首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was previously shown that platelet-derived growth factor (PDGF) receptor physically and functionally interacts with integrin αvβ3, effectively inducing cell movement. We previously showed that Necl-5, originally identified as a poliovirus receptor, interacts with integrin αvβ3 and enhances its clustering and the formation of focal complexes at the leading edges of moving cells, resulting in an enhancement of cell movement. We showed here that Necl-5 additionally interacts with PDGF receptor in NIH3T3 cells and regulates the interaction between PDGF receptor and integrin αvβ3, effectively inducing directional cell movement. PDGF receptor co-localized with Necl-5 and integrin αvβ3 at peripheral ruffles over lamellipodia, which were formed at the leading edges of moving cells in response to PDGF, but not at the focal complexes under these ruffles, whereas Necl-5 and integrin αvβ3 co-localized at these focal complexes. The clustering of these three molecules at peripheral ruffles required the activation of integrin αvβ3 by vitronectin and the PDGF-induced activation of the small G protein Rac and subsequent re-organization of the actin cytoskeleton. These results indicate a key role of Necl-5 in directional cell movement by physically and functionally interacting with both integrin αvβ3 and PDGF receptor.  相似文献   

2.
Microtubules (MTs) search for and grow toward the leading edge of moving cells, followed by their stabilization at a specific structure at the rear site of the leading edge. This dynamic re-orientation of MTs is critical to directional cell movement. We previously showed that Necl-5/poliovirus receptor (PVR) interacts with platelet-derived growth factor (PDGF) receptor and integrin α(v) β(3) at the leading edge of moving NIH3T3 cells, resulting in an enhancement of their directional movement. We studied here the role of Necl-5 in the PDGF-induced attraction of growing MTs to the leading edge of NIH3T3 cells. Necl-5 enhanced the PDGF-induced growth of MTs and attracted them near to the plasma membrane of the leading edge of NIH3T3 cells in an integrin α(v) β(3) -dependent manner. Furthermore, Necl-5 enhanced the PDGF-induced attraction of the plus-end-tracking proteins (+TIPs), including EB1, CLIP170, an intermediate chain subunit of cytoplasmic dynein, and p150(Glued) , a subunit of dynactin, near to the plasma membrane of the leading edge. Thus, Necl-5 plays a role in the attraction of growing MTs to the plasma membrane of the leading edge of moving cells.  相似文献   

3.
Oculocerebrorenal Lowe syndrome is a rare X-linked disorder characterized by bilateral cataract, mental retardation and renal Fanconi syndrome. The Lowe syndrome protein Ocrl1 is a PIP2 5-phosphatase, primarily localized to the trans-Golgi network (TGN), which 'loss of function' mutations result in PIP2 accumulation in patient's cells. Although PIP2 is involved in many cell functions including signalling, vesicle trafficking and actin polymerization, it has been difficult so far to decipher molecular/cellular mechanisms responsible for Lowe syndrome phenotype. We have recently shown that, through its C-terminal RhoGAP domain, Ocrl1 forms a stable complex with Rac GTPase within the cell. In line with this finding, we report here that upon epidermal growth factor induced Rac activation in COS-7 cells, a fraction of Ocrl1 translocates from TGN to plasma membrane and concentrates in membrane ruffles. In order to investigate the functionality of Ocrl1 in plasma membrane, we have analysed PIP2 distribution in human dermal fibroblasts (HDFs) from Lowe patients versus control HDFs. As revealed by both immunodetection and green fluorescent protein-PH binding, PIP2 was found strikingly to accumulate in PDGF induced ruffles in Lowe HDFs when compared with control. This suggests that Ocrl1 is active as a PIP2 5-phosphatase in Rac induced membrane ruffles. Cellular properties such as cell migration and establishment of cell-cell contacts, which depend on ruffling and lamellipodia formation, should be further investigated to understand the pathophysiology of Lowe syndrome.  相似文献   

