共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we explore and modify the structural, mechanical, and decorative properties of films composed by TiN and Ti (N, C) with a wide range of N2 gas flow during the deposition in order to be used on orthodontic systems. The films were grown using reactive DC magnetron sputtering from a pure Ti target and customized with C pellets onto Si and stainless steel 316L substrates. The structural properties were studied using X-ray diffraction and scanning electron microscopy, while the mechanical ones were obtained through hardness, elastic modulus, and friction coefficient. Moreover, the wear rate has been measured under an artificial saliva medium to simulate the oral cavity. The color of the films deposited onto stainless steel 316 L substrate was characterized through CIELab color code. Our findings show that the addition of N2 and C in the Ti matrix improves the mechanical properties of the films. With the increase in the amount of N2 and C, the hardness reaches a value of 739 HV, higher than the one reported in the literature (600 HV), a low value of the coefficient of elasticity (8.0 GPa), and also a low friction coefficient (0.30). Moreover, with the addition of N2 and C in the Ti films, the color of the films changes from metallic aspect until “with” gold, which means that our coatings exhibit versatile mechanical and color characteristics to be used in orthodontic wires applications. 相似文献
2.
Roberta Cond Gianluca Mampieri Guido Pasquantonio Aldo Giancotti Paola Pirelli Maria Elena Cataldi Serena La Rocca Andrea Leggeri Andrea Notargiacomo Luca Maiolo Patrizia De Filippis Loredana Cerroni 《Materials》2021,14(10)
Bacterial adhesion to the surface of orthodontic materials is an important step in the formation and proliferation of plaque bacteria, which is responsible for enamel demineralization and periodontium pathologies. With the intent of investigating if adhesive resins used for bracket bonding are prone to bacteria colonization, the surface roughness of these materials has been analyzed, combining information with a novel methodology to observe the internal structures of orthodontic composites. Scanning electron microscopy, combined with focus ion bean micromachining and stylus profilometry analyses, were performed to evaluate the compositional factors that can influence specific pivotal properties facilitating the adhesion of bacteria to the surface, such as surface roughness and robustness of three orthodontic adhesive composite resins. To confirm these findings, contact angle measurements and bacteria incubation on resin slide have been performed, evaluating similarities and differences in the final achievement. In particular, the morphological features that determine an increase in the resins surface wettability and influence the bacterial adhesion are the subject of speculation. Finally, the focused ion beam technique has been proposed as a valuable tool to combine information coming from surface roughness with specific the internal structures of the polymers. 相似文献
3.
Consuelo Celesti Teresa Gervasi Nicola Cicero Salvatore Vincenzo Giofr Claudia Espro Elpida Piperopoulos Bartolo Gabriele Raffaella Mancuso Giovanna Lo Vecchio Daniela Iannazzo 《Materials》2022,15(9)
Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post-operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices. 相似文献
4.
Iulian Antoniac Rzvan Adam Ana Bi Marian Miculescu Octavian Trante Ionu Mircea Petrescu Mark Pogrteanu 《Materials》2021,14(1)
Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits’ bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot. 相似文献
5.
Camelia A. Szuhanek Claudia G. Watz tefana Avram Elena-Alina Moac Ciprian V. Mihali Adelina Popa Andrada A. Campan Mirela Nicolov Cristina A. Dehelean 《Materials》2020,13(24)
Selecting the most biocompatible orthodontic implant available on the market may be a major challenge, given the wide array of orthodontic devices currently available on the market. The latest scientific data have suggested that in vitro evaluations using oral cell lines provide reliable data regarding the toxicity of residual particles released by different types of orthodontic devices. In this regard, the in vitro biocompatibility of three different commercially available implants (stainless steel and titanium-based implants) was assessed. Methods: As an in vitro model, human gingival fibroblasts (HGFs) were employed to evaluate the cellular morphology, cell viability, and cytotoxicity by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays at 24 h and 72 h post-exposure to test implants. Results: The results correlate the composition and topography of the implant surface with biological experimental evaluations related to directly affected cells (gingival fibroblasts) and toxicological results on blood vessels (hen’s egg test-chorioallantoic membrane (HET-CAM) assay). The stainless steel implant exhibits a relative cytotoxicity against HGF cells, while the other two samples induced no significant alterations of HGF cells. Conclusion: Among the three test orthodontic implants, the stainless steel implant induced slight cytotoxic effects, thus increased vigilance is required in their clinical use, especially in patients with high sensitivity to nickel. 相似文献
6.
