首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
When chemical analysis indicates metal pollution, a second-tier method is needed to evaluate whether toxic effects occur at the polluted sites. A method based on pollution-induced community tolerance (PICT) was developed using samples taken from locations polluted with sewage more than 20 years ago. Microorganisms extracted from soil samples were exposed to a concentration range of zinc, nickel, copper, chromium (III), or chromium (VI) salts in a buffer suspension. The remaining activity of the intoxicated microorganisms was determined by color formation with 31 different organic substrates in microtiter plates. Microorganisms from moderately Zn-polluted sites (>45 mg/kg) showed an increased tolerance for zinc. Nickel tolerance was observed at 51 mg Ni/kg soil, chromium (VI) tolerance at 923 mg Cr/kg. In most cases, tolerance also was observed at higher concentrations. High concentrations of 1,494 mg Cu/kg or 3,935 mg Cr/kg did not show PICT, indicating a limited bioavailability of Cu and Cr at these sites. The benefits of our method are its greater sensitivity compared to other tests used at these sites, and its specificity for those metals that exceed allowable levels.  相似文献   

2.
Pollution by metals may lead to an increased tolerance in the exposed population through adaptive microevolution, with resistant genotypes becoming more abundant than in reference sites. This work investigated the outcomes associated with selection for resistance by testing three hypotheses to assess the following: Do resistant versus sensitive clonal lineages of Daphnia longispina differentially acclimate to metals during a long-term sublethal exposure, is there a significant correlation between lethal and sublethal responses, and does resistance to metals entail costs to fitness under uncontaminated conditions? No evidence of acclimation was observed. The median effective dilutions of acid mine drainage for reproduction were similar for successive broods within clones during long-term exposures. Lethal and sublethal responses were not correlated, indicating that mechanisms regulating the two types of response were more than likely different. Finally, fitness costs associated with the resistance to lethal levels of metals were not detected, but resistance to sublethal levels of Cu was found to be correlated with a lower intrinsic growth rate under control conditions.  相似文献   

3.
Soil-dwelling organisms are exposed to metals in different ways. Evidence exists for predominant pore water uptake of metals by soft-bodied oligochaete species. In the present research, uptake kinetics of metals and the metalloid As by the semi-soft-bodied springtail Folsomia candida were studied, for which uptake via the pore water is less obvious. Springtails were exposed in 16 field soils and in metal-spiked artificial Organization for Economic Cooperation and Development (Paris, France) soil (OECD soil). Subsequently, accumulation parameters were statistically related to soil metal pools and soil properties. In Cd-spiked OECD soil, internal Cd levels were linearly related to external Cd concentrations, whereas the springtails maintained fixed internal levels of Cu and Zn regardless of spiked concentrations. In the field soils, all body concentrations of the elements As, Cr, and Ni were below detection limit. The essential metals Cu and Zn were presumably regulated, and no influence of soil characteristics could be demonstrated. For Cd and Pb, accumulation patterns were correlated mainly to solid-phase soil characteristics. The presence of these explanatory variables in the multiple correlations suggests that an uptake mechanism that is solely determined by pore water concentrations should not be taken as a universally applicable principle in risk assessments of metals for soil invertebrates. Cadmium in OECD soils was more available for uptake than in the field soils. The difference remained when extractability was taken into account. The results suggest that experiments in OECD soil cannot be used directly in risk assessment for nonessential metals (at least for F. candida), although a reduction of uncertainties in metal risk assessment can be reached by consistent use of body residues rather than external concentrations.  相似文献   

4.
Heavy metal contamination of soil resulting from wastewater irrigation is a cause of serious concern due to the potential health impacts of consuming contaminated produce. In this study an assessment is made of the impact of wastewater irrigation on heavy metal contamination of Beta vulgaris (palak); this is a highly nutritious leafy vegetable that is widely cultivated and consumed in urban India, particularly by the poor. A field study was conducted at three major sites that were irrigated by either treated or untreated wastewater in the suburban areas of Varanasi, India according to normal practice. Samples of irrigation water, soil, and the edible portion of the palak (Beta vulgaris L. var All green H1) were collected monthly during the summer and winter seasons and were analyzed for Cd, Cu, Zn, Pb, Cr, Mn, and Ni. Heavy metals in irrigation water were below the internationally recommended (WHO) maximum permissible limits set for agricultural use for all heavy metals except Cd at all the sites. Similarly, the mean heavy metal concentrations in soil were below the Indian standards for all heavy metals, but the maximum value of Cd recorded during January was higher than the standard. However, in the edible portion of B. vulgaris, the Cd concentration was higher than the permissible limits of the Indian standard during summer, whereas Pb and Ni concentrations were higher in both summer and winter seasons. Results of linear regression analysis computed to assess the relationship between individual heavy metal concentration in the vegetable samples and in soil showed that Zn in soil had a positive significant relationship with vegetable contamination during winter. Concentrations of Cd, Cu, and Mn in soil and plant showed significant positive relationships only during summer. Concentration of Cr and Pb during winter season and Zn and Ni during summer season showed significant negative relationships between soil and plant contamination. The study concludes that the use of treated and untreated wastewater for irrigation has increased the contamination of Cd, Pb, and Ni in edible portion of vegetables causing potential health risk in the long term from this practice. The study also points to the fact that adherence to standards for heavy metal contamination of soil and irrigation water does not ensure safe food.  相似文献   

