首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
乳腺肿块分割是乳腺癌计算机辅助诊断(CAD)检测和识别系统中关键的一步.由于乳腺肿块与背景相互交叠、边界不清晰、乳房密度不均匀,使得其分割比较困难.本文基于区域增长算法,研究了利用乳腺肿块自身特征得到最优分割阈值的方法,从而提出一种对乳腺X线图像肿块快速、有效的分割方法.实验结果表明该方法在保证肿块针状化特征情况下,拥有较好的分割效果.  相似文献   

2.
为了使临床医生从数字乳房X射线图像中得到更多有用的肿块信息,通过研究增强后的数字乳房X射线图像,结合图像特点,提出利用区域生长方法对图像进行肿块分割的算法.此算法可以有效地分割出图像中的肿块区域,并很好地保持了肿块的边缘信息.  相似文献   

3.
卷积神经网络(CNN)是目前计算机视觉和模式识别中效果最为突出的算法。CNN拥有强大的空间识别能力,可以从图像中提取高阶的空间特征,同时通过共用卷积核的方式大幅减少参数量,从而在提升网络性能的同时保持总参数量在一个合理的、可运算的范畴。部分采用无监督学习的CNN算法可以在没有先验知识的条件下实现一定程度的图像语义分割,大幅减少人工读图的负担。本研究就CNN在医学图像分割中的研究进展和使用CNN时的具体技巧及其效果进行综述。以使用CNN为核心的深度学习工具解决医学图像分割的课题为中心,展示了CNN在有监督学习、半监督学习及无监督学习中的巨大潜力,分析比较了现有方案的优点与不足,探讨了未来CNN在医学图像领域的前进方向。  相似文献   

4.
目的 依据临床诊断对MRI脑图像自动分割算法的需求,基于卷积神经网络(convolutional neural networks,CNN)设计了一种端到端的深度监督全卷积网络(deeply supervised fully convolutional network,DS-FCN)以解决脑图像中脑组织的自动分割问题。方法 针对三维MRI脑图像,先将体数据切割成二维图像切片,在FCN网络结构的基础上,加入了深度监督机制,即在特征提取的多层级结构中提前得到损失值反馈。结果 以三维MRI脑图像公开数据集LPBA-40为实验数据,56类脑组织的准确率(precision rate)、召回率(recall rate)、F1评估值分别为74. 40%、74. 82%、73. 75%,测试速率为152 ms。结论 通过引入深度监督结构,改进后的DS-FCN在MRI脑组织分割任务中得到了更精准的分割效果。  相似文献   

5.
目的心脏医学影像中,感兴趣部分的提取与分割是诊断心脏病变部位的关键。由于心脏舒张、收缩以及血液的流动,心脏CT图像易出现弱边界、伪影,传统分割算法易产生过度分割的情况。为此,提出一种基于卷积神经网络和图像显著性的心脏CT图像分割方法。方法采用卷积神经网络对目标区域进行定位,滤除肋骨、肌肉等造影对比不明显部分,截取出感兴趣区域,结合感兴趣区域的对比度计算并提高感兴趣区域的心脏组织的显著值。通过获得的显著值图像截取心脏图像,并与区域生长算法的分割结果进行对比。最后使用泰州人民医院11例患者的影像数据对算法模型进行训练和测试,随机选择9例用于训练,剩余2例用于测试。结果所提算法模型在心底、心中、心尖3个心脏分段的分割正确率分别达到了92.79%、92.79%、94.11%,均优于基于区域生长的分割方法。结论基于卷积神经网络和图像显著性的分割方法能够准确获取心脏的外围轮廓,轮廓边缘更加平滑,完全能够满足CT图像序列的心脏全自动分割任务需求,分割后的图像更有利于医生对患者心脏健康状况和病变部位的观察。  相似文献   

