首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hippocampal dentate gyrus in adult animals is known to contain neural progenitors that proliferate and differentiate into neurons in response to brain injury. Little has been observed, however, on regeneration of the granule cell layer of the dentate gyrus that has been directly injured. Using trimethyltin (TMT)-treated mice as an in vivo model, we evaluated the ability of this layer to regenerate after injury. The administration of TMT induced neuronal death in the dentate gyrus selectively 2 days later, with recovery of granule neurons on day 14 and thereafter. At an early stage (days 2-5) after the damage by TMT treatment, 5-bromo-2'-deoxyuridine (BrdU) incorporation into at least two different types of cells was facilitated in the dentate gyrus: BrdU-positive/neuronal nuclear antigen (NeuN)-negative cells were found predominantly in the subgranular zone and granule cell layer, whereas BrdU-positive/NeuN-positive cells were numerous in the dentate molecular layer and hilus. In addition, expression of proliferating cell nuclear antigen, nestin, NeuroD3, and doublecortin, which are markers for proliferating cells and neural progenitors/neuronal precursors, was extremely enhanced in the dentate gyrus at the early stage after treatment. Double staining revealed that BrdU was colocalized with nestin and doublecortin in the subgranular zone. Behavioral analysis revealed that TMT-induced cognition impairment was ameliorated by day 14 after the treatment. Taken together, our data indicate that the hippocampal dentate gyrus itself is capable of regenerating the neuronal cell layer through rapid enhancement of neurogenesis after injury.  相似文献   

2.
Neuronal progenitors in the adult hippocampus continually proliferate and differentiate to the neuronal lineage, and ischemic insult promotes hippocampal neurogenesis. However, newborn neurons show a progressive reduction in numbers during the initial few weeks, therefore, enhanced survival of newborn neurons seems to be essential for therapeutic strategy. Bcl-2 is a crucial regulator of programmed cell death in CNS development and in apoptotic and necrotic cell death. Therefore, we tested whether Bcl-2 overexpression enhances survival of newborn neurons in the adult mouse hippocampus under normal and ischemic conditions. Many newborn neurons in the hippocampal dentate gyrus undergo apoptosis. Human Bcl-2 expression in NSE-bcl-2 transgenic mice began at the immature neuronal stage and remained constant in surviving mature neurons. Bcl-2 significantly increased survival of newborn neurons under both conditions, but particularly after ischemia, with decreased cell death of newborn neurons in NSE-bcl-2 transgenic mice. We also clarified the effect by Bcl-2 overexpression of enhanced survival of newborn neurons in primary hippocampal cultures with BrdU labeling. These findings suggest that Bcl-2 plays a crucial role in adult hippocampal neurogenesis under normal and ischemic conditions.  相似文献   

3.
4.
Decreased neurogenesis after cholinergic forebrain lesion in the adult rat   总被引:13,自引:0,他引:13  
Adult neurogenesis has been shown to be regulated by a multitude of extracellular cues, including hormones, growth factors, and neurotransmitters. The cholinergic system of the basal forebrain is one of the key transmitter systems for learning and memory. Because adult neurogenesis has been implicated in cognitive performance, the present work aims at defining the role of cholinergic input for adult neurogenesis by using an immunotoxic lesion approach. The immunotoxin 192IgG-saporin was infused into the lateral ventricle of adult rats to selectively lesion cholinergic neurons of the cholinergic basal forebrain (CBF), which project to the two main regions of adult neurogenesis: the dentate gyrus and the olfactory bulb. Five weeks after lesioning, neurogenesis, defined by the number of cells colocalized for bromodeoxyuridine (BrdU) and the neuronal nuclei marker NeuN, declined significantly in the granule cell layers of the dentate gyrus and olfactory bulb. Furthermore, immunotoxic lesions to the CBF led to increased numbers of apoptotic cells specifically in the subgranular zone, the progenitor region of the dentate gyrus, and within the periglomerular layer of the olfactory bulb. We propose that the cholinergic system plays a survival-promoting role for neuronal progenitors and immature neurons within regions of adult neurogenesis, similar to effects observed previously during brain development. As a working hypothesis, neuronal loss within the CBF system leads not only to cognitive deficits but may also alter on a cellular level the functionality of the dentate gyrus, which in turn may aggravate cognitive deficits.  相似文献   