5.
In a recent study, we showed that the earthworm species Eisenia fetida, inhabiting an extremely high metal polluted compost heap on a wine farm, did not have elevated body loads of the metals but exhibited genotoxic tolerance when exposed to Cd in the laboratory (Voua Otomo and Reinecke, 2010). To unravel the mechanism behind the surprisingly low metal body burdens on one hand and genotoxic tolerance on the other hand, we investigated the estimated bioavailability of these metals (Cu, Zn, Pb and Cd) using sequential extraction methods with CaCl2 and di-ethylene-triamine-pentaacetic acid (DTPA) and allozyme polymorphism in this field population, a laboratory control as well as a long-term Cd exposed population. The amounts of mobile (extracted with CaCl2) and mobilizable (extracted with DTPA) metals in relation to the total (extracted with nitric acid) metals were all below 0.05% for all four metals, suggesting low availability for uptake. The low availability of these metals could not be explained by physico-chemical properties of soil but by the phenomenon of aging of the metals. There was no difference in allozyme frequency between metal tolerant and non-metal tolerant populations of E. fetida. This suggested that the tolerance found in earlier studies could be a mere physiological adaptation  相似文献   

6.
The effects of municipal wastewater irrigation on the accumulation of heavy metals (Pb, Zn, Cd, Cr, Cu and Ni) in soil and vegetables were investigated by monitoring wastewater-irrigated agricultural field of Titagarh, 24-Parganas (North), West Bengal, India. The mean concentrations of Pb, Ni, Cu in the irrigation water and the mean Cd content in soil were much above the recommended level. The concentrations of Pb, Zn, Cd, Cr and Ni in all the examined vegetables were beyond the safe limits. The study reveals that heavy metal-contaminated vegetables grown in wastewater-irrigated areas may pose public health hazards.  相似文献   

7.
Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L?1 of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L?1 of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L?1 of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal.  相似文献   

8.
The cell walls of plants, including those of algae, have the capacity to bind metal ions in negatively charged sites. The authors had already shown that the wild type (walled) strain of the unicellular green alga Chlamydomonas reinhardtii Dangeard was more tolerant to Cd, Co, Cu, and Ni than a wall-less mutant of the same species. The objective of the present study was to determine if the tolerance to metals was associated with an increased adsorption of the same metals to the cell wall. Adsorbed metal was defined as that fraction that could be removed with a solution containing Na2EDTA and CaCl2. The fraction that remained after the EDTA/CaCl2 wash was considered to be strongly bound in the cell. When exposed to metals, singly, in solution for 24 h, cells of both strains accumulated the metals. The original hypothesis was supported by the results for Cd, Co, and Ni insofar as significantly higher concentrations of these metals were in the loosely bound fraction of the walled strain in comparison with the wall-less strain. However, there are three reasons why the potentially protective effect of the cell wall did not explain differential tolerance of the two strains. After 24 h of exposure (1) less Cd was accumulated internally by the wall-less strain than by the walled strain, (2) very little of the accumulated Cu was in the loosely bound fraction of the walled strain, and (3) the two strains accumulated comparable and relatively high amounts of internal Cu. Unexpectedly, significant amounts of Cd and Cu were also removable from the surface of the wall-less cells. One possible explanation for these apparently externally bound metals in the wall-less strain is that the cells exuded metal-chelating molecules that decreased the ability of metal ions to penetrate the plasma membrane. It was concluded that metal tolerance in this alga must involve a complex of mechanisms involving both internal and external detoxification of metal ions. Received: 25 February 2000/Accepted: 31 May 2000  相似文献   

9.
Effects of heavy metals on methane production in tropical rice soils.   总被引:2,自引:0,他引:2  
In a laboratory incubation study, the effect of select heavy metals on methane (CH(4)) production in three rice soils was investigated under flooded conditions. Heavy metals behaved differently in their effect on methanogenesis in different soils and methane-producing bacteria. Cd, Cu, and Pb inhibited CH(4) production in all the soils. Zn stimulated CH(4) production in the alluvial soil, but inhibited it in laterite and acid sulfate soils. Cr effectively inhibited CH(4) production in the alluvial soil, but stimulated it in laterite and acid sulfate soils. The stimulatory effect of Zn and the inhibitory effect of Cr on methanogenesis in alluvial soil were attributed to their stimulation or inhibition of methanogenic bacterial population.  相似文献   

