the epoxy-hydroxy-alkanals, produced endogenously in the metabolism of polyunsaturated fatty acids, react with nucleic acid bases in DNA to form exocyclic etheno derivatives of 2'-deoxyadenosine, 2'-deoxyguanosine, and 2'-deoxycytidine. This paper describes an efficient method for the synthesis of the exocyclic 1,N(2)-etheno adduct of 2'-deoxyguanosine and its incorporation into DNA oligomers using automated synthesis techniques. The synthesis was initiated by a high-yield alkylation of N(2)-protected 2'-deoxyguanosine at the 1-position with 1,2-diacetoxy-3-bromopropane. The product was converted to the 5'-O-dimethoxytrityl-3'-O-phosphoramidite using published techniques and incorporated site specifically into DNA oligomers with 99% coupling efficiency. Ring closure to yield the 6-hydroxyethano derivative was accomplished by oxidation with sodium periodate, and facile dehydration then afforded DNA oligomers containing 1,N(2)-etheno-2'-deoxyguanosine. All oligomers were characterized fully by physicochemical methods.  相似文献   

17.
An improved method is presented, based on gas chromatography-electron capture mass spectrometry (GC-EC-MS), for measuring N7-(2'-hydroxyethyl)guanine (N7-HEG) in DNA from an in vivo sample. The method was used to detect this adduct in amounts of human DNA ranging from 0.07 to 11.5 microg isolated from granulocytes. In this method, the DNA is spiked with a stable isotope internal standard (N7-HEG-d4) and heated in water to release the adduct in a nucleobase form. After the adduct is extracted into 1-butanol, it is purified by reverse phase HPLC and derivatized with HONO, pentafluorobenzyl bromide, and pivalic anhydride. Further purification by silica solid phase extraction and reverse phase HPLC is done prior to injection into a GC-EC-MS. Relatively clean GC-EC-MS chromatograms result, contributing to the high sensitivity that is observed. In the samples tested, from 1.6 to 240 N7-HEG adducts in 10(7) nucleotides were observed, a 150-fold range.  相似文献   

18.
7H-dibenzo[c,g]carbazole (DBC) is a potent multispecies, multisite carcinogen present in the environment. The metabolic activation pathways of DBC are not completely known. It is hypothesized that DBC may be metabolically activated by oxidation to the reactive Michael acceptor o-quinones, which can form stable and depurinating DNA adducts. The synthesis of DBC-3,4-dione has been previously reported by this research group. In the present article, we describe the synthesis and chemical structural elucidation of nine DBC-nucleic acid adducts produced from reactions of DBC-3,4-dione with Ade, Cyt, 2'-deoxyguanosine (dGuo), 2'-deoxycytidine (dCyd), and Guo. Adducts were isolated from reaction mixtures by HPLC and analyzed using MS including elemental compositions and collision-activated dissociation (CAD), (1)H NMR, and two-dimensional chemical shift correlation spectroscopy (COSY) NMR. The adducts, 7-[3,4-dione-DBC-1-yl]-Ade, N4-[3,4-dione-DBC-1-yl]-Cyt, 5-[3,4-dione-DBC-1-yl]-Cyt, two conformational isomers of N2-[3,4-dihydroxy-DBC-1-yl]-dGuo, and two conformational isomers of N2-[3,4-dihydroxy-DBC-1-yl]-Guo, were characterized. Two adducts from reactions of DBC-3,4-dione with dCyd were identified by MS but not fully characterized by NMR due to instability of the adducts. Under similar conditions, the reactions of DBC-3,4-dione with Gua and 2'-deoxyadenosine (dAdo) did not result in an identifiable adduct. Liver DNA adducts from mice treated topically with DBC-3,4-dione (100 microg) in dimethyl sulfoxide/acetone (15/85, 100 microL) were identified with 32P-postlabeling. The major adduct chromatographically matched one of the adducts formed from livers of DBC-treated mouse (adduct 3) using identical conditions.  相似文献   

19.
In the present study, a new series of ethyl 2-(substituted benzylthio)-4-(3'-(ethoxycarbonyl)-biphenyl-4-yl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate derivatives was synthesized. The newly synthesized compounds were characterized by (1) H-NMR, mass and C, H, N analyses. All newly synthesized compounds were screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes and Klebsiella pneumoniae) and antifungal (Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Penicillium marneffei and Trichophyton mentagrophytes) activity. The results revealed that all synthesized compounds have a significant biological activity against the tested microorganisms. Compounds 8a, 8b, 8c, 8e, 8f, 8i, and 8j exhibited good antimicrobial activity.  相似文献   

20.
Acrolein reacts with deoxycytidine 5'-monophosphate at physiological pH to form one major adduct. A second minor adduct can be detected when a 3-fold excess of acrolein is present in the reaction mixture. The products were separated by ion-pair HPLC on two reverse-phase columns connected in series using triethylammonium formate as ion-pair reagent. The major adduct was characterized as 3-(5'-monophospho-2'-deoxyribosyl)-7,8, 9-trihydro-7-hydroxy-pyrimido [3,4-c]pyrimidin-2-one (3,N4-propanodeoxcytidine 5'-monophosphate). This mixture of diastereomers was formed by addition of C1 of acrolein to the exocyclic amino group at the 4-position of cytidine, followed by ring closure between C3 of acrolein and N3 of the heterocyclic ring. In order to address the utility of 32P postlabeling for the detection of this exocyclic adduct in acrolein-modified nucleic acids, an acrolein-deoxycytidine 3'-monophosphate reaction mixture was subjected to 32P postlabeling. 3-Dephosphorylation with nuclease P1 and the 3'-phosphatase activity of T4 polynucleotide kinase yields a nucleotide 5'-[32P] monophosphate which cochromatographs with 3,N4-propanodeoxycytidine 5'-monophosphate. These data indicate that 32P postlabeling and 3'-dephosphorylation can be used in conjunction with ion-pair HPLC for the detection and quantitation of acrolein-modified nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号