6.
目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别作为训练集、验证集和测试集;训练过程中使用旋转、拉伸、平移、裁剪等操作对数据进行扩增。实验中提出一种用于胰腺分割的、结合概率图的2.5D级联深度监督UNet,即CSNet(Cascading deep Supervision UNet)。该网络由3个部分组成:第1部分基于UNet,输入连续5层图像,输出中间3层对应的粗分割图像,设置适当的阈值,使其变成二值的粗分割结果;第2部分将第1层、第3层的粗分割结果与中间层的原始图像相结合,输入另一个深度监督UNet网络,得到中间层的精细分割;第3部分将第1部分网络输出的中间层的粗分割概率图与第2部分网络输出的细分割概率图通过1×1卷积进行概率融合得到最终的输出结果。3个子网络同时进行训练,对应的能量函数联合优化,从而得到更精准的分割结果。最后,使用DSC对分割结果进行评估。结果:在独立测试集上,CSNet实现了(83.74±5.27)%的DSC值。结论:CSNet可以准确分割出CT图像上的胰腺区域。  相似文献   

7.
医学图像分割是医学图像定量分析的关键步骤之一,因此病灶分割对临床诊断有重要意义。针对传统分割方法中存在的过多依赖医学领域的先验知识和人为评估错误等问题,提出了基于深度学习的病灶分割方法。本文总结了卷积神经网络算法应用于医学图像病灶分割的研究进展。首先,论述卷积神经网络的基本结构及其常用架构;其次介绍深度学习在医学图像病灶分割中的应用,其中包括肺结节的检测和分类,脑肿瘤分割和乳腺病灶的分割;最后,分析了目前该研究中存在的优缺点并对深度学习的发展方向进行展望。  相似文献   

8.
针对现有的卷积神经网络在肝脏图像分割上精度较低的问题,提出了一种以U-Net网络模型为基础的分割算法。将多头自注意力机制引入到U-Net网络的跳跃连接中,在编码器部分使用空洞卷积,采用混合损失函数从而提高分割精度。在LITS数据集上通过实验结果表明,利用本文方法进行肝脏分割与传统U-Net方法相比Dice系数提升3.3%,平均交并比提升了2.4%,平均像素准确率提升了3.66%。  相似文献   

9.
实现上腹部CT影像的胃壁分割与中心线提取是成功实现早期胃癌筛查和辅助T分期的前提。基于改进型V-net的胃壁分割方法加入了全局平均权重模块的全卷积神经网络框架,有效解决了神经网路下采样过程中信息丢失的问题。此外,本文在原水平集方法的基础上,提出了正则化水平集损失函数。该损失函数有效抑制了全卷积网络胃壁边缘特征丢失率和因数据量较少而引起的过拟合问题,提高了神经网络对上腹部CT影像中胃壁的识别精度。实验表明,在上腹部CT影像数据集中本文方法分割准确度Dice系数高达0.916 5,IOU达到了0.822 3。该方法的Dice相对于3D V-net方法准确度提高了近6%,同时比CE-net和Dense U-net方法的准确率分别提高了2.7%和3.1%。  相似文献   

10.
本文提出了一种基于模型的乳腺X线图像分割胸肌区域的新算法。该算法利用一组不同尺寸的感兴趣区(ROI)作用到乳腺X线图像,进而将每一个ROI得到的最优阎值组合成一条最优阎值曲线以及与该曲线对应的局部均方差曲线。在此基础上,根据我们提出的近似真实乳腺图像胸肌模型的特征,自动确定图像中胸肌区域的最佳分割阈值。最后,使用两段直线粗拟舍和多边形精拟合,精确提取出了阈值化的胸肌边界。通过对多达60幅临床乳腺X线图像的实际测定,得到了比较理想的胸肌边界检测效果。  相似文献   