Elisabeth Reichardt Steffen Decker Michel Dalstra Prasad Nalabothu Markus Steineck Leandro Fernandez Carlalberta Verna 《Materials》2022,15(9)
(1) Background: One of the most challenging parts in lingual orthodontics is the control and correction of the tip of anterior teeth, due to the occlusal open vertical slot of the incisors in lingual systems. The presented experimental in-vitro study was performed to determine the maximal tipping moment of the anterior teeth between two types of lingual brackets, the Incognito™ Appliance System (Incognito, TOP-Service, Bad Essen, Germany) and Tip-Bar™ system (Incognito, TOP-Service, Bad Essen, Germany). Furthermore, twelve different ligation methods and two different ligature materials were investigated. (2) Methods: The measurement was performed by assessing the stiffness and ultimate strength of the ligature in a uniaxial material testing machine (Instron, Norwood, MA, USA) using a 0.025 × 0.018 inch stainless steel wire. (3) The results showed that the highest precision for control tipping of anterior teeth was determined for the 0.010 inch Stainless Steel Tie (Pelz and Partner). Furthermore, the Tip-Bar™ brackets increased the maximal moment by 33.8% for elastic and steel ligatures. (4) Conclusions: The lateral tooth movement is highly dependent on the type of ligature and applied material during orthodontic treatment with lingual appliances. The use of 0.010 inch steel ligatures and the Tip-Bar™ bracket design results in better alignment in the anterior teeth segment. 相似文献
7.
Furqan Ahmed Muhammad Zain-ul-abdein Iftikhar Ahmed Channa Muhammad Kamran Yaseen Sadaf Jamal Gilani Muhammad Atif Makhdoom Muhammad Mansoor Usman Shahzad May Nasser bin Jumah 《Materials》2022,15(15)
Commercially pure titanium (Ti) is widely used in bio-implants due to its high corrosion resistance. However, Ti exhibits marginally low mechanical and tribological properties, which limit its applications in some orthopedic implants. In this work, the Ti samples were subjected to ultrasonic surface mechanical attrition treatment (SMAT) for various durations to improve their surface properties such as hardness, strength and surface energy. SMAT-induced grain refinement was analyzed using optical, scanning electron and atomic force microscopy techniques. A Vickers hardness test was performed to determine the through-thickness hardness. Mechanical testing was carried out to measure the yield strength, ultimate tensile strength and ductility of the specimens. Corrosion tests were performed on a Gamry Potentiostat. The surface energy of SMAT-modified samples was calculated using the Owens–Wendt method. It was observed that SMAT reduced the average grain size from 50 μm to as low as 100 nm. The grain refinement and the corresponding grain boundary density led to a significant improvement in mechanical properties and biocompatibility in terms of increased hardness, yield and tensile strengths, surface energy, corrosion rate and hydrophilicity. 相似文献
8.
Luiz Schweitzer Alexandre Cunha Thiago Pereira Kerstin Mika Ana Maria Botelho do Rego Ana Maria Ferraria Heinz Kieburg Sven Geissler Eckart Uhlmann Janosch Schoon 《Materials》2020,13(23)
Loosening of orthodontic and orthopedic implants is a critical and common clinical problem. To minimize the numbers of revision surgeries due to peri-implant inflammation or insufficient osseointegration, developments of new implant manufacturing strategies are indicated. Ultrafast laser surface texturing is a promising contact-free technology to modify the physicochemical properties of surfaces toward an anti-infectious functionalization. This work aims to texture Ti6Al4V surfaces with ultraviolet (UV) and green (GR) radiation for the manufacturing of laser-induced periodic surface structures (LIPSS). The assessment of these surface modifications addresses key aspects of topography, morphology and chemical composition. Human primary mesenchymal stromal cells (hMSCs) were cultured on laser-textured and polished Ti6Al4V to characterize the surfaces in terms of their in vitro biocompatibility, cytotoxicity, and metal release. The outcomes of the in vitro experiment show the successful culture of hMSCs on textured Ti6Al4V surfaces developed within this work. Cells cultured on LIPSS surfaces were not compromised in terms of their viability if compared to polished surfaces. Yet, the hMSC culture on UV-LIPSS show significantly lower lactate dehydrogenase and titanium release into the supernatant compared to polished. Thus, the presented surface modification can be a promising approach for future applications in orthodontics and orthopedics. 相似文献
9.
