首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relationships of local cerebral glucose utilization (lCMRgl) and blood flow (lCBF) during physiologic activation, awake Wistar rats received unilateral stimulation of the large facial whiskers (vibrissae) and were studied by carbon-14 double-label autoradiography. Activation was followed by increased lCMRgl and lCBF in appropriate forebrain structures. There was an overall preservation of metabolism/blood flow coupling during periods of somatosensory activation despite small but significant increases (14 to 22%) in the coupling ratio of the barrel field. Prolonged activation may give rise to an intracortical redistribution of lCBF within the barrel field.  相似文献   

2.
The effects of transient ischemia on the metabolic responsiveness of a well-defined brain circuit were investigated with [14C]2-deoxyglucose autoradiography. Rats underwent 30 min of severe forebrain ischemia followed by postischemic recirculation periods of 1, 2, 3, 5, and 10 days. At these times, unilateral whisker stimulation was carried out, resulting in the metabolic activation of the whisker barrel circuit. An altered pattern of glucose utilization within both stimulated and nonstimulated circuit relay stations was observed at 1, 2, and 3 days following ischemia. At 1 day, stimulus-evoked increases in metabolic activity were severely depressed within both the ventrobasal thalamus and layer IV of the cortical barrel field region. Baseline metabolic rate within nonstimulated relay areas was also severely depressed at this time. At postischemic days 2 and 3, moderate levels of increased glucose utilization were apparent overlying cortical layer IV and the superficial half of layer VI, while layers I, II, III, and V appeared less responsive to metabolic activation. By day 5, whisker stimulation resulted in normal levels of increased glucose utilization within the activated ventrobasal thalamus and layer IV of the cortical barrel field region. Glucose utilization within nonactivated relay stations, depressed at earlier time periods, had also returned to control levels by day 5. At both 5 and 10 days, an altered laminar pattern of elevated glucose utilization was apparent within the activated barrel field region, with local CMRglu being depressed in layer V compared with control values. These results demonstrate that periods of transient ischemia produce both reversible and longer-lasting effects on the ability of the CNS to respond to peripheral activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Stimulation of a single facial vibrissa in rats receiving [14C]2-deoxyglucose leads to increased local cerebral glucose utilization in the corresponding contralateral barrel of lamina IV of the first somatosensory cortex (SmI). In the adult rat, the metabolic representation of such a barrel enlarges 2 months after removal of all other vibrissal follicles but enlargement is prevented by prior removal of SmI norepinephrine. Here, the early time course of such enlargement and how this was affected by cortical norepinephrine manipulations were examined in adult rats. One day after total vibrissal follicle removal with sparing of the central (C3) vibrissa, neither the areal extent nor absolute glucose utilization in the stimulated, spared C3 cortical barrel were changed. However, 7 days after follicle removal, the spared C3 barrel was enlarged by 41%, although absolute glucose utilization remained constant. This delayed onset of enlargement is compatible with either a structural or neurochemical change in barrel circuitry following vibrissal deafferentation. With ipsilateral locus coeruleus lesions but intact vibrissae, there was progressive enlargement of stimulated C3 barrel areas with increasing cortical norepinephrine depletion (r = 0.864) suggesting a suppressive effect of norepinephrine on activity spread in barrels with intact vibrissal afferents. Previously shown blockade of chronic (2 month) vibrissectomy-induced barrel enlargement by norephinephrine depletion suggested an additional effect on plasticity. Even though acute (1 day) follicle removal here produced no change in spared C3 barrel area, addition of norepinephrine depletion produced a surprising 40% decrease in barrel area. Thus, barrel plasticity assessed by 2-deoxyglucose reflects a complex interaction between barrel metabolic activity and the extent of vibrissal and noradrenergic afferent input.  相似文献   