5.
During adulthood, neural precursors located in the subgranular zone of the dentate gyrus continue to proliferate, leading to the generation of new granule neurons. These recently generated cells transiently express the polysialylated form of the neural cell adhesion molecule, PSA-NCAM, and are supported by radial glia-like cells that are likely to play a role in neuronal migration and differentiation, or even act as their precursors. Previous reports indicate that treatment with NMDA receptor antagonists stimulates adult neurogenesis in the dentate gyrus, and because of the potential therapeutic value of this approach, we were interested in further characterizing the consequences of pharmacologically modulating this process. We treated adult rats with the competitive NMDA receptor antagonist, CGP43487, and examined cell proliferation, PSA-NCAM expression, and changes in the radial glia cell population in the subgranular zone at different time points. In addition, we sought to determine if this treatment led to changes in cell death or gliotic reactions. The number of proliferating cells in the subgranular region of the dentate gyrus was increased significantly 2 days after treatment and it remained elevated 7 days postinjection. PSA-NCAM-immunoreactive granule cells and nestin-expressing radial glia-like cells also increased in number 7 days after the treatment. In contrast, we did not observe any change in granule cell death, and we were unable to detect any microglial or astroglial reaction during the first 7 days after treatment. Thus, NMDA receptor antagonist treatment serves as a valuable tool to increase neurogenesis in the adult hippocampus without undesirable collateral deleterious effects.  相似文献   

6.
One neuropathological hallmark of temporal lobe epilepsy is granule cell dispersion, a widening of the hippocampal granule cell layer (GCL) with abnormally positioned excitatory neurons. The finding that seizure activity also induces adult hippocampal neurogenesis was taken largely as indicative of a regenerative attempt, not as part of the pathology. The aim of our study was to characterize a potential relationship between granule cell dispersion and seizure-induced neurogenesis. Kainic acid (KA)-induced seizures in mice led to increased cell proliferation and new neurons persisted for months after the seizures. We show that the proliferative stimulus did not affect nestin-expressing early precursor cells that primarily respond to physiologic mitogenic stimuli, but stimulated the division of late type-3 progenitor cells, which express doublecortin (DCX), a protein associated with cell migration. This delayed proliferation presumably interfered with migration, leading to a significant dispersion of DCX-positive progenitors and early postmitotic neurons within the dentate gyrus granule cell layer. We propose that initial seizures induce ectopic precursor cell proliferation resulting in the dispersion of immature neurons within the adult granule cell layer. Thus, seizure-generated neurons might contribute to the disease process of epilepsy.  相似文献   

7.
Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.  相似文献   

8.
Adult hippocampal neurogenesis declines with age in parallel with decreased performance on a variety of hippocampal-dependent tasks. We measured the rate of cellular proliferation in the hippocampus of mice lacking the beta 2-subunit of the nicotinic acetylcholine receptor (beta 2-/- mice) at three ages: young adult (3 months old), fully adult (7-10 months old), and aged (22-24 months old). Consistent with previous studies, we observed an age-related decline in hippocampal proliferation in both groups. However, in fully adult beta 2-/- mice a 43% reduction of granule cell proliferation was detected compared to age-matched controls. This was accompanied by a significant decrease in dentate gyrus area/section and the length of the granule cell layer in beta 2-/- mice. These alterations were not the result of a change in plasma corticosterone levels or expression of the neurotrophic factor BDNF in the dentate gyrus, two known regulators of hippocampal cell proliferation. Similarly, there was no increase in gliosis, abnormal myelination, or apoptotic cell death in the beta 2-/- animals, although there was a significant shift in the location of apoptotic cells in the dentate gyrus indicative of a change in neuronal survival. These results suggest that the beta 2-subunit containing nicotinic acetylcholine receptors play an important role in regulating cell proliferation in the hippocampus and that endogenous acetylcholine may act to oppose the negative effects of normal aging and stress on cellular proliferation.  相似文献   

9.
Neurogenesis in the subgranular zone of the dentate gyrus persists throughout the lifespan of mammals, and the resulting newly born neurons are incorporated into existing hippocampal circuitry. Seizures increase the rate of neurogenesis in the adult rodent brain and result in granule cells in the dentate gyrus with basal dendrites. Using doublecortin (DCX) immunocytochemistry to label newly generated neurons the current study focuses on the electron microscopic features of DCX-labeled cell bodies and dendritic processes in the dentate gyrus of rats with pilocarpine-induced epilepsy. At the base of the granule cell layer clusters of cells that include up to six DCX-labeled cell bodies were observed. The cell bodies in these clusters lacked a one-to-one association with an astrocyte cell body and its processes, a relationship that is typical for newly born granule cells in control rats. Also, DCX-labeled basal dendrites in the hilus had immature synapses while those in control rats lacked synapses. These results indicate that increased neurogenesis after seizures alters the one-to-one relationship between astrocytes and DCX-labeled newly generated neurons at the base of the granule cell layer. The data also suggest that the synapses on DCX-labeled hilar basal dendrites contribute to the persistence of hilar basal dendrites on neurons born after pilocarpine-induced seizures.  相似文献   