Rafa Zybaa Bartosz Bucholc Kamil Kaszyca Krystian Kowiorski Dominika Sobo Wojciech rawski Dorota Moszczyska Rafa Molak Zbigniew Pakiea 《Materials》2022,15(24)
Additive manufacturing (AM) has seen remarkable development in recent years due to relatively high efficiency of the process. Cold spraying (CS) is a particular method of AM, in which titanium and titanium alloy powders are used. CS is a very competitive technology enabling the deposition of coatings, repairing machine parts, and manufacturing new components. For specific applications, the surface of cold-sprayed materials may require further processing. This paper reports an attempt to employ laser surface treatment (LST) of cold-sprayed coatings on an aluminium alloy substrate. The influence of laser beam interaction time on the coatings’ properties was analysed. The microstructure was investigated and observed employing scanning electron microscopy (SEM). To evaluate residual stress after CS and LST, the sin2ψ technique was used. Investigations were also performed on Vickers hardness, contact angle, and surface roughness. Significant changes in the surface morphology of the coatings and elevated residual stress levels dependent on the laser beam interaction time were observed. Increased Vickers hardness was recorded for titanium alloy Ti6Al4V. LST also led to increased surface hydrophilicity of the modified materials Ti and Ti6Al4V. 相似文献
10.
Alexey Y. Zhizhchenko Anastasiia V. Shabalina Ali A. Aljulaih Stanislav O. Gurbatov Aleksandr A. Kuchmizhak Satoru Iwamori Sergei A. Kulinich 《Materials》2022,15(5)
Long-term stability in contact with water of organosilane layers formed by octadecyltrimethoxysilane (ODTMS) on polished aluminum alloy (AA2024) through dip-coating was studied by combining SEM, water contact angle measurements, and X-ray photoelectron spectroscopy. Similar organosilane layers were formed on AA2024 coated with permanganate conversion coating, 1,2-bis(triethoxysilyl)ethane (BTSE) and hydrated SiOx as under-layers, after which their long-term durability was also tested. During immersion in water for about one month, all the samples exhibited a decrease in hydrophobicity, implying the prepared organosilane layer was not stable over time, gradually hydrolyzing and letting water interact with the underlying layer. In parallel, SEM images of one-layer samples taken after immersion showed clear signs of local electrochemical corrosion, while XPS analysis confirmed a loss of silicon from the surface layer. The highest stability over time was demonstrated by a one-layer sample prepared in an ethanol/water bath for 5 min and by a similar ODTMS layer prepared on hydrated MnOx as an under-layer. 相似文献
11.
The biomedical Ti6Al4V alloy was thermally treated under sandblasting and mirror finish surface preparation conditions. The surface morphology, structure, roughness, wettability, and energy were characterized. Microhardness and in vitro corrosion studies were carried out. X-ray diffraction results showed a formation of rutile TiO2 phase for thermally treated samples under different pretreated conditions. The thermally oxidized samples exhibited an increase in microhardness compared to the untreated mirror finish and sandblasted samples by 22 and 33%, respectively. The wettability study revealed enhanced hydrophilicity of blasted and thermally treated samples. The surface energy of the thermal treatment samples increased by 26 and 32.6% for mirror surface and blasted preconditions, respectively. The acquired in vitro corrosion results using potentiodynamic polarization measurement and electrochemical impedance spectroscopy confirmed the surface protective performance against corrosion in Hank’s medium. The enhanced surface characteristics and corrosion protection of treated Ti6Al4V alloy give it potential for bio-implant applications. 相似文献
12.