4.
The effect of gestational ethanol exposure on stimulus-induced sensory activity in the trigeminal/somatosensory System was determined. The mature offspring of mothers fed an ethanol-containing diet (Et) or pair-fed a nutritionally matched control diet (Ct) were examined. The C-row mystacial whiskers were stimulated. Glucose utilization in the principal sensory nucleus of the trigeminal nerve (PSN), ventrobasal thalamus, and somatosensory cortex was determined with [14C]2-deoxyglucose autoradiography. In Ct- and Et-treated rats, whisker stimulation increased glucose utilization in C-row barrel(oid)s in the left PSN, the right ventrobasal thalamus, and the right somatosensory cortex. The rate of glucose utilization in the C-row barrel(oid)s and in nonstimulated regions was lower in the Et-treated rats than in controls. In the cortices of Ct-treated rats, the activity in the C-row barrels on the right side was greater than in the right nonbarrel somatosensory cortex. Et-treated rats also exhibited an increase in glucose utilization, albeit smaller than that in the Ct-treated rats. In contrast, the glucose utilization in the left B- and C-row barrels of Ct-treated rats was decreased. No such decrease was evident in the left cortices of Et-treated rats. Thus, stroking whiskers stimulates the activity of sites in the trigeminal/somatosensory system. In cortex, the definition of these sites is emphasized by depressed activity, i.e., “surround” inhibition, in sites connected via callosal or corticocortical projections. Prenatal exposure to ethanol depresses the metabolic activity regardless of the physiological state; however, the “surround” inhibition of cortical activity is eliminated by prenatal exposure to ethanol through an exuberant projection. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Standard small, superficial freezing lesions placed along the anterior-posterior plane of the left cortex produced behavioral changes in rats. One to 3 days following the lesion, rats showed asymmetries in somatosensory responsiveness decreases in running wheel activity and difficulty with limb coordination. No changes in spontaneous circling activity were seen. At the completion of the behavioral testing on day 3 the [14C]2-deoxyglucose method confirmed the presence of widespread depression in local cerebral glucose utilization with cortical areas ipsilateral to the lesion being most affected. At this time the degree of the somatosensory deficit was significantly correlated with the extent of the depression of glucose utilization in the cortical areas of the lesioned hemisphere. At 6 days following the lesion only deficits in limbs coordination remained, while local cerebral glucose utilization had returned to within normal limits. It is concluded that the demonstrated behavioral changes were a manifestation of widespread functional depression, as reflected by decreased cortical glucose utilization throughout the lesioned hemisphere.  相似文献   

6.
Endocannabinoids and their receptors are highly abundant in the developing cerebral cortex and play major roles in early developmental processes, for example, neuronal proliferation, migration, and axonal guidance as well as postnatal plasticity. To investigate the role of the cannabinoid type 1 receptor (CB1) in the formation of sensory maps in the cerebral cortex, the topographic representation of the whiskers in the primary somatosensory cortex (barrel field) of adult mice with different cell type specific genetic deletion of CB1 was studied. A constitutive absence of CB1 (CB1-KO) significantly decreased the total area of the somatosensory cortical map, affecting barrel, and septal areas. Cell specific CB1 deletion in dorsal telencephalic glutamatergic neurons only (Glu-CB1-KO) or in both glutamatergic and forebrain GABAergic neurons (Glu/GABA-CB1-KO) resulted in an increased septa area in the barrel field map. No significant modifications in area parameters could be observed in GABA-CB1-KO mice. These data demonstrate that CB1 signaling especially in cortical glutamatergic neurons is essential for the development of topographic maps in the cerebral cortex.  相似文献   

7.
C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.  相似文献   

8.
Previous experiments from our laboratory have shown a wide variety of time-dependent lateralized changes in behavior and nigrostriatal function following unilateral manipulation of the mystacial vibrissae of rats. The present experiment investigated the effects of unilateral radiofrequency lesion of the cortical vibrissae representation (the barrel fields) in light of these results. We measured lateralized changes in behavior as well as tissue monoamines in neostriatum and substantia nigra, between 1 and 16 days post-lesion. Short-term asymmetries in exploratory behavior (thigmotactic scanning) and neostriatal serotonin metabolism that lasted up to day 6 were seen. In substantia nigra, time-related asymmetries in dopamine concentrations were found with higher ipsilateral values on day 3 and higher contralateral values on day 6. After day 6, the animals had recovered from these acute effects and thereafter, neostriatal dopamine metabolism became asymmetrical. Also during this time, they showed a directional bias in spontaneous and apomorphine-induced turning. Finally, neostriatal serotonin was bilaterally elevated on day 16. These results parallel some of the effects previously seen following unilateral removal of the vibrissae, indicating that the barrel cortex is a critical link in the functional interaction between the vibrissae and basal ganglia.  相似文献   