4.
We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity.  相似文献   

5.
BACKGROUND: Frabin is an actin filament (F-actin)-binding protein with GDP/GTP exchange activity specific for Cdc42 small G protein. Expression of frabin forms filopodia-like microspikes through the direct activation of Cdc42, and lamellipodia through indirect activation of Rac small G protein. Frabin consists of the F-actin-binding domain (FAB), the Dbl homology domain (DH), the first pleckstrin homology domain (PH1), the FYVE-finger domain (FYVE), the second PH domain (PH2) from the N-terminus in this order. Although DH and PH1 show exchange activity, FAB, in addition to DH and PH1, is required for the formation of microspikes, whereas FYVE and PH2, in addition to DH and PH1, are required for the formation of lamellipodia. RESULTS: Various truncated mutants of frabin were co-expressed with a dominant active mutant (DA) of Cdc42, Rac1DA, or full-length frabin in L fibroblasts. FAB was recruited to the Cdc42DA-formed filopodia-like microspikes. FAB and a fragment containing DH, PH1, FYVE and PH2 were recruited to the Rac1DA-formed membrane ruffles. Furthermore, each of these fragments served as a dominant negative mutant of frabin when co-expressed with full-length frabin, and inhibited the full-length frabin-formed morphological changes. CONCLUSION: These results suggest that frabin recognizes a specific actin structure(s) through FAB and a specific membrane structure(s) through FAB and the region containing DH, PH1, FYVE and PH2. It is likely that frabin associates with the specific actin and membrane structures and activates Cdc42 and Rac in the vicinity of these structures, eventually leading to morphological changes.  相似文献   

6.
The small GTPase Rap1 is a potent activator of leukocyte integrin. However, the regulatory mechanism involved is unknown. Here, we identify the Rap1 effector, RAPL, as an essential regulator in this activation. RAPL was enriched in mouse lymphoid tissues and associated with Rap1 after stimulation by the T cell receptor and with chemokine CXCL12. Human RAPL stimulated lymphocyte polarization and the patch-like redistribution of lymphocyte-function-associated antigen 1 (LFA-1) to the leading edge, resulting in enhanced adhesion to intercellular adhesion molecule 1 (ICAM-1). Triggered by activated Rap1, RAPL associated with LFA-1 and rapidly relocated to the leading edge and accumulated at immunological synapses. Thus, RAPL regulates lymphocyte adhesion through the spatial distribution of LFA-1.  相似文献   

7.
Migration of pericytes such as hepatic stellate cells is fundamentally important for diverse biological and pathological processes including tumor invasion and fibrosis. In prototypical migratory cells such as fibroblasts, the small GTPases Rac1 and RhoA govern the assembly of lamellipodia and stress fibers, respectively, cytoskeletal structures that are integral to the cell migration process. The gaseous signaling molecule nitric oxide (NO) influences growth factor chemotactic responses, although this occurs primarily in cell-type-specific ways and through cell biological effects that are poorly characterized. In this study, we use complementary molecular and cell biological approaches to delineate important roles for Rac1, RhoA, and NO in migration of the human hepatic stellate cell line LX2 and primary rat hepatic stellate cells. Both platelet-derived growth factor (PDGF) and Rac1 overexpression drove migration through formation of actin-positive filopodia spikes in LX2 as compared to the formation of lamellipodia in fibroblasts. NO inhibited PDGF- and Rac1-driven migration in LX2 by abrogating filopodia formation and inhibited migration of fibroblasts by attenuating lamellipodial protrusions. Additionally, RhoA conferred resistance to NO inhibition of migration and restored chemotactic responses to PDGF in the absence of functional Rac1 in LX2. In conclusion, these studies identify novel crosstalk between small GTPases, cytoskeletal structures, and NO in pericyte-specific pathways, providing counterbalances in the chemotactic responses to growth factors.  相似文献   

8.
Directional migration of T-lymphocytes is a key process during immune activation and is tightly regulated both temporally and spatially. The initial cell membrane protrusion at a particular site is critical for determining the direction of cell migration. In this study, we found that ZAP-70 protein appeared not only at the margin of the spreading areas of polarized Jurkat T cells but also formed clusters near the center of the cell body on a fibronectin plate. Specifically, some pZAP-70 was located at the lamellipodia/filopodia and was closely associated with the most extended membrane contact. To visualize the dynamic distribution of ZAP-70 on migrating Jurkat T cells, we generated a fluorescent ZAP-70-EGFP fusion protein (hZAP70G). Expression of the hZAP70G in P116 cells, a ZAP-70 defective Jurkat derivative, restored its chemotactic migration toward SDF-1, adhesion to fibronectin matrix, and integrin activation. In addition, the distribution of hZAP70G protein is associated with changes in cell shape, specifically the membrane protrusion step, forming filopodia/lamellipodia and a retracting uropod. Furthermore, SDF-1 stimulated the formation of ZAP-70 and CXCR4 complex. CXCR4 was observed mainly at the leading edge of migrating cell. The localization of ZAP-70 at the very front edge of protruding lamellipodia was close to CXCR4 and a part of them were overlapped. Collectively, our data describe the critical early step of directional cell movement toward SDF-1 that ZAP-70 is recruited to the CXCR4 at the leading edge of membrane and consequently modulates lamellipodia/filopodia formation and integrin activation.  相似文献   

