首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and poor prognosis. There is an urgent need to identify and understand the key factors and signalling pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore, increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in 77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus, targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring p21 activity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

2.
The homeobox family genes are often dysregulated in various cancer types. Particularly HOXB7 amplification and overexpression correlate with poor prognosis in various cancer such as gastric, pancreatic, and lung cancers. Moreover, HOXB7 is known to contribute to cancer progression by promoting epithelial to mesenchymal transition, anticancer drug resistance, and angiogenesis. In this study, we show that HOXB7 is coamplified with ERBB2 in a subset of breast cancer patients and HOXB7 expression correlates with poor prognosis in HER2-positive breast cancer patients. This clinical observation is supported by the following results—HOXB7 overexpression in an immortalized murine mammary gland epithelial cell line NMuMG induces cellular transformation in vitro, tumorigenesis, and lung metastasis through the activation of JAK-STAT signaling.  相似文献   

3.
4.
5.
Acinic cell carcinoma (ACC) of the breast is a rare form of triple‐negative (that is, oestrogen receptor‐negative, progesterone receptor‐negative, HER2‐negative) salivary gland‐type tumour displaying serous acinar differentiation. Despite its triple‐negative phenotype, breast ACCs are reported to have an indolent clinical behaviour. Here, we sought to define whether ACCs have a mutational repertoire distinct from that of other triple‐negative breast cancers (TNBCs). DNA was extracted from microdissected formalin‐fixed, paraffin‐embedded sections of tumour and normal tissue from two pure and six mixed breast ACCs. Each tumour component of the mixed cases was microdissected separately. Tumour and normal samples were subjected to targeted capture massively parallel sequencing targeting all exons of 254 genes, including genes most frequently mutated in breast cancer and related to DNA repair. Selected somatic mutations were validated by targeted amplicon resequencing and Sanger sequencing. Akin to other forms of TNBC, the most frequently mutated gene found in breast ACCs was TP53 (one pure and six mixed cases). Additional somatic mutations affecting breast cancer‐related genes found in ACCs included PIK3CA, MTOR, CTNNB1, BRCA1, ERBB4, ERBB3, INPP4B, and FGFR2. Copy number alteration analysis revealed complex patterns of gains and losses similar to those of common forms of TNBCs. Of the mixed cases analysed, identical somatic mutations were found in the acinic and the high‐grade non‐acinic components in two out of four cases analysed, providing evidence of their clonal relatedness. In conclusion, breast ACCs display the hallmark somatic genetic alterations found in high‐grade forms of TNBC, including complex patterns of gene copy number alterations and recurrent TP53 mutations. Furthermore, we provide circumstantial genetic evidence to suggest that ACCs may constitute the substrate for the development of more aggressive forms of triple‐negative disease. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Developing treatment strategies for triple-negative breast cancer (TNBC) has become an important clinical challenge. Currently, taxane-based chemotherapy is one of the standard treatments for TNBC. However, determining the key factor of taxane-resistance is urgently in need for clinical treatment for breast cancer. We used GEO data to generate paclitaxel resistance in two basal-like TNBC cell lines (SUM149 and MDA-MB-468). Seventy-one common upregulated differentially expressed genes (DEGs) and 11 downregulated DEGs were found to be related to paclitaxel resistance. By constructing protein-protein interactions, 28 hub proteins with a degree cutoff criterion of ≥1 were found. Nine hub genes (COL4A6, COL4A5, IL6, PDGFA, LPAR1, FYB, IL20, IL18R1 and INHBA) are involved in important signaling pathways. We found that upregulated PDGFA and downregulated COL4A6 were significantly associated with an insensitive response to neoadjuvant paclitaxel-based therapy. A Kaplan-Meier plot was created to check the prognostic values of 11 hub DEGs in terms of recurrence-free survival. High expressions of PDGFA and LAMB3 were correlated with poor recurrence-free survival, while low levels of FYB, IL18R1, and RASGRP1 indicated poorer relapse-free survival. Our results suggest that PDGFA, COL4A6, LPAR1, FYB, COL4A5, and RASGRP1 might be candidate target genes for taxane-based therapy in basal-like TNBC.  相似文献   