9.
Prior work has demonstrated that unilateral lesions of the nucleus basalis of Meynert (NbM) in baboons induce a marked reduction in glucose utilization of the ipsilateral cerebral cortex, linearly proportional to the depression in cortical choline acetyltransferase (ChAT) activity achieved. Unexpectedly, there was also marked hypometabolism of the contralateral cerebral cortex, and glucose utilization recovered gradually on both sides despite persistent deficit in cortical ChAT activity. To investigate the role of the corpus callosum (CC) in this bilateral metabolic effect and subsequent recovery, three baboons were subjected to unilateral electrolytic NbM lesion greater than 3 months following section of the anterior CC. Brain glucose utilization was sequentially studied by positron emission tomography; ChAT activity was measured and histological sections obtained after death. In these animals, the NbM lesion also induced significant metabolic depression over the ipsilateral cortex, proportional to the reduction in ChAT activity. Corpus callosotomy did not prevent the contralateral metabolic effects, suggesting that the latter do not normally operate through the CC. However, there was no significant recovery of glucose utilization, suggesting that, following unilateral NbM lesion, the CC normally mediates, at least in part, the recovery of cortical glucose utilization.  相似文献   

10.
Changes of neuronal membrane characteristics in somatosensory barrel cortex and barreloid thalamus were investigated in rats following unilateral transection of the infraorbital nerve. Kainate induced Co2+-uptake method and image analysis were used to assess the Ca2+ permeability of non-NMDA (N-methyl-D-aspartate) glutamate receptors. Changes in some biophysical parameters of the affected cortical neurons were also investigated by intracellular recording in slice experiments. The altered neuronal activity was measured on days 1, 5 and 14 after surgery. Kainate induced Co2+ uptake increased markedly reflecting enhanced Ca2+ permeability of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate/kainate (AMPA/KAIN)-type receptors. Changes were more pronounced in the cortex than in the thalamus and peaked on the first day following nerve transection. After that, parameters gradually returned to the normal level. However, a small enhancement was still detectable in the cortex at the end of the 2-week-long observation period. In parallel with the increased Co2+-uptake, moderate membrane potential changes, stronger spiking activity and enhanced excitability were characteristic for cortical neurons. The observed alterations in neuronal characteristics underlie the reorganization and regeneration processes following injuries or surgeries. We can conclude that immediate change of the receptive field in the barrel cortex following unilateral nerve transection is based on changes in biophysical parameters of the neurons. Altered peripheral activation evokes changes in the neuronal activity, thus providing opportunity for a quick synaptic rearrangement. AMPA/KAIN-type glutamate receptors have a decisive role in the regulation of these processes. This kind of synaptic plasticity is more significant in the cortex than in the thalamus.  相似文献   

11.
To investigate to what extent the loss of cholinergic projections to the neocortex results in functional impairment in the target areas, local rates of cerebral glucose utilization were measured following excitotoxin lesions of the nucleus basalis magnocellularis (NBM) in the rat. Both unilateral and bilateral lesions of NBM resulted in reversible depression of cerebral metabolism. The effects of unilateral lesions were limited to the cortical areas which receive most of the cholinergic projections from NBM. The metabolic defect produced by bilateral lesions was spread to the whole brain. Within 4 months, however, normal metabolic values coexisted with marked changes of the presynaptic cholinergic markers and impairment of conditioned behavior.  相似文献   

12.
With various patterns of whisker deafferentation, C3 whisker stimulation produced divergently shaped metabolic barrel representations in layer IV of the primary somatosensory cortex. Whisker deafferentation results in functional and structural reorganization of the barrels in the primary somatosensory cortex. The present study examines the alteration of the metabolic barrel representations in layer IV with various configurations of selective whisker deafferentation in neonates, using [14C]2-deoxyglucose autoradiography. The deafferentation was produced by unilateral ablation of whiskers, leaving certain follicles intact. Configurations of intact follicles included: (I) row C follicles; (II) B3, C3, and D3 follicles; (III) B3, B4, C3, and C4 follicles; (IV) C2, C3, D2, and D3 follicles. The metabolic C3 barrel representations in layer IV after the deafferentations were found to have expanded only toward the barrel sites in which the corresponding whiskers were ablated, with no expansion toward the neighboring barrels. Expansion toward row D was significantly more pronounced than expansion toward row B, and expansion toward the C2 barrel was significantly more pronounced than expansion toward the C4 barrel. From these results, it can be inferred that asymmetric intrinsic structural connections are reflected in the functional metabolic barrel representation under the condition of neural plasticity in the barrel cortex following whisker deafferentation.  相似文献   

13.
Acetylcholine (ACh) has been suggested to play a crucial role in normal cortical functioning. To assess the impact of cortical ACh depletion on metabolic activity in the barrel field of rat somatosensory cortex, unilateral lesions of the basal forebrain were made. One to 9 weeks later, a 2-deoxyglucose experiment was conducted. Stimulus-evoked metabolic activity in the barrel field ipsilateral to the lesion was significantly reduced compared with the contralateral side. These results suggest that ACh plays a significant role in processing stimulus-evoked sensory information.  相似文献   