9.
Platelet-derived growth factor (PDGF) is a mitogen for several cell types in culture. It is documented in this work that one of the earliest effects of PDGF on serum-starved glial cells is an induction of intensive motile activity. Within the first minute after the addition of PDGF thin membrane lamellae grow out around almost all of the cell circumference. Later, circular arrangements of small ruffles appear on the dorsal surface of the cells. These rings of ruffles vary in size and some encircle almost the whole cell. The organization of the peripheral weave of microfilaments in the PDGF-induced advancing lamellae was closely similar to that of normally growing cells. In the regions of the circular arrangements of ruffles there was an extensive reorganization of the surface actin with unusual arrangements of microfilament bundles and polygonal networks. There was also a general intensification of the translocation of membrane ruffles and spikes from the cell periphery towards the centre of the cell, increased micropinocytotic activity and shuttling of intracellular particles.  相似文献   

10.
Projection neurons migrate from the ventricular zone to the neocortical plate during the development of the mouse brain. Their overall movement is radial, but they become multipolar and move nonradially in the intermediate zone. Here we show that Reelin, the Rap1 GTPase and N-cadherin (NCad) are important for multipolar neurons to polarize their migration toward the cortical plate. Inhibition and rescue experiments indicated that Reelin regulates migration through Rap1 and Akt, and that the Rap1-regulated GTPases RalA, RalB, Rac1 and Cdc42 are also involved. We found that Rap1 regulated the plasma membrane localization of NCad and NCad rescued radial polarization when Rap1 was inhibited. However, inhibition of Rap1 or NCad had little effect on glia-dependent locomotion. We propose a multistep mechanism in which Reelin activates Rap1, Rap1 upregulates NCad, and NCad is needed to orient cell migration.  相似文献   

11.
Macrophages that are recruited to the site of implanted biomaterials undergo fusion to form surface-damaging foreign body giant cells. Exposure of peripheral blood monocytes to interleukin-4 can recapitulate the fusion process in vitro. In this study, we used interleukin-4 to induce multinucleation of murine bone marrow-derived macrophages and observed changes in cell shape, including elongation and lamellipodia formation, before fusion. Because cytoskeletal rearrangements are regulated by small GTPases, we examined the effects of inhibitors of Rho kinase (Y-32885) and Rac activation (NSC23766) on fusion. Y-32885 did not prevent cytoskeletal changes or fusion but limited the extent of multinucleation. NSC23766, on the other hand, inhibited lamellipodia formation and fusion in a dose-dependent manner. In addition, we found that in control cells, these changes were preceded by Rac1 activation. However, NSC23766 did not block the uptake of polystyrene microspheres. Likewise, short interfering RNA knockdown of Rac1 limited fusion without limiting phagocytosis. Thus, phagocytosis and fusion can be partially decoupled based on their susceptibility to NSC23766. Furthermore, poly(ethylene-co-vinyl acetate) scaffolds containing NSC23766 attenuated foreign body giant cell formation in vivo. These observations suggest that targeting Rac1 activation could protect biomaterials without compromising the ability of macrophages to perform beneficial phagocytic functions at implantation sites.  相似文献   

