首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.  相似文献   

2.
The reported study concerns the introduction of renewable raw materials into the formulation of rigid polyurethane foams in the quest for the sustainable development of polymer composites. In this study, rigid polyurethane foam composites were prepared using 75 wt.% of rapeseed oil-based polyol and 15 parts per hundred parts of polyol (php) of natural fillers such as chokeberry pomace, raspberry seeds, as well as hazelnut and walnut shells. The influence of the used raw materials on the foaming process, structure, and properties of foams was investigated using a FOAMAT analyzer and a wide selection of characterization techniques. The introduction of renewable raw materials limited reactivity of the system, which reduced maximum temperature of the foaming process. Moreover, foams prepared using renewable raw materials were characterized by a more regular cell structure, a higher share of closed cells, lower apparent density, lower compressive strength and glass transition temperature, low friability (<2%), low water absorption (<1%), high dimensional stability (<±0.5%) and increased thermal stability. The proper selection and preparation of the renewable raw materials and the rational development of the polyurethane recipe composition allow for the preparation of environmentally-friendly foam products with beneficial application properties considering the demands of the circular economy in the synthesis of rigid foams.  相似文献   

3.
Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.  相似文献   

4.
The aim of this paper is to analyze the influence of hybrid fiber reinforcement on the properties of a lightweight fly ash-based geopolymer. The matrix includes the ratio of fly ash and microspheres at 1:1. Carbon and steel fibers have been chosen due to their high mechanical properties as reinforcement. Short steel fibers (SFs) and/or carbon fibers (CFs) were used as reinforcement in the following proportions: 2.0% wt. CFs, 1.5% wt. CFs and 0.5% wt. SFs, 1.0% wt. CFs and 1.0% wt. SFs, 0.5% wt. CFs and 1.5% wt. SFs and 2.0% wt. SFs. Hybrid reinforcement of geopolymer composites was used to obtain optimal strength properties, i.e., compressive strength due to steel fiber and bending strength due to carbon fibers. Additionally, reference samples consisting of the geopolymer matrix material itself. After the production of geopolymer composites, their density was examined, and the structure (using scanning electron microscopy) and mechanical properties (i.e., bending and compressive strength) in relation to the type and amount of reinforcement. In addition, to determine the thermal insulation properties of the geopolymer matrix, its thermal conductivity coefficient was determined. The results show that the addition of fiber improved compressive and bending strength. The best compressive strength is obtained for a steel fiber-reinforced composite (2.0% wt.). The best bending strength is obtained for the hybrid reinforced composite: 1.5% wt. CFs and 0.5% wt. SFs. The geopolymer composite is characterized by low thermal conductivity (0.18–0.22 W/m ∙ K) at low density (0.89–0.93 g/cm3).  相似文献   

5.
In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.  相似文献   

6.
In this study, the possibility of using sawdust, a by-product of primary wood processing, as a filler (WF) for rigid polyurethane (PUR) foams was investigated. The effects of the addition of 5, 10, 15 and 20% of WF particles to the polyurethane matrix on the foaming process, cell structure and selected physical-mechanical properties such as density, thermal conductivity, dimensional stability, water absorption, brittleness, compressive and bending strengths were evaluated. Based on the results, it was found that the addition of WF in the amount of up to 10% does not significantly affect the kinetics of the foam foaming process, allowing the reduction of their thermal conductivity, significantly reducing brittleness and maintaining high dimensional stability. On the other hand, such an amount of WF causes a slight decrease in the compressive strength of the foam, a decrease in its bending strength and an increase in water absorption. However, it is important that in spite of the observed decrease in the values of these parameters, the obtained results are satisfactory and consistent with the parameters of insulation materials based on rigid PUR foam, currently available on the market.  相似文献   

7.
This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20–28 wt.% in relation to the weight of the bio-polyol. The influence of water on the physical and mechanical properties of the synthesized foams was investigated. The resultant porous materials were tested for the content of closed cells, cell structure, apparent density, thermal conductivity, compressive strength, and dimensional stability. It was found that the apparent density decreased in the range of 11–13 kg/m3 when the amount of the foaming agent was increased. In the next step, a foam with a water content of 22% was selected as having the most favorable physico–mechanical properties among all the foams with various water contents. The isocyanate index of the selected foam was then changed from 0.6 to 1.1 and it was observed that the compressive strength increased by an average of 10 kPa. The thermal conductivity coefficients of the final materials with different water contents and isocyanate indices were comparable and in the range of 40–43 mW/m·K.  相似文献   

