首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of kainate, an agonist selective for ionotropic AMPA/kainate type of glutamate receptors, on GABAA receptor subunit expression in cultured mouse cerebellar granule cells was studied using quantitative RT-PCR, ligand binding and electrophysiology. Chronic kainate treatment, without producing excitotoxicity, resulted in preferential, dose- and time-dependent down-regulation of alpha1, alpha6 and beta2 subunit mRNA expression, the expression of beta3, gamma2 and delta subunit mRNAs being less affected. The down-regulation was reversed by DNQX, an AMPA/kainate-selective glutamate receptor antagonist. A 14-day kainate treatment resulted in 46% decrease of total [3H]Ro 15-4513 binding to the benzodiazepine sites. Diazepam-insensitive [3H]Ro 15-4513 binding was decreased by 89% in accordance with very low amount of alpha6 subunit mRNA present. Diazepam-sensitive [3H]Ro 154513 binding was decreased only by 40%, contrasting >90% decrease in alpha1 subunit mRNA expression. However, this was consistent with lower potentiation of GABA-evoked currents in kainate-treated than control cells by the alpha1-selective benzodiazepine site ligand zolpidem, suggesting compensatory expression of alpha5 (and/or alpha2 or alpha3) subunits producing diazepam-sensitive but zolpidem-insensitive receptor subtypes. In conclusion, chronic kainate treatment of cerebellar granule cells selectively down-regulates oil, alpha6 and beta2 subunits resulting in altered GABAA receptor pharmacology.  相似文献   

3.
4.
5.
The Girk2 wv (weaver) mutation impairs migration of cerebellar granule cells from external to internal granular layer and induces neuronal death during the first 2 weeks of postnatal life. Kainate receptors are heteromeric ionotropic receptors of glutamate consisting of five subunits termed GluR5, GluR6, GluR7, KA1 and KA2. In order to investigate whether the weaver gene affects the expression of kainate receptors in weaver cerebellum, we determined mRNA expression levels of GluR6 kainate receptor subunit and [3H]kainic acid specific binding in the developing cerebellum, using in situ hybridization and receptor film autoradiography, respectively. In the weaver postnatal day 10 (P10) cerebellum, our data indicated lower levels of GluR6 mRNA expression and lower [3H]kainic acid specific binding in external granular layer (EGL) compared to normal EGL. Our results are indicative of either down-regulation of kainate receptors or modulation of their functional characteristics in weaver granule cells.  相似文献   

6.
[3H]Kainic acid binding to crude cerebellar membrane preparations from mice nervous, Purkinje cell degeneration, reeler, staggerer and weaver mutant strains and their corresponding wildtype strains was determined. Specific kainate binding was strongly reduced in staggerer mutants, less in reeler and weaver mutation and was little affected by the nervous and Purkinje cell degeneration mutation. It is concluded that in the cerebellum kainate receptor sites are associated with the parallel fiber-Purkinje cell contacts and that kainate binding sites are most likely localized on the presynaptic side.  相似文献   

7.
In neurons, AMPA glutamate receptors are developmentally regulated and selectively targeted to synaptic sites. Astroglial cells also express AMPA receptors, but their developmental pattern of expression and targeting mechanisms are unknown. In this study we investigated by immunocytochemistry at the light and electron microscopy level the expression of GluR1 and its scaffolding proteins SAP97 (synapse-associated protein) and 4.1N during cerebellar development. In cerebellar cortex the GluR1 AMPA receptor subunit is expressed exclusively in Bergmann glia in the adult rodent. Interestingly, we observed that GluR1 was expressed postsynaptically at the climbing fibers (CF) synapse at early ages during Purkinje cell dendritic growth and before the complete ensheathment of CF/Purkinje cell synapses by Bergmann glia. However, its expression changed from neurons to Bergmann glia once these glial cells had completed their enwrapping process. In contrast, GluR2/3 and GluR4 AMPAR subunits were stably expressed in both Purkinje cells (GluR2/3) and Bergmann glia (GluR4) throughout postnatal development. Our data indicate that GluR1 expression undergoes a developmental switch from neurons to glia and that this appears to correlate with the degree of Purkinje cell dendritic growth and their enwrapping by Bergmann glia. SAP97 and 4.1N were developmentally regulated in the same pattern as GluR1. Therefore, SAP97 and 4.1N may play a role in the transport and insertion of GluR1 at CF/Purkinje cell synapses during early ages and at Bergmann glia plasma membrane in the adult. The parallel fiber (PF)/Purkinje cell synapse contained GluR2/3 but lacked GluR1, SAP97, and 4.1N at the time of PF synaptogenesis.  相似文献   