Junxiu Chen Yu Xu Sharafadeen Kunle Kolawole Jianhua Wang Xuping Su Lili Tan Ke Yang 《Materials》2022,15(14)
In recent years, biodegradable magnesium (Mg) alloys have attracted the attention of many researchers due to their mechanical properties, excellent biocompatibility and unique biodegradability. Many Mg alloy implants have been successfully applied in clinical medicine, and they are considered to be promising biological materials. In this article, we review the latest research progress in biodegradable Mg alloys, including research on high-performance Mg alloys, bioactive coatings and actual or potential clinical applications of Mg alloys. Finally, we review the research and development direction of biodegradable Mg alloys. This article has a guiding significance for future development and application of high-performance biodegradable Mg alloys, promoting the future advancement of the magnesium alloy research field, especially in biomedicine. 相似文献
13.
Anna Dychalska Wojciech Koczorowski Marek Trzcinski Lidia Mosiska Mirosaw Szybowicz 《Materials》2021,14(5)
Extensive Raman spectroscopy studies combined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements were performed to investigate structural and chemical changes in diamond layers deposited by chemical vapour deposition (CVD) upon post-growth treatment with hydrogen. The aim of this study is to characterize the changes in micro-structural properties of diamond layers with different grain sizes and different contents of sp2 carbon phase. Hydrogenation or oxidization of diamond layer surface is often performed to modify its properties; however, it can also strongly affect the surface structure. In this study, the impact of hydrogenation on the structure of diamond layer surface and its chemical composition is investigated. Owing to their polycrystalline nature, the structural properties of CVD diamond layers can strongly differ within the same layer. Therefore, in this project, in order to compare the results before and after hydrogen treatment, the diamond layers are subjected to Raman spectroscopy studies in the vicinity of a T-shape marker fabricated on the surface of each diamond layer studied. 相似文献
14.
Mohammed M. Gad Zainab Albazroun Fatimah Aldajani Ahmed M. Elakel Mai El Zayat Sultan Akhtar Soban Q. Khan Saqib Ali Ahmed M. Rahoma 《Materials》2022,15(24)
Denture base fracture is one of the most annoying problems for both prosthodontists and patients. Denture repair is considered to be an appropriate solution rather than fabricating a new denture. Digital denture fabrication is widely spreading nowadays. However, the repair strength of CAD-CAM milled and 3D-printed resins is lacking. This study aimed to evaluate the effect of surface treatment on the shear bond strength (SBS) of conventionally and digitally fabricated denture base resins. One l heat-polymerized (Major base20), two milled (IvoCad, AvaDent), and three 3D-printed (ASIGA, NextDent, FormLabs) denture base resins were used to fabricate 10 × 10 × 3.3 acrylic specimens (N = 180, 30/resin, n = 10). Specimens were divided into three groups according to surface treatment; no treatment (control), monomer application (MMA), or sandblasting (SB) surface treatments were performed. Repair resin was bonded to the resin surface followed by thermocycling (5000 cycles). SBS was tested using a universal testing machine where a load was applied at the resin interface (0.5 mm/min). Data were collected and analyzed using ANOVA and a post hoc Tukey test (α = 0.05). SEM was used for failure type and topography of fractured surfaces analysis. The heat-polymerized and CAD-CAM milled groups showed close SBS values without significance (p > 0.05), while the 3D-printed resin groups showed a significant decrease in SBS (p < 0.0001). SBS increased significantly with monomer application (p < 0.0001) except for the ASIGA and NextDent groups, which showed no significant difference compared to the control groups (p > 0.05). All materials with SB surface treatment showed a significant increase in SBS when compared with the controls and MMA application (p < 0.0001). Adhesive failure type was observed in the control groups, which dramatically changed to cohesive or mixed in groups with surface treatment. The SBS of 3D-printed resin was decreased when compared with the conventional and CAD-CAM milled resin. Regardless of the material type, SB and MMA applications increased the SBS of the repaired resin and SB showed high performance. 相似文献
15.