10.
One-year-old Atlantic salmon smolts were exposed for 2 weeks either to six priority heavy metal mixture or to Ni, Pb, and Cr singly at a concentration corresponding to Lithuanian inland water standards: Cu – 0.01, Zn – 0.1, Ni – 0.01, Cr – 0.01, Cd – 0.005 and Pb – 0.005 mg/L, respectively under semi-static conditions. The presence of metal mixture in the water only partly (by 50 %) affected the accumulation of single metals in body tissues (muscle, gills, liver and kidneys) probably due to the synergistic interactions among metals. Although metal concentrations increased in most cases, only Pb exceeded recommended level for human consumption (0.2 Pb mg/L) by 1.1-fold to 2.1-fold.  相似文献   

11.
Fourth instars larvae of freshwater midge Chironomus javanus (Diptera, Chironomidae) were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al) and manganese (Mn) concentrations. Mortality was assessed and median lethal concentrations (LC(50)) were calculated. LC(50) increased with the decrease in mean exposure times, for all metals. LC(50)s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al and Mn were 0.17, 0.06, 5.57, 0.72, 5.32, 0.62, 1.43 and 5.27 mg/L, respectively. Metals bioconcentration in C. javanus increases with exposure to increasing concentrations and Cd was the most toxic to C. javanus, followed by Cu, Fe, Pb, Al, Mn, Zn and Ni (Cd > Cu > Fe > Pb > Al > Mn > Zn > Ni). Comparison of LC(50) values for metals for this species with those for other freshwater midges reveals that C. javanus is equally or more sensitive to metals than most other tested dipteran.  相似文献   

12.
Cadmium tolerance in field populations of the midge Chironomus riparius was studied by comparing the effects of chronic cadmium exposure on several life-history parameters using first generation, laboratory-reared animals. Differences between populations of C. riparius were therefore assumed to have a genetic basis. Field populations naturally exposed to metals were less sensitive to cadmium compared to unexposed populations, when larval development time and hatchability of the egg masses were measured. However, larval mortality still increased with cadmium exposure and no differences between exposed and unexposed populations were observed. Furthermore, life-history patterns differed between metal tolerant and nontolerant populations grown under control conditions. Metal tolerant populations were characterized by a high control mortality (50%) or an increased larval development time (with 30%). The results, therefore, indicated the presence of costs of tolerance, while a direct selection on certain life-history characteristics due to metal pollution was absent.  相似文献   

13.
Instar V larvae of the aquatic insect Stenopsyche marmorata were transferred between a noncontaminated site and a contaminated site and changes in the accumulation of nickel (Ni), copper (Cu), zinc (Zn), and lead (Pb) in larvae were monitored for 30 days. Concentrations of the four metals rapidly increased or decreased within 10 days in the transferred larvae and approached concentrations of the native larvae living in the transfer sites. The accumulation of Ni and Cu in the larval body was very noticeable. The decreased Ni concentrations are represented by two exponential rate formulas, suggesting a biological half-life of 1.4 and 12.1 days. Under laboratory conditions, routes of Ni and Cu uptake were examined and Ni uptake was found to be mainly from food. However, larvae accumulated Cu from both food and water sources. In this case, the amount of metal uptake from food was more than that from water. The results of this indoor experiment are discussed and compared with the results of the transfer field experiment. Active biomonitoring of trace metal in transferred larvae is useful since it enables rapid and easy assessment of metal contamination.  相似文献   

14.
We investigated the occurrence of tolerance to atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in soil microalgae by means of the pollution-induced community tolerance methodology. To this end, a natural soil assemblage of microalgae, reared under laboratory conditions, was used as experimental model. Experimental cultures were exposed to 0.46, 0.93, 1.85, 2.70, and 5.40 mg atrazine/L medium for 40 days. After this chronic exposure, both untreated and atrazine-pretreated cultures were subjected to a short-term dose-effect study with atrazine using average growth rate as endpoint. Results showed that chronic exposure to atrazine induced significant changes at the community level, increasing its atrazine tolerance. In addition, atrazine-pretreated assemblages seemed to display, on average, a reduced growth rate compared with untreated assemblages in the absence of atrazine. Response to the presence of atrazine could thus be achieved with some fitness cost. This suggests that the soil microalgal productivity could be diminished after exposure to atrazine.  相似文献   