11.
目的:旨在研究自主创新设计的级联式深度卷积神经网络VB-Net在胃和胰腺上的自动分割精度及效率。方法:回顾分析150例胰腺癌患者临床资料,随机选取132例非增强CT数据和其中116例胰腺期增强CT以及结构数据进行胃及胰腺的分割模型训练。对剩余18例患者的非增强CT和胰腺期增强CT给予模型测试,使用戴斯相似性系数量化分析模型的分割精度,同时评估其分割效率。结果:基于非增强CT的胃、胰腺的自动分割平均DSC值分别为87.93%、80.05%;基于胰腺期增强CT的胃、胰腺自动分割平均DSC值分别为89.71%、84.79%。胃及胰腺的自动分割平均时间为1.22、0.84 s,手动分割平均时间为158.70、115.52 s。结论:基于VB-Net的胃及胰腺自动分割模型测试结果较为准确,且极大提高了器官分割的效率。  相似文献   

12.
本文提出了一种基于卷积网络的心电信号分类算法,设计了空洞卷积池化金字塔模块,通过不同尺寸的空洞卷积提取信息,再将各通道的信息聚合,在增强网络的特征提取能力的同时可以降低参数量。本文聚焦于窦性心律、房性早搏、心动过速以及心动过缓4种分类,使用的心电图数据集来自医院的实测数据,数据集包含75000名不同检测者的心电记录。经过测试,本文提出的模型在该数据集上取得了0.89的F1值,另外在CinC2017数据集上也达到了0.87的F1值。实验结果表明该分类算法具有优秀的特征提取和分类能力,在心电信号的实时分类中具备应用前景。  相似文献   

13.
原发性肝脏恶性肿瘤是我国高发且危害极大的恶性肿瘤。肝脏手术(如肿瘤切除、活体肝移植等)是各种常见肝脏良恶性疾病的主要治疗方法之一。从医学影像中将肝脏组织准确地分割出来,是计算机辅助肝脏疾病诊断与手术规划中一个基础且至关重要的步骤。针对肝脏分割的特异性及分割难点,提出3D卷积神经网络(3DCNN)肝脏自动分割算法模型。3DCNN基于对体数据的训练能很好地学习到肝脏图像平面与空间信息。通过将深度监督机制无缝地整合到3DCNN中,能够有效解决梯度消失或爆炸的优化问题,加快收敛速度的同时提高分辨能力。最后,将初始分割结果作为先验信息,采用基于多星凸约束的图割算法做进一步的分割优化。实验结果表明该分割模型能够将肝脏组织从腹部CT图像中精确分割。  相似文献   

14.
病理切片中肾小球自动分类是诊断肾脏病变程度和病变类型的关键。为解决肾小球分类问题,设计了一个基于卷积神经网络的完整肾小球分类框架,选用SE-Resnet作为图像分类模型,将原有模块中卷积层改为参数量更小的卷积块,在保证网络性能的前提下减少网络参数。实验结果表明,相比于其他分类算法,该算法表现最优,在肾小球系膜细胞增生、肾小球新月体形成、肾小球局灶性节段性硬化、正常肾小球的分类任务中达到了96.93%的准确率,说明该分类算法能够较好地对肾小球病变进行识别。  相似文献   

15.
目的:为了消除宫颈CT图像中存在的金属伪影,提出一种利用卷积神经网络(CNN)去除金属伪影的策略。方法:首先通过数值仿真得到金属伪影图像与目标图像(无伪影图像),构造训练测试数据集,利用含金属伪影的宫颈CT图像和对应的无伪影图像训练已搭建的CNN,进而得到去除宫颈CT图像金属伪影的CNN模型。结果:训练网络之前金属伪影图像与目标图像峰值信噪比(PSNR)平均值为26.098 0 dB。不同尺寸(25×25、50×50、100×100)的图像块训练网络得到去除金属伪影的图像与目标图像PSNR平均值分别为34.607 9、38.375 1、38.183 8 dB。结论:通过对仿真数据和临床数据进行实验,研究结果表明,本文方法能够快速有效地消除宫颈CT图像中的金属伪影,并且可以保留完整的组织结构信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号