7.
Metastasis virulence, a significant contributor to breast cancer prognosis, is influenced by environmental factors like diet. We previously demonstrated in an F2 mouse population generated from a cross between the M16i polygenic obese and MMTV-PyMT mammary cancer models that high fat diet (HFD) decreases mammary cancer latency and increases pulmonary metastases compared to a matched control diet (MCD). Genetic analysis detected eight modifier loci for pulmonary metastasis, and diet significantly interacted with all eight loci. Here, gene expression microarray analysis was performed on mammary cancers from these mice. Despite the substantial dietary impact on metastasis and its interaction with metastasis modifiers, HFD significantly altered the expression of only five genes in mammary tumors; four of which, including serum amyloid A (Saa), are downstream of the tumor suppressor PTEN. Conversely, HFD altered the expression of 211 hepatic genes in a set of tumor free F2 control mice. Independent of diet, pulmonary metastasis virulence correlates with mammary tumor expression of genes involved in endocrine cancers, inflammation, angiogenesis, and invasion. The most significant virulence-associated network harbored genes also found in human adipose or mammary tissue, and contained upregulated Vegfa as a central node. Additionally, expression of Btn1a1, a gene physically located near a putative cis-acting eQTL on chromosome 13 and one of the metastasis modifiers, correlates with metastasis virulence. These data support the existence of diet-dependent and independent cancer modifier networks underlying differential susceptibility to mammary cancer metastasis and suggest that diet influences cancer metastasis virulence through tumor autonomous and non-autonomous mechanisms.  相似文献   

8.
Triple‐negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, with a high incidence of distant metastasis; however, the underlying mechanism for this frequent recurrence remains unclear. Herein, we show that synaptopodin‐2 (SYNPO2), a putative tumour suppressor in aggressive cancer, is frequently downregulated in TNBC by methylation of the promoter of SYNPO2. Low expression levels of SYNPO2 correlated significantly with 5‐year metastatic relapse, and predicted poorer prognosis in breast cancer patients. Reintroduction of SYNPO2 inhibited the invasion and spontaneous metastasis of TNBC cells in vivo. Strikingly, downregulation of SYNPO2 is essential for the maintenance of stem cell‐like properties in TNBC cells, leading to efficient distant colonization and metastasis outgrowth. Moreover, we demonstrate that SYNPO2 inhibits the activities of YAP and TAZ by stabilizing LATS2 protein, and transduction of YAP‐S127A abrogates the repressive role of SYNPO2 in metastasis. Finally, immunohistochemical (IHC) analysis of breast cancer patient specimens indicated that the SYNPO2–LATS2–YAP axis is clinically relevant. These findings uncover a suppressive role of SYNPO2 in TNBC metastasis via inhibition of YAP/TAZ, and suggest that SYNPO2 might provide a potential prognosis marker and novel therapeutic strategy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
Microglandular adenosis (MGA) is a rare proliferative lesion of the breast composed of small glands lacking myoepithelial cells and lined by S100‐positive, oestrogen receptor (ER)‐negative, progesterone receptor (PR)‐negative, and HER2‐negative epithelial cells. There is evidence to suggest that MGA may constitute a non‐obligate precursor of triple‐negative breast cancer (TNBC). We sought to define the genomic landscape of pure MGA and of MGA, atypical MGA (AMGA) and associated TNBCs, and to determine whether synchronous MGA, AMGA, and TNBCs would be clonally related. Two pure MGAs and eight cases of MGA and/or AMGA associated with in situ or invasive TNBC were collected, microdissected, and subjected to massively parallel sequencing targeting all coding regions of 236 genes recurrently mutated in breast cancer or related to DNA repair. Pure MGAs lacked clonal non‐synonymous somatic mutations and displayed limited copy number alterations (CNAs); conversely, all MGAs (n = 7) and AMGAs (n = 3) associated with TNBC harboured at least one somatic non‐synonymous mutation (range 3–14 and 1–10, respectively). In all cases where TNBCs were analyzed, identical TP53 mutations and similar patterns of gene CNAs were found in the MGA and/or AMGA and in the associated TNBC. In the MGA/AMGA associated with TNBC lacking TP53 mutations, somatic mutations affecting PI3K pathway‐related genes (eg PTEN, PIK3CA, and INPP4B) and tyrosine kinase receptor signalling‐related genes (eg ERBB3 and FGFR2) were identified. At diagnosis, MGAs associated with TNBC were found to display subclonal populations, and clonal shifts in the progression from MGA to AMGA and/or to TNBC were observed. Our results demonstrate the heterogeneity of MGAs, and that MGAs associated with TNBC, but not necessarily pure MGAs, are genetically advanced, clonal, and neoplastic lesions harbouring recurrent mutations in TP53 and/or other cancer genes, supporting the notion that a subset of MGAs and AMGAs may constitute non‐obligate precursors of TNBCs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