14.
To investigate local metabolic and hemodynamic interrelationships during functional activation of the brain, paired studies of local cerebral glucose utilization (lCMRGlc) and blood flow (lCBF) were carried out in 10 normal subjects (9 right-handed, 1 ambidextrous) at rest and during a unilateral discriminative somatosensory/motor task--palpation and sorting of mah-jongg tiles by engraved design. The extent of activation was assessed on the basis of percentage difference images following normalization to compensate for global shifts. The somatosensory stimulus elevated lCMRGlc by 16.9 +/- 3.5% (mean +/- standard deviation) and lCBF by 26.5 +/- 5.1% in the contralateral sensorimotor cortical focus; smaller increments were noted in the homologous ipsilateral site. The increments of lCMRGlc and lCBF correlated poorly with one another in individual subjects. Stimulation of the right hand resulted in significantly higher contralateral lCMRGlc activation (19.6%) than did stimulation of the left hand (14.1%) (p less than 0.005), whereas the lCBF response was independent of the hand stimulated. Our results indicate that both glycolytic metabolism and blood flow increase locally with the execution of an active sensorimotor task and suggest that both measures may serve as reliable markers of functional activation of the normal brain.  相似文献   

15.
Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function. Cambridge: MIT Press, '78). 3. Within the stereotyped geometry of the barrel field, there is considerable individual variation in the radial labeling distribution in corresponding (homotypical) columns of different cerebral hemispheres. This result is consistent with the hypothesis that dynamic processes operate to determine the connection strengths between neural elements in somatosensory cortex. It provides a basis for testing various "connectionist" and "group selection" theories of neural organization and development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The development of the rat barrel field cortex was investigated with an antibody to the axonal membrane-specific phosphoprotein GAP-43 in order to examine the developmental pattern of afferent projections, and with cytochrome oxidase histochemistry and Nissl stains to reveal the morphogenesis of cortical barrels. On the first two days after birth, GAP-43 immunostaining in the cortical plate was light and diffuse, then became intense in the presumptive layer IV of the parietal cortex on PND3 (day of birth = PND0). Immunoreactive densities were visible as small, focal patches within the centers of prospective barrels. These densities increased in size and intensity over the next few days and then diminished abruptly. On PND7, the distribution of GAP-43 was coextensive with barrels, as defined by cytochrome oxidase histochemistry and Nissl staining. GAP-43 virtually disappeared from the barrels after PND7. From the second postnatal week, GAP-43 immunostaining was evident in the septa between barrels and in the dysgranular regions of SI cortex. This pattern of GAP-43 distribution was complementary to the pattern of cytochrome oxidase activity, and persisted into maturity. In an attempt to identify possible source(s) of GAP-43 positive afferents in the developing barrels, we examined the effects of altering the sensory periphery on the distribution of GAP-43 immunostaining in the cortex. Rat pups had row C whiskers cauterized on PND0 and were sacrificed on PND3 or PND5. Whereas immunopositive densities corresponding to intact whiskers developed in a normal, punctate pattern, cortical representation of the lesioned whiskers formed a continuous band of labeling that was evident as early as PND3. We argue that the disjunctive expression of GAP-43 in the barrel field reflects the pattern of distribution of afferents (most likely from the ventro-basal thalamic nucleus) to the barrel field cortex, and that this pattern may be instructive in the formation of barrels as cytoarchitectonic units. The rapid alteration in patterns of immunostaining following whisker lesions lends further support to the conclusion that the "barrel template" is conveyed to the neocortex by incoming afferents. The possible significance of the transient expression of GAP-43 in the maturing barrel field is discussed.  相似文献   

17.
Five right-handed patients with a right-sided vestibular neuritis were examined twice with fluorodeoxyglucose positron emission tomography while lying supine with eyes closed: once during the acute stage (mean, 6.6 days) and then 3 months later when central vestibular compensation had occurred. Regional cerebral glucose metabolism (rCGM) was significantly increased (p <0.001 uncorrected) during the acute stage in multisensory vestibular cortical and subcortical areas (parietoinsular vestibular cortex in the posterior insula, posterolateral thalamus, anterior cingulate gyrus [Brodmann area 32/24], pontomesencephalic brainstem, hippocampus). Simultaneously, there was a significant rCGM decrease in the visual (Brodmann area 17 to 19) and somatosensory cortex areas in the postcentral gyrus as well as in parts of the auditory cortex (transverse temporal gyrus). Fluorodeoxyglucose positron emission tomography thus allows imaging of the cortical activation pattern that is induced by unilateral peripheral vestibular loss. It was possible to demonstrate that the central vestibular system including the vestibular cortex exhibits a visual-vestibular activation-deactivation pattern during the acute stage of vestibular neuritis similar to that in healthy volunteers during unilateral labyrinthine stimulation. Contrary to experimental vestibular stimulation, the activation of the vestibular cortex was not bilateral but was unilateral and contralateral to the right-sided labyrinthine failure.  相似文献   

