首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gass EM  Gass GC 《Spinal cord》2001,39(3):149-155
OBJECTIVE: To compare thermoregulatory responses to repeated warm water immersion (39 degrees C) between physically active subjects who are paraplegic or able-bodied in order to gain insight into rehabilitative and adaptive processes. METHODS: Five paraplegic (P) and six able-bodied (AB) males participated. VO2 peak was determined by open-circuit spirometry using a cycle ergometer (AB) and propelling a wheelchair on a motor driven treadmill (P). Subjects sat immersed to the nipple line in 39 degrees C water for 60 min for 5 consecutive days. Pre- and post-test measurements included heart rate (HR), oesophageal temperature (Tes), sweat onset and rate (dew point hygrometry). Venous blood was obtained before, and during immersion to estimate changes in plasma volume. RESULTS: The P group was older and lighter than AB group (P<0.05). VO2max, VCO2max and VE(max) were significantly greater in AB group. HR at rest and after 60 min immersion was not significantly different between the groups pre- or post-test. Tes significantly increased after 60 min immersion in both groups, at both pre- and post-testing sessions. Post-test Tes after 60 min immersion (AB) was significantly less than Tes after 60 min of immersion pre-test. The DeltaTes (Tes 60 min-Tes 0 min) was significantly higher in AB group than the P group at pre- but not post-testing. No significant changes in sweat onset or rate were found for the AB or P groups during the pre- or post testing sessions. Significant expansion of plasma volume occurred during immersion in both groups, pre- and post-immersion sessions. CONCLUSIONS: Repeated warm water immersion (39 degrees C) for 60 min per day for a total of 5 days did not produce a significant adaptive response in P group. In the AB group, Tes at the end of 60 min immersion was significantly lower after the adaptation period.  相似文献   

2.
We recently reported that baroreceptor-mediated reflexes modulate thermoregulatory vasoconstriction during lower abdominal surgery. Accordingly, we examined the hypothesis that postural differences and the related alterations in baroreceptor loading similarly modulate the thermogenic (i.e., shivering) response to hypothermia in humans. In healthy humans (n = 7), cold saline was infused IV (30 mL/kg at 4 degrees C) for 30 min to decrease core temperature. Each participant was studied on 2 separate days, once lying supine and once sitting upright. Tympanic membrane temperature and oxygen consumption were monitored for 40 min after each saline infusion. The decrease in core temperature upon completion of the infusion in the upright posture position was 1.24 degrees C +/- 0.07 degrees C, which was significantly greater than the 1.02 degrees C +/- 0.06 degrees C seen in the supine position. The core temperature was reduced by 0.59 degrees C +/- 0.07 degrees C in the upright position but only by 0.37 degrees C +/- 0.05 degrees C in the supine position when the increase in oxygen consumption signaling thermogenic shivering occurred. Thus, the threshold temperature for thermogenesis was significantly less in the upright than the supine position. The gain of the thermogenic response did not differ significantly between the positions (363 +/- 69 mL. min(-1). degrees C(-1) for upright and 480 +/- 80 mL. min(-1). degrees C(-1) for supine). The skin temperature gradient was significantly larger in the upright than in the supine posture, suggesting that the peripheral vasoconstriction was augmented by upright posture. Plasma norepinephrine concentrations increased in response to cold saline infusion under both conditions, but the increase was significantly larger in the upright than in the supine posture. Baroreceptor unloading thus augments the peripheral vasoconstrictor and catecholamine response to core hypothermia but simultaneously reduces thermogenesis, which consequently aggravated the core temperature decrease in the upright posture. IMPLICATIONS: Upright posture attenuates the thermogenic response to core hypothermia but augments peripheral vasoconstriction. This divergent result suggests that input from the baroreceptor modifies the individual thermoregulatory efferent pathway at a site distal to the common thermoregulatory center or neural pathway.  相似文献   