10.
Aims: To investigate the relationship between the expression of autophagy‐related proteins, including beclin‐1, light chain (LC) 3A, LC3B, and p62, and prognosis in invasive breast cancer. Methods and results: We constructed tissue microarrays from the breast cancer cells of 489 patients, and classified molecular subtypes using surrogate immunohistochemical stains. The tumoral expression levels of LC3A and LC3B were highest in triple‐negative breast cancer (TNBC) (P < 0.001), whereas these types of tumour had the lowest expression levels of these markers in the stroma (P = 0.005 and P < 0.001, respectively). Cytoplasmic beclin‐1 expression was highest in TNBC, but nuclear expression was lowest (P < 0.001). p62 cytoplasmic and nuclear expression were highest in HER2‐type tumours (P = 0.001 and P < 0.001, respectively). Tumoral LC3A and LC3B expression were associated with high histological grade (P < 0.001, and P < 0.028, respectively), but nuclear p62 expression was associated with lower histological grade (P = 0.004). Conclusions: Autophagy‐related markers are differentially expressed according to the molecular subtype of breast cancer. In particular, expression of LC3A, LC3B and beclin‐1 was highest in TNBC tumour cells, whereas that of LC3A and LC3B in the tumour stroma was lowest in TNBC.  相似文献   

11.
Murray G I, Patimalla S, Stewart K N, Miller I D & Heys S D
(2010) Histopathology 57 , 202–211 Profiling the expression of cytochrome P450 in breast cancer Aims: The cytochrome P450s (P450) are key oxidative enzymes that metabolize many carcinogens and anticancer drugs. Thus, these enzymes influence tumour development, tumour response to therapy and are putative tumour biomarkers. The aim was to define the P450 expression profile in breast cancer and establish the significance of P450 expression in this tumour type. Methods and results: A tissue microarray containing 170 breast cancers of no special type was immunostained for a panel of 21 P450s. The highest percentage of strong immunopositivity in breast cancers was seen for CYP4X1 (50.8%), CYP2S1 (37.5%) and CYP2U1 (32.2%), while CYP2J (98.6%) and CYP3A43 (70.7%) were the P450s that most frequently displayed no immunoreactivity. CYP4V2 (P = 0.01), CYP4X1 (P = 0.01) and CYP4Z1 (P = 0.01) showed correlations with tumour grade. CYP1B1 (P = 0.001), CYP3A5 (P = 0.001) and CYP51 (P = 0.005) showed the most significant correlations with oestrogen receptor status. Correlations with survival were identified for CYP2S1 (P = 0.03), CYP3A4 (P = 0.025), CYP4V2 (P = 0.026) and CYP26A1 (P = 0.03), although none of these P450s was an independent marker of prognosis. Conclusions: This study has defined the expression profile of cytochrome P450s in breast cancer and may offer their potential application as biomarkers to aid decisions regarding optimal adjuvant hormonal therapy.  相似文献   