8.
This study focuses on the renin-angiotensin system (RAS) in the cerebellar cortex and changes within this system after mechanically induced cerebellar injury. Using radioactive and non-radioactive in situ hybridization and immunocytochemistry angiotensinogen mRNA, angiotensinogen, angiotensin II and, for the first time, N-terminal angiotensin fragment (1–7) immunoreactivities, respectively, were demonstrated in the rat cerebellum. Angiotensinogen mRNA and angiotensinogen immunoreactivity (IR) were both present in glial cell populations of all layers, especially in the Purkinje and granular cell layers and within the cerebellar nuclei. Angiotensin II IR was demonstrated in glial cell population in all layers using a monoclonal angiotensin II antibody, while with a polyclonal angiotensin II antiserum (Denise) some Purkinje cell bodies were labelled. After lesioning the cerebellar cortex mechanically by an injection cannula a strong increase in angiotensinogen gene expression as well as in angiotensin II and angiotensin (1–7) immunoreactivities were observed in the glial cell populations. Furthermore, putative Bergmann glial processes, as indicated from the morphological appearance became strongly angiotensin II and angiotensinogen immunoreactive in the region close to the mechanically induced lesion. It could inter alia be demonstrated for the first time using confocal laser microscopy of ANG II IR and GFAP IR that ANG II in vivo in the intact cerebellar cortex is present in astroglial processes in the molecular layer and presumably secreted into the extracellular space in form of small spheric bodies and/or taken up by other cell types. In contrast, the N-terminal fragment angiotensin (1–7) IR was restricted to the glial cell populations and appeared only after the lesion event. Thus, it is suggested that the cerebellar RAS shows marked changes in response to mechanically induced lesions. The expression of angiotensinogen as well as the production of angiotensinogen IR and angiotensin II like IR is even after mechanical lesion restricted to astrocytes, i.e., cerebellar astrocytes and putataive Bergmann glial cells, and in case of immunoreactivities it spreads to the radially oriented Bergmann glial processes in the molecular layer.  相似文献   

9.
10.
The delta receptors, GluD1 and GluD2, are regarded as a subfamily of the ionotropic glutamate receptors solely because of sequence homology. While they play important roles in cerebellar function and high‐frequency hearing and appear to serve structural functions at synapses, ligand‐gated ion channel function has not been observed. However, we have previously shown that GluD2 can form functional ion channels when grafted with the ligand binding domain of a kainate receptor. In this study, we characterized this chimera as well as additional rat delta receptor chimeras and point mutants in more detail. We found that the kainate receptor ligand binding domain renders GluD1 functional as well, and GluD2 becomes a functional ion channel also when provided with an AMPA receptor ligand binding domain. Point mutations indicate that the GluD2 ion pore operates similarly but not identically to that of AMPA (α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid) and kainate receptors. GluD2 mutated at a conserved arginine within the linker region connecting the ligand binding domain to the ion pore domain displays spontaneous currents that occur in the absence of agonists and are inhibited by agonist application – a behavior reminiscent of that of the previously characterized lurcher mutant. Using our chimeric approach, we provide evidence that this inhibition of spontaneous currents by agonists may be caused by desensitization. Our results show that delta receptors have functional gating machineries and ion permeation pathways similar but not identical to those of AMPA and kainate receptors, while the key differences seem to be located within the ligand binding domain.  相似文献   

11.
AMPA type-glutamate receptor channels (AMPARs) assembled without the GluR2 (GluR-B) subunit are characterized by high Ca2+ permeability, and are expressed abundantly in cerebellar Bergmann glial cells. Here we show that the morphology of cultured Bergmann glia-like fusiform cells derived from the rat cerebellum was changed by manipulating expression of Ca2+-permeable AMPARs using adenoviral vector-mediated gene transfer. Converting endogenous Ca2+-permeable AMPARs into Ca2+-impermeable channels by viral-mediated transfer of GluR2 gene induced retraction of glial processes. In contrast, overexpression of Ca2+-permeable AMPARs markedly elongated glial processes. The process extension was blocked by 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX), a specific antagonist of AMPAR. These results indicate that glutamate regulates the morphology of glial processes by activating Ca2+-permeable AMPARs.  相似文献   

12.
13.
Changes in neuregulin 1 expression have been reported in the CNS from subjects with schizophrenia. As neuregulin 1 is important in cortical development we postulated that changes in neuregulin 1 expression may contribute towards changes in cholinergic, glutamatergic and serotonergic markers that are well documented in the CNS of subjects with that disorder. To begin to test this hypothesis, we used in situ radioligand binding to measure levels of muscarinic M1/M4 receptors, the kainate receptor, the NMDA receptor, the serotonin 2A receptor, the serotonin 1A receptor and the serotonin transporter in the CNS from heterozygous transmembrane domain neuregulin 1 mutant mice. The major outcomes from these studies was the demonstration of an overall increase in levels of the serotonin 2A receptor (F=11.3, d.f.=3,1,72, p=0.0012) and serotonin transporter (F=5.00, d.f.=1,3,72, p<0.05) in the mutant mice. Levels of the other receptors did not vary in the mutant mice compared to their wild type-like litter mates. These data are the first evidence to suggest that NRG1 gene expression may be involved in regulating the development of the serotonergic system in the mammalian CNS.  相似文献   