3.
Postoperative effects of extended rewarming (ECR) after hypothermic cardiopulmonary bypass (CPB) were studied. All (n = 28) patients were rewarmed to a nasopharyngeal temperature exceeding 38 degrees C before terminating CPB. In 12 patients (control group) the rectal temperature (Tre) was 33.8 +/- 1.7 degrees C (mean +/- sd) at termination of CPB. In sixteen patients (ECR group) rewarming during CPB was continued to a Tre of 36.8 +/- 0.5 degrees C. Postoperative body temperatures, heat content, shivering, oxygen uptake, CO2 production and haemodynamic variables were measured. ECR reduced the heat gain required to complete core rewarming to 665 +/- 260 kJ, compared with 1037 +/- 374 kJ in the control group (p less than 0.01). The incidence of shivering was reduced (p less than 0.05) as well as shivering intensity and duration. In seven non-shivering ECR group patients this coincided with significantly reduced metabolic and ventilatory demands but these improvements were not valid for the group as a whole. The required ventilation temporarily during postoperative rewarming in both groups increased to 250 per cent of the basal need. Extending CPB rewarming (to at least 36 degrees C Tre) was inefficient when used as the sole measure to reduce the untoward effects of residual hypothermia during recovery after cardiac surgery with hypothermic CPB.  相似文献   

4.
Cerebral hyperthermia is common during the rewarming phase of cardiopulmonary bypass (CPB) and is implicated in CPB-associated neurocognitive dysfunction. Limiting rewarming may prevent cerebral hyperthermia but risks postoperative hypothermia. In a prospective, controlled study, we tested whether using a surface-warming device could allow limited rewarming from hypothermic CPB while avoiding prolonged postoperative hypothermia (core body temperature <36 degrees C). Thirteen patients undergoing primary elective coronary artery bypass grafting surgery were randomized to either a surface-rewarming group (using the Arctic Sun thermoregulatory system; n = 7) or a control standard rewarming group (n = 6). During rewarming from CPB, the control group was warmed to a nasopharyngeal temperature of 37 degrees C, whereas the surface-warming group was warmed to 35 degrees C, and then slowly rewarmed to 36.8 degrees C over the ensuing 4 h. Cerebral temperature was measured using a jugular bulb thermistor. Nasopharyngeal temperatures were lower in the surface-rewarming group at the end of CPB but not 4 h after surgery. Peak jugular bulb temperatures during the rewarming phase were significantly lower in the surface-rewarming group (36.4 degrees C +/- 1 degrees C) compared with controls (37.7 degrees C +/- 0.5 degrees C; P = 0.024). We conclude that limiting rewarming during CPB, when used in combination with surface warming, can prevent cerebral hyperthermia while minimizing the risk of postoperative hypothermia[corrected].  相似文献   

5.
BACKGROUND: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes approximately 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia--although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes approximately 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia. METHODS: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 degrees C. Their cores were subsequently cooled by central-venous administration of fluid at approximately 3 degrees C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects. RESULTS: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98+/-0.02 for vasoconstriction, and 0.96+/-0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21+/-8% to vasoconstriction, and 18+/-10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20+/-6% and 19+/-8%, respectively. CONCLUSIONS: The results in anesthetized volunteers were virtually identical to those reported previously in unanesthetized subjects. In both cases, the cutaneous contribution to control of vasoconstriction and shivering was linear and near 20%. These data indicate that a proportionality constant of approximately 20% can be used to compensate for experimentally induced skin-temperature manipulations in anesthetized as well as unanesthetized subjects.  相似文献   