12.
13.
Adult stem cells are found in numerous tissues of the body and play a role in tissue development, replacement and repair. Evidence shows that breast stem cells are multipotent and can self renew, which are key characteristics of stem cells, and a single cell enriched with cell surface markers has the ability to grow a fully functional mammary gland in vivo. Many groups have extrapolated the cancer stem cell hypothesis from the haematopoietic system to solid cancers, where using in vitro culture techniques and in vivo transplant models have established evidence of cancer stem cells in colon, pancreas, prostate, brain and breast cancers. In the report we describe the evidence for breast cancer stem cells; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24 and have upregulated genes which include Notch. Notch signalling has been highlighted as a pathway involved in the development of the breast and is frequently dysregulated in invasive breast cancer. We have investigated the role of Notch in a pre-invasive breast lesion, ductal carcinoma in situ (DCIS), and have found that aberrant activation of Notch signalling is an early event in breast cancer. High expression of Notch 1 intracellular domain (NICD) in DCIS also predicted a reduced time to recurrence 5 years after surgery. Using a non-adherent sphere culture technique we have grown DCIS mammospheres from primary DCIS tissue, where self-renewal capacity, measured by the number of mammosphere initiating cells, were increased from normal breast tissue. A γ-secretase inhibitor, DAPT, which inhibits all four Notch receptors and a Notch 4 neutralising antibody were shown to reduce DCIS mammosphere formation, indicating that Notch signalling and other stem cell self-renewal pathways may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.  相似文献   

14.
Triple‐negative breast cancer (TNBC) accounts for 10–20% of all breast cancers (BCs), and conventional chemotherapy is the only effective systemic treatment. Germline BRCA1/2 mutations are found in approximately 15% of TNBC patients. In the past, we have documented pathogenic mutations in BARD1, a BRCA1 interacting protein, in families at high risk for BC. In this study, we have analyzed germline DNA from 61 estrogen receptor negative patients (of which 42 were TNBC) for the presence of mutations in the BRCA1, BRCA2 and BARD1 gene. BRCA1/2 mutations were found in 8 out of 42 (19%) TNBC patients, but not in the ER?/HER2+ cohort. We also found four good candidate pathogenic BARD1 mutations in the TNBC cohort, including two protein‐truncating mutations (p.Gln564Ter and p.Arg641Ter). Our data suggest that TNBC patients are enriched for pathogenic BARD1 germline mutations as compared to control samples and high BC risk families. Ten of the 42 investigated TNBC patients carry a BRCA pathway mutation (in BRCA1, BRCA2 or BARD1) rendering them susceptible to homologous recombination deficiency. These patients should become eligible for exploring the efficacy of poly (ADP‐ribose) polymerase (PARP) inhibitors.  相似文献   

15.
Both triple negative breast cancer (TNBA) and HER2-positive breast cancer lack expression of estrogen receptor alpha (ER) and progesterone receptor (PR), while human epidermal growth factor receptor 2 (HER2) in TNBC is also negative. This study aimed to identify the differentially expressed proteins (DEPs) between TNBC and HER2-positive breast cancer and to improve understanding of their role in the prognosis of breast cancer. By analyzing the breast cancer data set in The Cancer Proteome Atlas (TCPA) database, 15 DEPs between TNBC and HER2-positive breast cancer were identified. GO and pathway enrichment analysis were performed on DEPs, and the protein–protein interaction (PPI) network was constructed. The overall survival (OS) analysis of the breast cancer protein dataset in the Kaplan-Meier plotter showed that low expression of ACC1 suggested a higher OS of HER2-positive breast cancer (HR = 5.34, P < 0.05) and TNBC (HR = 2.88, P < 0.05). And TNBC patients with high TBA1B (HR = 0.16, P < 0.01) or low INPP4B (HR = 3.47, P < 0.05) expression have a better prognosis. Our research provides new insights into the prognostic indicators of TNBC and HER2-positive breast cancer, which could be further studied.  相似文献   

16.
The isolation and characterisation of mammary stem cells is an important step towards elucidating the hierarchy of epithelial cell development in the mammary gland and identifying cells that are targets of breast carcinogenesis. Mammary stem cells have recently been prospectively isolated through the identification of specific cell surface markers and in vivo transplantation into cleared fat pads. These cells were demonstrated to reconstitute an entire mammary gland comprising all mature epithelial cell types and to be capable of self-renewal on serial transplantation, thus possessing the defining features of stem cells. Notably, mouse mammary stem cells were found to share the hallmark properties of the basal subtype of breast cancer. This review will summarize the strategy used in the identification of mouse mammary stem cells and their characterisation.  相似文献   