12.
PI 3,4,5-trisphosphate [PI(3,4,5)P3; PIP3]-dependent Rac exchanger 1 (P-Rex1) is a Rac-specific guanine nucleotide exchange factor abundant in neutrophils and myeloid cells. As a selective catalyst for Rac2 activation, P-Rex1 serves as an important regulator of human neutrophil NADPH oxidase activity and chemotaxis in response to a variety of extracellular stimuli. The exchange activity of P-Rex1 is synergistically activated by the binding of PIP3 and betagamma subunits of heterotrimeric G proteins in vitro, suggesting that the association of P-Rex1 with membranes is a prerequisite for cellular activation. However, the spatial regulation of endogenous P-Rex1 has not been well defined, particularly in human neutrophils activated through G protein-coupled receptors. Upon stimulation of neutrophil chemoattractant receptors, we observed that P-Rex1 translocated from cytoplasm to the leading edge of polarized cells in a G protein betagamma subunit- and PIP3-dependent manner, where it colocalized with F-actin and its substrate, Rac2. Redistribution of P-Rex1 to the leading edge was also dependent on tyrosine kinase activity and was modulated by cell adhesion. Furthermore, we observed that activation of cAMP-dependent protein kinase A (PKA), which phosphorylates and inactivates P-Rex1, inhibited its translocation. Our data indicate that endogenous P-Rex1 translocates to areas of Rac2 and cytoskeletal activation at the leading edge in response to chemoattractant stimuli in human neutrophils and that this translocation can be negatively modulated by activation of PKA and by cell adhesion.  相似文献   

13.
Leukocyte chemoattractants are known to stimulate signaling pathways that involve Rho family GTPases. Direct evidence for the regulation of the leukocyte cytoskeleton by Rho GTPases and their effector targets is limited. The p21-activated kinases (PAKs) are specific targets of activated GTP-bound Rac and Cdc42, and have been proposed as regulators of chemoattractant-driven actin cytoskeletal changes in fibroblasts. PAK1 colocalizes with F-actin to cortical actin structures in stimulated fibroblasts, and activated PAK1 mutants induce membrane ruffling and polarized cytoskeletal rearrangements. We investigated whether PAK1 was associated with remodeling of the actin cytoskeleton in activated human neutrophils. We monitored the redistribution of PAK1 and F-actin into the actin cytoskeleton after stimulation of human neutrophils with the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) or the particulate stimulus, opsonized zymosan (OZ). PAK1 exhibited a similar distribution as F-actin in fMLP-stimulated leukocytes, localizing in membrane ruffles and to lamellipodia at the leading edge of polarized cells. Addition of OZ induced phagocytic uptake of this particulate stimulus, and PAK1 re-localized to the F-actin-rich pseudopodia and phagocytic cups associated with this process. Once the OZ was internalized, there was little PAK1 localized around the ingested particles, suggesting that PAK1 may be regulating the cytoskeletal extensions and events required for engulfment of bacteria, but not the subsequent steps of internalization. Localization of PAK1 and F-actin in cytoskeletal structures was abolished by the actin polymerization inhibitor cytochalasin D and the phosphatidylinositol 3-kinase inhibitor wortmannin. Our data suggest that PAK1 may regulate a subset of cytoskeletal dynamics initiated by chemoattractant and phagocytic stimuli in human neutrophils.  相似文献   

14.
15.
Statins are known to inhibit signaling of Ras superfamily GTPases and reduce T cell adhesion to ICAM-1. Here, we address the hypothesis that statins affect T cell adhesion and migration by modulating the function of specific GTPases. Statins inhibit the synthesis of mevalonic acid, which is required for farnesyl and geranylgeranyl isoprenoid synthesis. Ras superfamily GTPases are post-translationally isoprenylated to facilitate their anchorage to membranes, where they function to stimulate signal transduction processes. We demonstrate that 1 μM statin inhibits the adhesion, migration, and chemotaxis of the T-ALL cell line CCRF-CEM and TEM of CCRF-CEM and PEER T-ALL cells, but higher statin concentrations are needed to inhibit adhesion of primary T cells. Similar effects are observed following treatment with GGTI-298 or RNA interference-mediated knockdown of Rap1b but not Rap1a, Rac1, Rac2, RhoA, or Cdc42. Statins also alter Rap1 activity and Rap1b localization. Rap1 levels are higher in primary T cells than T-ALL cells, which could explain their reduced sensitivity to statins. These results demonstrate for the first time that the closely related Rap1a and Rap1b isoforms have different functions and suggest that statins or Rap1b depletion could be used to reduce tissue invasion in T-ALL.  相似文献   