8.
We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.  相似文献   

9.
Incorporating biodegradable reinforcement, such as wood particles, into rigid polyurethane foams (RPUFs) is among the alternatives to reduce their environmental impact. This study aims to assess the effect of different wood particles as reinforcement in RPUFs. Reinforced rigid polyurethane foams are synthesized with milled wood particles of various forms and sizes and commercial polyol and isocyanate. The effect of fiber treatments and mechanical stirring on foams’ properties is also studied. Additional tests on polyisocyanurate foams (PIR) were undertaken to assess the effect of reinforcement on their properties. Mechanical properties are measured to investigate the impact of wood particle reinforcement on the foam. Confocal microscopy and Fourier-transform infrared spectroscopy (FTIR) showed the interaction between the wood fibers and the matrix. Despite the adhesion observed for some fibers, most of the cell walls of RPUFs were punctured by the rigid wood fibers, which explained the decrease in the compressive strength of the composites for manually mixed foams. Mechanical stirring proved to be an efficient method to enhance the reinforcement power of untreated fibers. RPUF foams’ properties showed similar changes when untreated wood flour was introduced to the formula, increasing compressive strength significantly.  相似文献   

10.
Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR composites were determined. It was found that the incorporation of 1 and 2 wt.% of casein/apricot filler resulted in the production of PUR composites with improved selected physical, thermal, and mechanical properties, while the addition of 5 wt.% of casein/apricot filler led to some deterioration of their physico-mechanical performance. The best results were obtained for PUR composites reinforced with 2 wt.% of casein/apricot filler. Those composites were characterized by a uniform structure and a high content of closed cells. Compared with the reference foam, the incorporation of 2 wt.% of casein/apricot filler resulted in improvement in compressive strength, flexural strength, impact strength, and dynamic mechanical properties—such as glass transition temperature and storage modulus. Most importantly, PUR composites showed better fire resistance and thermal stability due to the good thermal performance of casein. The main aim of this article is to determine the influence of the natural combination of the apricot filler and casein on the mechanical properties and flammability of the obtained composites.  相似文献   

11.
Sunflower cake (SC), which is waste during the production of sunflower oil, was selected as a modifier of properties in polyurethane (PUR) foams. The SC was chemically modified with triphenylsilanol (SC_S) and physically modified with rapeseed oil (SC_O). The influence of SC on the rheological properties of the polyol and the kinetics of foam growth were investigated. PUR foams were characterized by morphological, mechanical, and thermal analysis. The results show that the physical and chemical modification of SC contributes to the changes in the properties of the foams in different ways. Too high hydrophobicity of SC_O affects the structure deterioration, and thus the mechanical properties, and in turn, reduces the affinity for water. In turn, chemical modification with silane allows for obtaining foams with the best mechanical properties.  相似文献   

12.
The manufacturing of aluminium foams with a total porosity of 87% using the sponge replication method and a combination of the sponge replication and freezing technique is presented. Foams with different cell counts were prepared from polyurethane (PU) templates with a pore count per inch (ppi) of 10, 20 and 30; consolidation of the foams was performed in an argon atmosphere at 650 °C. The additional freezing steps resulted in lamellar pores in the foam struts. The formation of lamellar pores increased the specific surface area by a factor of 1.9 compared to foams prepared by the sponge replication method without freezing steps. The formation of additional lamellar pores improved the mechanical properties but reduced the thermal conductivity of the foams. Varying the pore cell sizes of the PU template showed that—compared to foams with dense struts—the highest increase (~7 times) in the specific surface area was observed in foams made from 10 ppi PU templates. The effect of the cell size on the mechanical and thermal properties of aluminium foams was also investigated.  相似文献   