17.
Frizzled receptors mediate Wnt ligand signalling, which is crucially involved in regulating tissue development and differentiation, and is often deregulated in cancer. In this study, we found that the gene encoding the Wnt receptor frizzled 6 (FZD6) is frequently amplified in breast cancer, with an increased incidence in the triple‐negative breast cancer (TNBC) subtype. Ablation of FZD6 expression in mammary cancer cell lines: (1) inhibited motility and invasion; (2) induced a more symmetrical shape of organoid three‐dimensional cultures; and (3) inhibited bone and liver metastasis in vivo. Mechanistically, FZD6 signalling is required for the assembly of the fibronectin matrix, interfering with the organization of the actin cytoskeleton. Ectopic delivery of fibronectin in FZD6‐depleted, triple‐negative MDA‐MB‐231 cells rearranged the actin cytoskeleton and restored epidermal growth factor‐mediated invasion. In patients with localized, lymph node‐negative (early) breast cancer, positivity of tumour cells for FZD6 protein identified patients with reduced distant relapse‐free survival. Multivariate analysis indicated an independent prognostic significance of FZD6 expression in TNBC tumours, predicting distant, but not local, relapse. We conclude that the FZD6–fibronectin actin axis identified in our study could be exploited for drug development in highly metastatic forms of breast cancer, such as TNBC. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

18.
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes – TP53 (Li–Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz–Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype–phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.  相似文献   

19.
Germline mutations in the tumour suppressor BRCA2 predispose to breast, ovarian and a number of other human cancers. Brca2‐deficient mouse models are used for preclinical studies but the pattern of genomic alterations in these tumours has not yet been described in detail. We have performed whole‐exome DNA sequencing analysis of mouse mammary tumours from Blg–Cre Brca2f/f Trp53f/f animals, a model of BRCA2‐deficient human cancer. We also used the sequencing data to estimate DNA copy number alterations in these tumours and identified a recurrent copy number gain in Met, which has been found amplified in other mouse mammary cancer models. Through a comparative genomic analysis, we identified several mouse Blg–Cre Brca2f/f Trp53f/f mammary tumour somatic mutations in genes that are also mutated in human cancer, but few of these genes have been found frequently mutated in human breast cancer. A more detailed analysis of these somatic mutations revealed a set of genes that are mutated in human BRCA2 mutant breast and ovarian tumours and that are also mutated in mouse Brca2‐null, Trp53‐null mammary tumours. Finally, a DNA deletion surrounded by microhomology signature found in human BRCA1/2‐deficient cancers was not common in the genome of these mouse tumours. Although a useful model, there are some differences in the genomic landscape of tumours arising in Blg–Cre Brca2f/f Trp53f/f mice compared to human BRCA‐mutated breast cancers. Therefore, this needs to be taken into account in the use of this model. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

20.
Early age at menarche is a risk factor for breast cancer. A previous study reported a significant positive association between the CYP3A4*1B variant allele and early puberty. We investigated whether polymorphisms of the CYP3A4, CYP17, CYP1B1, and CYP1A2 genes predict the age at onset of menarche. Five hundred eighty-three nulliparous women between ages 17 and 35, of various ethnic backgrounds, completed a questionnaire that included information about menstrual history. Samples of DNA were provided and used to genotype these women for polymorphic variants in the four genes. There was no significant difference in mean age at menarche between women who carried two variant CYP17 A2 alleles (12.5 years) and women who carried one or no variant allele (12.5 years) (P = 0.8, adjusted for ethnic group and year of birth). Similar results were found for the CYP1B1*3 variant allele and for the CYP1A2*1F variant allele. Women who carried two variant CYP3A4*1B alleles had an earlier mean age at menarche (12.0 years) than women who carried one or no variant allele (12.6 years) (P = 0.02). However, after adjusting for ethnic group and year of birth, no significant differences in mean age at menarche were found. The polymorphic variants of the CYP3A4, CYP17, CYP1B1, and CYP1A2 genes are unlikely to influence age of menarche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号