16.
Background: Neural crest progenitors arise as epithelial cells and then undergo a transition into mesenchyme that generates motility. Previously, we showed that active Rho maintains crest cells in the epithelial conformation by keeping stress fibers and membrane‐bound N‐cadherin. Results: While Rho disappears from cell membranes upon delamination, active Rac1 becomes apparent in lamellipodia of mesenchymal cells. Loss of Rac1 function at trunk levels inhibited NC migration but did not prevent cell emigration that is associated with N‐cadherin downregulation and G1/S transition. Furthermore, inhibition of Rho stimulated premature Rac1 activity and consequent formation of lamellipodia, leading to NC migration. To examine whether timely migration influences cell fate, Rac1 activity was transiently inhibited to delay dispersion of early NC cells that generate neural derivatives, and its activity was restored by the time of melanoblast migration. Even if confronted with a melanocytic environment, late‐dispersing progenitors colonized sensory ganglia where they generated neurons and glia. Conclusions: In the context of crest delamination and migration, activities of Rho and Rac are differential, sequential, and antagonistic. Furthermore, transient inhibition of Rac1 that delays the onset of crest dispersion raises the possibility that the fate of trunk neural progenitors might be restricted prior to migration. Developmental Dynamics 241:1155–1168, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Recently, Escherichia coli cytotoxic necrotizing factor 1 (CNF1) was shown to activate the low-molecular-mass GTPase RhoA by deamidation of Gln63, thereby inhibiting intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activities (G. Schmidt, P. Sehr, M. Wilm, J. Selzer, M. Mann, and K. Aktories, Nature 387:725–729, 1997; G. Flatau, E. Lemichez, M. Gauthier, P. Chardin, S. Paris, C. Fiorentini, and P. Boquet, Nature 387:729–733, 1997). Here we report that in addition to RhoA, Cdc42 and Rac also are targets for CNF1 in vitro and in intact cells. Treatment of HeLa cells with CNF1 induced a transient formation of microspikes and formation of membrane ruffles. CNF1 caused a transient 10- to 50-fold increase in the activity of the c-Jun N-terminal kinase. Tryptic peptides of Cdc42 obtained from CNF1-treated cells by immunoprecipitation exhibited an increase in mass of 1 Da compared to control peptides, indicating the deamidation of glutamine 61 by the toxin. The same increase in mass was observed with the respective peptides obtained from CNF1-modified recombinant Cdc42 and Rac1. Modification of recombinant Cdc42 and Rac1 by CNF1 inhibited intrinsic and GAP-stimulated GTPase activities and retarded binding of 2′(3′)-O-(N-methylanthraniloyl)GDP. The data suggest that recombinant as well as cellular Cdc42 and Rac are substrates for CNF1.  相似文献   

18.

Background

Rap1 is involved in a multitude of cellular signal transduction pathways, which has extensively been linked to cell proliferation and migration. It has been shown to be important in the regulation of physiological and pathological processes. The present study aims to elucidate its detailed mechanistic in proliferation and migration.

Material/methods

Vascular smooth muscle cells (VSMCs) were transfected with pcDNA3.1(empty vector), pcDNA3.1 containing Myc-Tagged-Rap1V12 (Rap1V12) or pcDNA3.1 containing Flag-Tagged-Rap1GAP (Rap1GAP).The cells were presence or absence with 8CPT-2′OMe-cAMP or SDF-1 before transfection. The proliferation and migration were examined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and transwell analysis, respectively. Afterwards, western blot was performed to detect the expression of ERK, phosphorylated-ERK, Rap1, Rap1GAP and Rap1GTP.

Results

The results showed that proliferation, migration and the expression of Rap1, Rap1GAP, p-EKR were boosted in treatment of Rap1V12-transfection. However, Rap1GAP presented the opposite effects. Subsequently, VSMCs were pretreatment with stimulators Rap1 guanine exchange factor (Rap1GEF), 8CPT-2′OMe-cAMP and stromal cell-derived factor 1 (SDF-1), then transfected with different vectors and the expression of Rap1, Rap1GAP and p-EKR were obviously decreased.

Conclusions

Taken together, these findings indicated for the first time that Rap1 was essential for the VSMCs in proliferation and migration by ERK signaling pathway.  相似文献   

19.
p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%-80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity.  相似文献   

20.
Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号