13.
The study analyses rigid polyurethane (PUR) foam modified with 10–30 wt.% sunflower press cake (SFP) and liquid glass-impregnated sunflower press cake (LG-SFP) particles and their impact on performance characteristics of PUR foams—foaming behaviour, rheology, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, dimensional stability, short-term water absorption by partial immersion, and thermal stability. Even though the dynamic viscosity and apparent density were increased for SFP and LG-SFP formulations, thermal conductivity values improved by 17% and 10%, respectively, when 30 wt.% of particles were incorporated. The addition of SFP and LG-SFP particles resulted in the formation of more structurally and dimensionally stable PUR foams with a smaller average cell size and a greater content of closed cells. At 30 wt.% of SFP and LG-SFP particles, compressive strength increased by 114% and 46% in the perpendicular direction, respectively, and by 71% and 67% in the parallel direction, respectively, while tensile strength showed an 89% and 85% higher performance at 30 wt.% SFP and LG-SFP particles loading. Furthermore, short-term water absorption for all SFP and LG-SFP modified PUR foam formulations was almost two times lower compared to the control foam. SFP particles reduced the thermal stability of modified PUR foams, but LG-SFP particles shifted the thermal decomposition temperatures towards higher ones.  相似文献   

14.
Polyurethane foam (PUF) has generally been used in liquefied natural gas (LNG) carrier cargo containment systems (CCSs) owing to its excellent mechanical and thermal properties over a wide range of temperatures. An LNG CCS must be designed to withstand extreme environmental conditions. However, as the insulation material for LNGC CCSs, PUF has two major limitations: its strength and thermal conductivity. In the present study, PUFs were synthesized with various weight percentages of porous silica aerogel to reinforce the characteristics of PUF used in LNG carrier insulation systems. To evaluate the mechanical strength of the PUF-silica aerogel composites considering LNG loading/unloading environmental conditions, compressive tests were conducted at room temperature (20 °C) and a cryogenic temperature (−163 °C). In addition, the thermal insulation performance and cellular structure were identified to analyze the effects of silica aerogels on cell morphology. The cell morphology of PUF-silica aerogel composites was relatively homogeneous, and the cell shape remained closed at 1 wt.% in comparison to the other concentrations. As a result, the mechanical and thermal properties were significantly improved by the addition of 1 wt.% silica aerogel to the PUF. The mechanical properties were reduced by increasing the silica aerogel content to 3 wt.% and 5 wt.%, mainly because of the pores generated on the surface of the composites.  相似文献   

15.
The main goal of this work was to evaluate the thermal insulation and sound absorption properties of open-cell rigid polyurethane foams synthesized with different contents of cooking oil-based polyol. The content of the applied bio-polyol as well as flame retardant (triethyl phosphate) in the foam formulation had a significant influence on the cellular structures of the materials. The open-cell polyurethane foams were characterized by apparent densities in the range 16–30 kg/m3. The sound absorption coefficients of the polyurethanes with various contents of bio-polyol were determined using the standing wave method (Kundt’s tube) in the frequency range of 100–6300 Hz. The effect of the content of the bio-polyol and flame retardant on the coefficient of thermal conductivity (at average temperatures of 0, 10 and 20 °C) as well as the compressive strength (at 20 and −10 °C) was analyzed. Different trends were observed in terms of the thermal insulation properties and sound absorption ability of the open-cell polyurethanes due to the addition of bio-polyol. In conclusion, it is necessary to use systems containing both petrochemical and bio-based raw materials.  相似文献   

16.
Metal foam inserts are known for their high potential for weight and vibration reduction in composite gear wheels. However, most metal foams do not meet the strength requirements mandatory for the transfer of sufficiently high levels of torque by the gears. Syntactic iron and steel foams offer higher strength levels than conventional two-phase metal foams, thus making them optimum candidates for such inserts. The present study investigates to what extent surface hardening treatments commonly applied to gear wheels can improve the mechanical properties of iron-based syntactic foams. Experiments performed thus focus on case hardening treatments based on carburizing and carbonitriding, with subsequent quenching and tempering to achieve surface hardening effects. Production of samples relied on the powder metallurgical metal injection molding (MIM) process. Syntactic iron foams containing 10 wt.% of S60HS hollow glass microspheres were compared to reference materials without such filler. Following heat treatments, the samples’ microstructure was evaluated metallographically; mechanical properties were determined via hardness measurements on reference samples and 4-point bending tests, on both reference and syntactic foam materials. The data obtained show that case hardening can indeed improve the mechanical performance of syntactic iron foams by inducing the formation of a hardened surface layer. Moreover, the investigation indicates that the respective thermo-chemical treatments can be applied to composite gear wheels in exactly the same way as to monolithic ones. In the surface region modified by the treatment, martensitic microstructures were observed, and as consequence, the bending limits of syntactic foam samples were increased by a factor of three.  相似文献   