18.
Nitric oxide (NO) has been proposed as an intercellular messenger mediating postsynaptic to presynaptic information transfer in the induction of long-term potentiation. A number of studies support the possible involvement of NO in synaptic plasticity. NO may have a role in synaptogenesis and synaptic plasticity in developing rat brain and may play a fundamental part in the process of regeneration, plasticity, and retargeting of axons following injury. We examined the possible role of NO on plasticity in the rat first somatosensory cortex with [14C]2-deoxyglucose (2-DG) autoradiography in rats treated daily with -nitroarginine ( -NA) following neonatal unilateral vibrissae deafferentation. After 6 weeks of -NA treatment, the local cerebral glucose utilization (LCGU) and the spatial extent of the metabolic activation following stimulation of the spared whisker was measured. NOS catalytic activity exhibited significant inhibition throughout the treatment period. Vibrissae deafferentation produced a small but not statistically significant increase of LCGU in the vibrissa activated C3 barrel, and -NA treatment did not alter the activation of LCGU in the deafferented cortex following whisker stimulation. Additionally, -NA treatment did not alter the area of metabolic activation on either the non-deafferented side or the deafferented side. Deafferentation produced a 298% increase in the metabolic representation of the spared C3 barrel following stimulation in the saline treated animals, a 257% increase in the chronically -NA treated animals, and a 256% increase in the short-term treated animals, all with respect to the response in the non-deafferented cortex. Metabolic plasticity in the barrel cortex was not attenuated by -NA treatment. These results show that nitric oxide does not play a major role on developmental cortical plasticity induced by vibrissae deafferentation in the rat.  相似文献   

19.
Immunocytochemical techniques were used to study the effects of tactual deprivation on glutamic acid decarboxylase (GAD) containing neurons in rat somatosensory barrel cortex. In normal rats GAD immunoreactive neurons and puncta are present in all laminae, with dense patches of GAD immunoreactive puncta centered on the barrels in lamina IV. Trimming whiskers of adult rats leads to a reversible decrease of GAD immunoreactivity in barrels corresponding to trimmed hairs. Intensity of GAD staining also is reversibly altered in supragranular laminae of nondeprived barrel columns flanked by deprived barrels. This indicates that GAD levels in the barrel cortex ordinarily fluctuate with changes in sensory input. By contrast, animals whose whiskers are trimmed from birth have normal GAD staining in both deprived and nondeprived barrels. Moreover, if trimmed whiskers of neonatally deprived animals are allowed to grow to normal lengths and are retrimmed later in adulthood GAD staining is not affected. Thus early tactual deprivation disrupts mechanisms that permit modulation of transmitter enzyme levels in cortical neurons following changes in sensory experience.  相似文献   

20.
Rats use their facial vibrissae ("whiskers") to locate and identify objects. To learn about the neural coding of contact between whiskers and objects, we investigated the representation of single-vibrissa deflection by populations of cortical neurons. Microelectrode arrays, arranged in a geometric 10 x 10 grid, were inserted into the thalamo-recipient layers of "barrel cortex" (the vibrissal region of somatosensory cortex) in urethane-anesthetized rats, and neuronal activity across large sets of barrel-columns was measured. Typically, 5 msec after deflection of a whisker a 0.2 mm(2) focus of activity emerged. It rapidly expanded, doubling in size by 7 msec, before retracting and disappearing 28-59 msec after stimulus onset. The total territory engaged by the stimulus ranged from 0.5 to 2.9 mm(2) (2-11 barrels). Stimulus site dictated the domain of activity. To quantify the coding of whisker location, we applied the population d' measure of discriminability. Activity patterns elicited by two whiskers were highly discriminable at the initial cortical response; peak discriminability typically occurred within 16 msec of stimulus onset. To determine how widely information about stimulus location was distributed, we measured population d' while excluding response data from the on-center electrodes of the two tested whiskers. Response patterns remained discriminable, indicating that information about stimulus location was distributed across barrel cortex. Taken together, these results show that single-whisker deflections are represented in a multicolumn region constrained by barrel cortex map topography. The nature of this coding allows information about stimulus location to be coded extremely rapidly and unambiguously by one to two spikes per neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号