Ibrahim Dib-Zaitum Yasmina Guadilla-Gonzlez Javier Flores-Fraile Juan Dib-Zakkour Lorena Benito-Garzn Javier Montero 《Materials》2022,15(13)
Statement of the problem: The gingival configuration around implant abutments is of paramount importance for preserving the underlying marginal bone, and hence for the long-term success of dental implants. Objective: The objective was to study, clinically and histologically, the effects of the change in the morphology of abutments connected to the endosseous implant, and of their surface treatment. In particular, the objective was to ascertain the effect of changing the shape of the transepithelial pillar and the treatment of its surface on the dimensions, quality and health of the components of the peri-implant biological space, such as the dimensions of the epithelial and connective tissues of the biological space, the concentration of inflammatory cells and the density of collagen fibers. Methods: A clinical trial of 10 patients with a totally edentulous maxilla, who had four implants (IPX4010_GALIMPLANT®, Sarria, Spain) inserted in the area of the first and second molars on both sides with computer-guided implant surgery, was conducted with the final purpose of assessing the quality of the peri-implant soft tissue attachment around the transepithelial abutments which were employed (aesthetic machined (RM), aesthetic anodized (RA), slim machined (SM) and slim anodized (SA)). At 8 weeks and following the collection of the samples (removal of the implant-abutment assembly with its surrounding hard and soft tissue) and their processing for subsequent histological and histomorphometric analysis in order to study the dimensions, quality and health of the peri-implant soft tissue area, the variables previously mentioned were determined according to the aims of the study. By using appropriate diameter trephine in order to obtain a useful fringe of soft tissue around the transepithelial pillars, ANOVA and chi-square tests were performed. Results: The SPSS statistical analysis ANOVA results revealed that the machined slim abutments have a better performance considering the variables analyzed with epithelial and connective attachment heights of 1.52 mm and 2.3 mm, respectively, and that connective density (density of collagen fibers) was high at 85.7% of the sample size affected by the design for the slim abutments and 92.9% of the high-density sample size affected by the surface treatment for the machined surface. Conclusions: All variables studied, despite the small sample size, showed the superiority of the slim machined abutment among the four groups. 相似文献
16.
Zana Jusufi Osmani Borut Poljak Saa Zelenika Ervin Kamenar Kristina Markovi Marko Per
i Vinja Kati 《Materials》2022,15(6)
The aim of this study was to explore whether changes in the salivary pH influence mechanical properties, surface roughness, and ion release from NiTi archwires with various surface coatings, and discuss the clinical significance of the findings. The uncoated, rhodium-coated, and nitrified NiTi wires were immersed into artificial saliva of different pH values (4.8, 5.1, 5.5, and 6.6). Released nickel and titanium ions were measured with inductively coupled plasma-optical emission spectroscopy at the end of 28 days. Atomic force microscopy was used to measure the arithmetic average surface roughness Ra, the root-mean-square roughness Rq, and the maximum height of the asperities RZ. The nanoindentation hardness (HIT) and Young’s modulus (EIT) measurements were performed. The change in the pH of artificial saliva is inversely proportional to the release of titanium from both coated and uncoated wires, and the release of nickel from uncoated wires. The surface roughness parameters of both coated and uncoated wires are unaffected by the change in the pH of artificial saliva. The change in the pH of saliva has minor influence on the hardness and Young’s modulus of elasticity of both coated and uncoated wires. The concentration of released metal ions measured was below the recommended upper limit for daily intake; nevertheless, hypersensitivity effects cannot be excluded, even at lower concentrations and at low pH. 相似文献
17.