17.
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility of using waste wood particles (WP) from primary wood processing as a filler for PUR foams with open-cell structure was investigated. For this purpose, a wood particle fraction of 0.315–1.25 mm was added to the foam in concentrations of 0, 5, 10, 15 and 20%. The foaming course of the modified PUR foams (PUR-WP) was characterized on the basis of the duration of the process’ successive stages at the maximum foaming temperature. In order to explain the observed phenomena, a cellular structure was characterized using microscopic analysis such as SEM and light microscope. Computed tomography was also applied to determine the distribution of wood particles in PUR-WP materials. It was observed that the addition of WP to the open-cell PUR foam influences the kinetics of the foaming process of the PUR-WP composition and their morphology, density, compressive strength and thermal properties. The performed tests showed that the addition of WP at an the amount of 10% leads to the increase in the PUR foam’s compressive strength by 30% (parallel to foam’s growth direction) and reduce the thermal conductivity coefficient by 10%.  相似文献   

18.
In this article, halloysite–lignin hybrid materials (HL) were designed and obtained. The weak hydrogen bonds found between the components were determined based on Fourier transform infrared spectroscopy (FTIR), proving the achievement of class I hybrid systems. The HL systems were characterized by very good thermal stability and relatively good homogeneity, which increased as the proportion of the inorganic part increased. This was confirmed by analyzing scanning electron microscope (SEM) images and assessing particle size distributions and polydispersity indexes. Processing rigid poly(vinyl chloride) (PVC) with HL systems with a content of up to 10 wt% in a Brabender torque rheometer allowed us to obtain composites with a relatively homogeneous structure confirmed by SEM observations; simultaneously, a reduction in the fusion time was noted. An improvement in PVC thermal stability of approximately 40 °C for composites with HL with a ratio of 1:5 wt/wt was noted. Regardless of the concentration of the HL system, PVC composites exhibited inconsiderably higher Young’s modulus, but the incorporation of 2.5 wt% of fillers increased Charpy impact strength by 5–8 kJ/m2 and doubled elongation at break. This study demonstrated that favorable mechanical properties of PVC composites can be achieved, especially with an HL system with a ratio of 5:1 wt/wt.  相似文献   

19.
Since rigid polyurethane (PU) foams are one of the most effective thermal insulation materials with widespread application, it is an urgent requirement to improve its fire retardancy and reduce the smoke emission. The current work assessed the fire behavior of PU foam with non-halogen fire retardants system, containing histidine (H) and modified graphene oxide (GOA). For investigated system, three loadings (10, 20, and 30 wt.%) were used. The Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis, cone calorimetry (CC) and smoke density chamber tests as well as pre- and post-burning morphological evaluation using scanning electron microscope (SEM) were performed. Moreover, TGA combined with FT-IR was conducted to determine the substances, which could be evolved during the thermal decomposition of the PU with fire retardant system. The results indicated a reduction in heat release rate (HRR), maximum average rate of heat emission (MAHRE), the total heat release (THR) as well as the total smoke release (TSR), and maximum specific optical density (Dsmax) compared to the polyurethane with commercial fire retardant, namely ammonium polyphosphate (APP). A significantly improvement, especially in smoke suppression, suggested that HGOA system may be a candidate as a fire retardant to reduce the flammability of PU foams.  相似文献   

20.
The application range of flexible polyurethane (PU) foams is comprehensive because of their versatility and flexibility in adjusting structure and performance. In addition to the investigations associated with further broadening of their potential properties, researchers are looking for new raw materials, beneficially originated from renewable resources or recycling. A great example of such a material is ground tire rubber (GTR)—the product of the material recycling of post-consumer car tires. To fully exploit the benefits of this material, it should be modified to enhance the interfacial interactions between PU and GTR. In the presented work, GTR particles were thermo-mechanically modified with the addition of fresh and waste rapeseed oil in the reactive extrusion process. The introduction of modified GTR particles into a flexible PU matrix caused a beneficial 17–28% decrease in average cell diameters. Such an effect caused an even 5% drop in thermal conductivity coefficient values, enhancing thermal insulation performance. The application of waste oil resulted in the superior mechanical performance of composites compared to the fresh one and thermo-mechanical modification without oils. The compressive and tensile performance of composites filled with waste oil-modified GTR was almost the same as for the unfilled foam. Moreover, the introduction of ground tire rubber particles enhanced the thermal stability of neat polyurethane foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号