10.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

11.
The role of N-methyl-D-asparate receptors in neurogenesis   总被引:2,自引:0,他引:2  
Nacher J  McEwen BS 《Hippocampus》2006,16(3):267-270
The dentate gyrus continues to incorporate granule neurons during adulthood. Among the factors that we know modulate adult neurogenesis in the dentate gyrus, one of the first studied was the influence of excitatory amino-acids. These neurotransmitters, acting through NMDA receptors, are able to modulate both the proliferation of progenitor cells as well as the rate of neurogenesis in the adult dentate gyrus. However, the mechanisms by which these processes are influenced are not clearly known. Although there is no anatomical evidence of NMDA receptor expression in adult hippocampal progenitor cells or differentiating granule neurons, electrophysiological data and in vitro studies suggest that NMDA receptors may be expressed by certain precursor cells and immature granule neurons. This review summarizes findings on the influence of pharmacological manipulation of NMDA receptors on adult neurogenesis. We also analyze previous studies that have suggested the expression of NMDA receptors in progenitors and immature granule cells and discuss the putative role of these receptors in the regulation of developmental processes such as proliferation, migration, or neurite outgrowth.  相似文献   

12.
Human type 1 lissencephaly is a severe brain malformation associated with cognitive dysfunction and intractable epilepsy. Mutant mice with a heterozygous deletion of LIS1 show varying degrees of hippocampal abnormality and enhanced excitability. Whether a reduction of LIS1 function affects adult hippocampal neurogenesis, and if so, whether aberrant neurogenesis contributes to the generation of a disorganized hippocampus remain unknown. Previous reports indicate the presence of multiple pyramidal cell layers and granule cell dispersion in LIS1 mutant mice. Here we observed disruption of the subgranular zone and glial fibrillary acidic protein-immunoreactive radial astrocytes in the dentate gyrus of adult LIS1 mice. Using pulse-chase bromodeoxyuridine (BrdU) labeling combined with neuronal and glial antibody staining we provide evidence for ectopic adult neurogenesis in LIS1 mice. A gradually decreased survival rate for these newborn granule cells was also demonstrated in LIS1 mice 7 days after BrdU injection. This reduced survival rate was associated with impaired neuronal differentiation 28 days after BrdU administration. Thus, LIS1 haploinsufficiency can lead to abnormal cell proliferation, migration and differentiation in the adult dentate gyrus.  相似文献   

13.
Neural stem and precursor cells persist postnatally throughout adulthood and are capable of responding to numerous endogenous and exogenous signals by modifying their proliferation and differentiation. Whereas adult neurogenesis has been extensively studied in the dentate gyrus of the hippocampal formation and in the subventricular zone adjacent to the wall of the lateral ventricles, we and others have recently reported constitutive adult neurogenesis in other brain structures, including the hypothalamus. In this study, we used immunohistochemistry to study the expression of the neuroblast marker doublecortin (DCX), and compared its expression pattern in adult ovine, mouse, and human hypothalamic tissues. Our results indicate that DCX‐positive cells resembling immature and developing neurons occur in a wide range of hypothalamic nuclei in all three species, although with different distribution patterns. In addition, the morphology of DCX‐positive cells varied depending on their location. DCX‐positive cells near the third ventricle had the morphology of very immature neuroblasts, a round shape with no processes, whereas those located deeper in the parenchyma such as in the ventromedial nucleus were fusiform and showed a bipolar morphology. Extending this observation, we showed that among the cohort of immature neurons entering the ventromedial nucleus, some appeared to undergo maturation, as revealed by the partial colocalization of DCX with markers of more mature neurons, e.g., human neuronal protein C and D (HuC/D). This study provides further confirmation of the existence of an adult hypothalamic neurogenic niche and argues for the potential existence of a migratory path within the hypothalamus. J. Comp. Neurol. 522:1966–1985, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen(Neu N; a neuronal marker) and Fluoro-Jade B(a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67(a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin(DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine(Brd U)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature Brd U/Neu N double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.  相似文献   