15.
Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.  相似文献   

16.
In 2007, it was shown that the shipping of lead (Pb) through Esperance Port in Western Australia resulted in contamination and increased Pb concentrations in children. A clean-up strategy was implemented; however, little attention was given to other metals. In consultation with the community, a cross-sectional exposure study was designed. Thirty-nine children aged 1 to 12 years provided samples of hair, urine, drinking water, residential soil and dust. Concentrations of nickel (Ni) and Pb were low in biological and environmental samples. Hair aluminium (Al) (lower than the detection limit [DL] to 251 μg/g) and copper (Cu) (7 to 415 μg/g), as well as urinary Al (<DL to 210 μg/L), manganese (Mn) (<DL to 550 μg/L), and Cu (<DL to 87 μg/L), were increased for a small number of participants. Concentrations of nickel (Ni) in urine, soil, and dust decreased with increasing distance from the port, as did soil Pb concentrations. The results suggest exposure to Ni and Pb was limited in children at the time of sampling in 2009. Further investigation is required to determine the source(s) and significance of other increased metals concentrations.  相似文献   

17.
Heavy metals were measured in hair from occupationally and nonoccupationally exposed populations in an e-waste recycling area and from residents from a control rural town. The levels of five heavy metals were in the following order of Zn > Pb, Cu > Cd > Ni, with the highest levels found in the occupationally exposed workers. The levels of Cd, Pb, and Cu were significantly higher in residents from the e-waste recycling area than in the control area. Elevated Cd, Pb, and Cu contents along with significant positive correlations between them in hair from the e-waste recycling area indicated that these metals were likely to have originated from the e-waste recycling activities. The similarity in heavy metal pattern between children and occupationally exposed workers indicated that children are particularly vulnerable to heavy metal pollution caused by e-waste recycling activities. The increased Cu exposure might be a benefit for the insufficient intake of Cu in the studied area. However, the elevated hair Cd and Pb levels implied that the residents in the e-waste area might be at high risk of toxic metal, especially for children and occupationally exposed workers.  相似文献   

18.
The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China.  相似文献   

19.
Pollution-induced community tolerance (PICT) constitutes a sensitive and ecologically relevant impact parameter in ecotoxicology. We report the development and application of a novel anaerobic [(3) H]leucine incorporation assay and its comparison with the conventional aerobic [(3) H]leucine incorporation assay for PICT detection in soil bacterial communities. Selection of bacterial communities was performed over 42 d in bulk soil microcosms (no plants) and in rice (Oryza sativa) rhizosphere soil mesocosms. The following experimental treatments were imposed using a full factorial design: two soil types, two soil water regimes, and four Cu application rates (0, 30, 120, or 280 μg g(-1)). Bacterial communities in bulk soil microcosms exhibited similar Cu tolerance patterns when assessed by aerobic and anaerobic PICT assays, whereas aerobic microorganisms tended to be more strongly selected for Cu tolerance than anaerobic microorganisms in rhizosphere soil. Despite similar levels of water-extractable Cu, bacterial Cu tolerance was significantly higher in acid sulfate soil than in alluvial soil. Copper amendment selected for significant PICT development in soils subjected to alternate wetting and drying, but not in continuously flooded soils. Our results demonstrate that soil bacterial communities subjected to alternate wetting and drying may be more affected by Cu than bacterial communities subjected to continuous flooding. We conclude that the parallel use of anaerobic and aerobic [(3) H]leucine PICT assays constitutes a valuable improvement over existing procedures for PICT detection in irrigated soils and other redox gradient environments such as sediments and wetlands.  相似文献   

20.
Pollution-induced community tolerance (PICT) was used to study effects of phenol on soil bacteria. Phenol was added to an agricultural soil in a microcosm experiment. The effects were studied for up to four months. Bacterial growth rates were estimated with the leucine incorporation technique. This technique was also used as detection method for PICT. Changes in community structure were studied using the phospholipid fatty acid (PLFA) pattern. Increased phenol PICT of the bacterial community was found at phenol concentrations above 1 micromol/g wet weight soil. Direct inhibiting effect on bacterial growth rates 1 d after adding phenol was correlated to PICT. Phenol toxicity was reflected by changes in the structure of the bacterial community, although PICT appeared more sensitive than the PLFA method. In soil amended with 1 to 10 micromol phenol/g soil, bacterial growth recovered within one week. In the soil amended with the highest phenol concentration (30 micromol/g soil), bacterial growth rate recovered from total inhibition after 27 d, eventually reaching values six times higher than in the control. However, PICT did not change during the four months the experiment was performed. The specificity of PICT was also studied by examining cotolerance to 2-chlorophenol, 2,4-dichlorophenol, 2,3,6-trichlorophenol, Cu, and Zn. Adding phenol induced cotolerance of the bacterial community to the other phenols, although always at a lover level than to phenol. No cotolerance was found to metals in phenol-polluted soil. We conclude that the PICT concept is a valuable tool in determining phenol toxicity to bacterial communities, especially in situations where bacterial growth has recovered. Cotolerance between different phenols can, however, make interpretations of PICT more complicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号