Mechanical properties of orthodontic wires can have a very significant impact both on the resistance of the entire appliance to the oral cavity conditions and directly on the effectiveness of the therapy. Striving to achieve repeatability of mechanical characteristics of orthodontic wires of a given type should be an obligatory condition in their production. To achieve it, these components should be thoroughly analyzed using various mechanical tests. Twenty-four steel and nickel-titanium orthodontic wires from four different manufacturers were examined. Each wire was subjected to fractal dimension analysis and texture analysis. The two sides of each wire were compared against each other, as well as in terms of variation in the surface area for each wire type made by different manufacturers. Most wires showed significant variation in fractal dimension and texture, both when comparing two sides of the same wire and between individual wires of a given type made by a single manufacturer. When conducting research and clinically using orthodontic wires made of Ni-Ti alloys and stainless steel, it should be assumed that the surface of orthodontic wires shows a significant degree of variation, and wires of the same type from the same manufacturer may differ significantly in this respect. 相似文献
18.
The surface topography of orthodontic brackets can have a significant impact on both the effectiveness of the therapy and the behavior of these elements in the oral cavity environment. In this situation, striving to obtain the most uniform, smooth surface in a repeatable manner for each manufactured element should be a sine qua non condition for each supplier of orthodontic brackets. Therefore, it is necessary to analyze the surfaces of orthodontic brackets using different methods. One of them—that is relatively simple and repeatable—is the analysis of the fractal dimension and the analysis of the textures of the optical images on the surface. In the presented study, fractal dimension analysis and texture analysis were performed by selecting four brackets from three different manufacturers (Mini Sprint, Sprint, Nu-Edge, Orthos SS). The area of each bracket slot was analyzed at six predefined points. The smoothest and most uniform and reproducible surface structure was shown by the Mini Sprint bracket. On the other hand, Sprint brackets showed the least homogeneous and least repeatable surface structure. 相似文献
19.
Jorge Toledano-Serrabona Francisco Javier Gil Octavi Camps-Font Eduard Valmaseda-Castelln Cosme Gay-Escoda Maria ngeles Snchez-Garcs 《Materials》2021,14(21)
Implantoplasty is a mechanical decontamination technique that consists of polishing the supra-osseous component of the dental implant with peri-implantitis. This technique releases metal particles in the form of metal swarf and dust into the peri-implant environment. In the present in vitro study, the following physicochemical characterization tests were carried out: specific surface area, granulometry, contact angle, crystalline structure, morphology, and ion release. Besides, cytotoxicity was in turn evaluated by determining the fibroblastic and osteoblastic cell viability. As a result, the metal debris obtained by implantoplasty presented an equivalent diameter value of 159 µm (range 6–1850 µm) and a specific surface area of 0.3 m2/g on average. The particle had a plate-like shape of different sizes. The release of vanadium ions in Hank’s solution at 37 °C showed no signs of stabilization and was greater than that of titanium and aluminum ions, which means that the alloy suffers from a degradation. The particles exhibited cytotoxic effects upon human osteoblastic and fibroblastic cells in the whole extract. In conclusion, metal debris released by implantoplasty showed different sizes, surface structures and shapes. Vanadium ion levels were higher than that those of the other metal ions, and cell viability assays showed that these particles produce a significant loss of cytocompatibility on osteoblasts and fibroblasts, which means that the main cells of the peri-implant tissues might be injured. 相似文献
20.
As a progressive surface-hardening technology, laser shock processing (LSP) can enhance the mechanical properties and extend fatigue life for metallic components through laser-generated high-pressure plasma shock waves. In this work, LSP was used to treat titanium alloy Ti-13Nb-13Zr experimental coupons, and the microstructural response and surface mechanical properties of the Ti-13Nb-13Zr experimental coupons were investigated. After the LSP treatment, the X-ray diffraction (XRD) peaks were shifted without any new phase formation. The surface roughness of the experimental coupons increased, which can be explained by the LSP-induced severe plastic deformation. The LSP treatment effectively enhanced the surface compressive residual stress of Ti-13Nb-13Zr. Meanwhile, the microhardness of the Ti-13Nb-13Zr was also obviously increased after the LSP treatment. The experimental results also showed that the number of shocks times is an important factor in the improvement of surface mechanical properties. LSP treatment with multiple shocks can lead to more severe plastic deformation. The surface roughness, surface compressive residual stress and microhardness of the Ti-13Nb-13Zr experimental coupons shocked three times are higher than those after one shock. What is more, grain refinement accounts for the mechanical properties’ enhancements after the LSP treatment. 相似文献