15.
Doublecortin expression in the adult rat telencephalon   总被引:12,自引:0,他引:12  
Doublecortin (DCX) is a protein required for normal neuronal migration in the developing cerebral cortex, where it is widely expressed in both radially and tangentially migrating neuroblasts. Moreover, it has been observed in the adult rostral migratory stream, which contains the neuronal precursors traveling to the olfactory bulb. We have performed DCX immunocytochemistry in the adult rat brain to identify precisely the neuronal populations expressing this protein. Our observations confirm the presence of DCX immunoreactive cells with the characteristic morphology of migrating neuroblasts in the subventricular zone, rostral migratory stream and the main and accessory olfactory bulbs. We have also found putative migratory cells expressing DCX in regions were no adult neuronal migration has been described, as the corpus callosum, the piriform cortex layer III/endopiriform nucleus and the striatum. Surprisingly, many cells with the phenotype of differentiated neurons were DCX immunoreactive; e.g. certain granule neurons in the hilar border of the granular layer of the dentate gyrus, some neuronal types in the piriform cortex layer II, granule and periglomerular neurons in the main and accessory olfactory bulbs, and isolated cells in the striatum. Almost all DCX immunoreactive cells also express the polysialylated form of neural cell adhesion molecule and have a similar distribution to rat collapsin receptor-mediated protein-4, two molecules involved in neuronal structural plasticity. Given these results, we hypothesize that DCX expression in differentiated neurons could be related to its capacity for microtubule reorganization and that this fact could be linked to axonal outgrowth or synaptogenesis.  相似文献   

16.
In the adult mammalian brain, multipotent stem or progenitor cells involved in reproduction of neurons and glial cells have been well investigated only in very restricted regions; the subventricular zone of the lateral ventricle and the dentate gyrus in the hippocampal formation. In the neocortex, a series of in vitro studies has suggested the possible existence of neural progenitor cells possessing neurogenic and/or gliogenic potential in adult mammals. However, the cellular properties of the cortical progenitor cells in vivo have not been fully elucidated. Using 5'-bromodeoxyuridine labeling and immunohistochemical analysis of cell differentiation markers, we found that a subpopulation of NG2-immunopositive cells co-expressing doublecortin (DCX), an immature neuron marker, ubiquitously reside in the adult rat neocortex. Furthermore, these cells are the major population of proliferating cells in the region. The DCX(+)/NG2(+) cells reproduced the same daughter cells, or differentiated into DCX(+)/NG2(-) (approximately 1%) or DCX(-)/NG2(+) (approximately 10%) cells within 2 weeks after cell division. The DCX(+)/NG2(-) cells were also immunopositive for TUC-4, a neuronal linage marker, suggesting that these cells were committed to neuronal cell differentiation, whereas the DCX(-)/NG2(+) cells showed faint immunoreactivity for glutathione S-transferase (GST)-pi, an oligodendrocyte lineage marker, in the cytoplasm, suggesting glial cell lineage, and thereafter the cells differentiated into NG2(-)/GST-pi(+) mature oligodendrocytes after a further 2 weeks. These findings indicate that DCX(+)/NG2(+) cells ubiquitously exist as 'multipotent progenitor cells' in the neocortex of adult rats.  相似文献   

17.
Synapsin III is a synaptic vesicle-associated protein that is expressed in cells of the subgranular layer of the hippocampal dentate gyrus, a brain region known to sustain substantial levels of neurogenesis into adulthood. Here we tested the hypothesis that synapsin III plays a role in adult neurogenesis with synapsin III knockout and wild-type mice. Immunocytochemistry of the adult hippocampal dentate gyrus revealed that synapsin III colocalizes with markers of neural progenitor cell development (nestin, PSA-NCAM, NeuN, and Tuj1) but did not colocalize with markers of mitosis (Ki67 and PCNA). Because neurogenesis consists of a number of stages, the proliferation, survival, and differentiation of neural progenitor cells were systematically quantitated in the hippocampal dentate gyrus of adult synapsin III knockout and wild-type mice. We found a 30% decrease in proliferation and a 55% increase in survival of neural progenitor cells in synapsin III knockout mice. We also observed a 6% increase in the number of neural progenitor cells that differentiated into neurons. No difference in the volume of the dentate gyrus was observed between synapsin III knockout and wild-type mice. Collectively, our results demonstrate a novel role for synapsin III in regulating the proliferation of neural progenitor cells in the adult hippocampal dentate gyrus. These findings suggest a distinct function for this synaptic vesicle protein, in addition to its role in neurotransmission.  相似文献   