14.
15.
Injection of N-methyl-D-aspartate (NMDA, 7.5 micrograms) kainate (1 microgram) or quisqualate (2 micrograms) into the rat dorsal hippocampus induced wet-dog shakes and convulsions. As shown by an in situ immunohistochemical analysis, 3 h after the excitatory amino acids injections the rats displayed a bilateral profound elevation of the proenkephalin and prodynorphin mRNA levels in dentate gyrus granule cells (2-3 or 1.5-2 fold higher than control levels, respectively). Pretreatment of rats with D-amino-phosphonovalerate (D-APV, 10 micrograms), a selective antagonist of NMDA receptor, prevented the behavioral and biochemical changes evoked by NMDA. The changes in the behavior and gene expression evoked by kainate or quisqualate were diminished in rats which received 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX, 2 micrograms), a putative antagonist of quisqualate and kainate receptors. The study demonstrated that activation of NMDA, quisqualate or kainate receptors in the hippocampus induced seizures associated with a marked increase in the proenkephalin (PENK) and the prodynorphin (PDYN) gene expression in the rat dentate gyrus.  相似文献   

16.
The Large gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in either Large or dystroglycan cause abnormal neuronal migration. The mechanism for this effect is not fully understood. This study analyzes the Largemyd mouse cerebellum during postnatal cerebellar development. Large is shown to be expressed most strongly in the Bergmann glial cells and Purkinje cells throughout cerebellar development, which is similar to what is known for dystroglycan expression. Discontinuities of the pial surface of the developing Largemyd mouse cerebellum correlate with disruption of the normal organization of the external granule cell layer and Bergmann glial fibers. At early time points, granule neurons express differentiation markers normally, both temporally and spatially, and show no defects in neurite outgrowth in in vitro assays. However, granule neuron migration is delayed within the external granule and molecular layers, resulting in granule neurons undergoing their intrinsically programmed differentiation in inappropriate locations. Consequently, cells expressing mature granule neuron markers become stranded within these layers. The cause of the less efficient migration is likely due to both physical disruption of the glial-guide scaffolding, as well as to suboptimal neuronal-glial guide interactions during migration.  相似文献   

17.
Summary The expression of mRNA coding for AMPA selective glutamate (Glu) R2 receptor and kainate selective GluR5 receptor was studied in the rat hippocampal formation in two animal models of limbic seizures evoked by systemic administration of pilocarpine (400 mg/kg ip) or kainate (15 mg/kg ip). As shown by an in situ hybridization study, pilocarpine decreased the GluR2 flip mRNA level in CA1 and CA3 areas of the hippocampus after 3h and kainate after 24 h, e.g. at the time preceding neuronal degeneration. No changes in the GluR2 flop or GluR5 mRNA level were found in those regions. In the dentate gyrus, resistant to neurodegeneration, pilocarpine and kainate differentialy affected the expression of GluR2 and GluR5 mRNAs. After 72 h pilocarpine, but not kainate, increased the GluR2 flop mRNA level and decreased the flip one, which suggests attenuation of the GluR2 sensitivity. On the other hand, kainate, elevated the GluR2 flip and GluR5 mRNA level in the dentate gyrus after 72 h. All in all the above data suggest that changes in the GluR2 gene expression may play some role in the neuronal damage to vulnerable areas (CA1, CA3). However, differences in the kainate- and pilocarpine-induced changes in the dentate gyrus at the late time points indicate that alterations in the stoichiometry of GluR2 forms or GluR5 gene expression in this brain region are not a common causal factor responsible for delayed neuronal hyperexcitability.  相似文献   

18.
Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum   总被引:1,自引:0,他引:1  
Multiple sites involved in glutamatergic neurotransmission were examined in the cerebellar cortex of 6 patients with Alzheimer's disease and 6 age-matched control patients by using quantitative ligand-binding autoradiography. Quisqualate (AMPA) receptor binding was markedly reduced in the molecular layer of the cerebellum from patients with Alzheimer's disease (167 +/- 13 pmoles/gm) compared with control patients (280 +/- 13 pmoles/gm). In adjacent sections from the same patients and controls, there was preservation of kainate and N-methyl-D-aspartate receptor binding in the cerebellum from patients with Alzheimer's disease compared with control patients. Neuropathological examination of the cerebellar cortex revealed the presence of plaques and preservation of Purkinje cells in the patients with Alzheimer's disease.  相似文献   

19.
The cytoarchitecture of the cerebellar Bergmann fibers in the adult rat was investigated. Two monoclonal antibodies, one specific for the Bergmann fibers and astrocyte processes and the other specific for the cell bodies and dendrites of the Purkinje cells as well as an antiserum to the glial fibrillary acidic protein, were used in immunocytochemical peroxidase-antiperoxidase assays. The Bergmann fibers are revealed as columns organized in long vertical palisades parallel to the longitudinal plane of the folium. The palisades are not continuous; instead they are formed by sets of two to six aligned Bergmann fibers. Each of these sets of Bergmann fibers is separated from its longitudinally aligned neighbors by gaps. Each Bergmann fiber is formed by a bundle of two to four Bergmann glia processes which frequently show a helical organization. These results help to reconcile the different views on the organization of the Bergmann fibers derived from the studies done with the light microscope versus those done with the electron microscope. The Bergmann glia may play a fundamental role in directing the geometrical organization of the cerebellar constituents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号