18.
In adult hippocampal neurogenesis, new neurons appear to originate from a cell with astrocytic properties expressing glial fibrillary acidic protein (GFAP). Also, new astrocytes are generated in the adult dentate gyrus. Whereas the putative astrocyte-like progenitor cells are consistently S-100beta-negative, many new astrocytes are S-100beta-positive. Thus, it is unclear whether the GFAP-positive progenitor cells are astrocytes in a general sense or rather neural progenitor cells with certain astrocytic characteristics. We therefore investigated the development of GFAP-expressing cells in the context of adult hippocampal neurogenesis. Proliferating cells could be either GFAP-positive or doublecortin-positive (DCX), but never both, indicating two independent populations of dividing cells in the glial and neuronal lineages. Two distinct populations of cells with astroglial properties were detected-one expressing GFAP, the other co-expressing GFAP and S-100beta. We never found S-100beta-cells to be in S-phase. No overlap between neuronal and glial markers was seen at any time point. Thus, astrogenesis occurred in parallel and to some degree independent of adult neurogenesis. The uninterrupted GFAP expression in this lineage, and neuronal markers in the other lineage, argue against a late common precursor for neurogenesis and gliogenesis in the adult hippocampus. Very few newly generated microglia and no new oligodendrocytes were detected. Environmental enrichment and voluntary wheel running-two experimental paradigms with robust stimulatory effects on adult hippocampal neurogenesis-affected hippocampal astrogenesis differentially: Running, but not enrichment, strongly induced net astrogenesis (GFAP/S-100beta), but also GFAP-positive S-100beta-negative cells, which thus appear to be a transiently amplifiable intermediate population within the glial lineage.  相似文献   

19.
In adult female rats, estrogen receptor (ER) activation, particularly of ERbeta, promotes hippocampal neurogenesis. We previously reported that extranuclear ERbeta immunoreactivity (ir) in adult rats is on cellular profiles in or near the granule cell layer, which is the location of newly generated cells. During development, cells in or near the granule cell layer transiently express high levels of estrogen binding and nuclear ERs. Thus, we sought to determine if extranuclear ERbeta is in newly generated cells in adult and neonatal rat dentate gyrus. Sections from the dentate gyrus of adult proestrus or postnatal day 7 and 14 female rats were dual-labeled for ERbeta and the new-cell marker doublecortin (DCX) and examined by electron microscopy. DCX-containing neurons were found in the subgranular hilus in adult rats and were more widespread throughout the granule cell layer and hilus of neonatal rats. In both adults and neonatal rats, ERbeta immunoreactivity was found in a subset of DCX-labeled neurons. Electron microscopic examination of the adult dentate gyrus revealed that most perikarya with DCX-ir had the morphological characteristics of granule cells, although a few resembled interneurons. Dendrites with DCX-ir also were observed. In both adults and neonates, DCX-labeled neuronal perikarya and dendrites contained ERbeta-ir; ERbeta-ir usually was aggregated near the plasma membrane, mitochondria or endoplasmic reticula. ERbeta-ir was in glial profiles that apposed DCX-labeled perikarya and dendrites. These findings are consistent with data showing that estrogens can exert non-genomic effects directly and indirectly on newly generated cells in neonatal and adult rat dentate gyrus.  相似文献   

20.
The adult rodent brain is capable of generating neuronal progenitor cells in the subventricular zone, and in the dentate gyrus of the hippocampus, throughout the life of the animal. Signals that regulate progenitor cell proliferation, differentiation, and migration are not well known. We report that administration of a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio]diazen-1-ium-1,2-diolate (DETA/NONOate), to young adult rats significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus. Treatment with DETA/ NONOate also increases neurogenesis in the dentate gyrus. Furthermore, administration of DETA/NONOate to rats subjected to embolic middle cerebral artery occlusion significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus, and these rats exhibit significant improvements of neurological outcome during recovery from ischemic stroke. Administration of DETA/NONOate significantly increases cortical levels of guanosine monophosphate both in ischemic and nonischemic rats, supporting the role of nitric oxide in promoting cell proliferation and neurogenesis. Thus, our data indicate that nitric oxide is involved in the regulation of progenitor cells and neurogenesis in the adult brain. This suggests that nitric oxide delivered to the brain well after stroke may have therapeutic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号