6.
Microcirculation plays an important role in keeping a stable tissue metabolism during cardiopulmonary bypass (CPB). The relationship between microvascular vasomotion (MV) and total body's oxygen metabolism with temperature alteration during CPB remains unclear. Is there a relationship, or is the autoregulation a consequence of CO2, pressure and/or blood flow? The purpose of this study was to investigate the effect of temperature alteration on cutaneous MV and the total body's oxygen metabolism during CPB. Sixteen consecutive patients scheduled for elective cardiac valve replacement surgery were included in this study. The pump flow varied from 1.8-3.0 L/m(-2)min(-1) to maintain venous oxygen saturation above 65% and mean arterial blood pressure above 60 mmHg. At a nasopharyngeal temperature of 30 degrees C, oxygen consumption (VO2) and oxygen extraction (O2 ext) were measured during the cooling and rewarming periods. MV and skin microcircular flow (SMF) were monitored dynamically at the middle of two sides of the eyebrow with a laser Doppler flowmeter simultaneously VO2 and O2 ext at 30 degrees C were significantly lower during the cooling period (VO2, 49.9 +/- 17.7 mL/m(-2)/min(-1); O2 ext, 19.3 +/- 6.2%) than that during the rewarming period (VO2, 133.3 +/- 40.0 mL/m(-2)/min(-1); O2 ext, 35.2 +/- 9.2%) (p < .05). SMF was significantly depressed during CPB (p < .05). SMF during the cooling period (50.2% +/- 10.1%) was significantly less than that during the rewarming period (79.5% +/- 12.3%) (p < .05). MV was significantly less active during CPB than that before CPB (5.8 +/- 1.2 cyc/min) (p < .05), whereas there was no significant difference in MV between the cooling (3.7 +/- 1.8 cyc/min) and the rewarming period (4.1 +/- 1.5 cyc/min) and (p > .05). SMF and MV were depressed during hypothermic CPB, and there was some recovery during the rewarming period. Compared to baseline, SMF and MV were still significantly reduced during the warming period, indicating microvascular function was abnormal. Some measures should be taken for improvement of microvascular function during CPB.  相似文献   

7.
Changes in oxygen consumption (VO2) and oxygen delivery (DO2) were compared in three groups of paralyzed, sedated dogs: 1) a group (n = 5) cooled to 29 degrees C and immediately rewarmed to 37 degrees C; 2) a group (n = 5) cooled to and maintained at 29 degrees C for 24 h, and then rewarmed; and 3) a group (n = 5) maintained at 37 degrees C for 24 h. During the cooling phase, in both the acute and prolonged hypothermia animals, VO2 and DO2 decreased significantly from control values (P less than 0.05). The decrease in DO2 occurred as a result of a similar decrease in cardiac index (CI; P less than 0.05) that was associated with a significant increase in systemic vascular resistance index (SVRI; P less than 0.05). Arteriovenous oxygen content difference (C(a-v)O2), O2 extraction ratio, mixed venous oxygen tension (PVO2), pH, and base deficit (BD) were not different from control values even during prolonged hypothermia. Normothermic control dogs also demonstrated a significant decrease in CI (P less than 0.05) at 24 h. Surface rewarming increased VO2 back to control values in the acute hypothermia group and to values above control (P less than 0.05) in the prolonged hypothermia group. DO2 remained below control in both groups, resulting in a significant increase in O2 extraction (P less than 0.05) and a decrease in PVO2 (P less than 0.05) in the prolonged hypothermia animals. Following rewarming administration of sodium nitroprusside returned DO2, CI, and SVRI to control values but did not increase VO2. All animals survived the study without need for inotropic support.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Narcotics and nitrous oxide (N2O) inhibit thermoregulatory responses in animals. The extent to which N2O/fentanyl anesthesia lowers the thermoregulatory threshold in humans was tested by measuring peripheral cutaneous vasoconstriction using skin-surface temperature gradients (forearm temperature-fingertip temperature) and the laser Doppler perfusion index. Fifteen unpremedicated patients were anesthetized with N2O (70%) and fentanyl (10 micrograms/kg iv bolus followed by 4 micrograms.kg-1.h-1 infusion) during elective, donor nephrectomy. Patients were randomly assigned to undergo additional warming (humidified respiratory gases, warmed intravenous fluids, and a heating blanket over the legs; n = 5) or standard temperature management (no special warming measures; n = 10). Significant vasoconstriction was prospectively defined as a skin-surface temperature gradient between forearm surface and finger-tip surface greater than or equal to 4 degrees C, and the thermoregulatory threshold was defined as the esophageal temperature at which such vasoconstriction occurred. Vasoconstriction did not occur in the patients who received additional warming and thus remained nearly normothermic [average minimum esophageal temperature = 35.8 +/- 0.4 degrees C (SD)] but did in six hypothermic patients at a mean esophageal temperature of 34.2 +/- 0.5 degrees C. Four hypothermic patients developed a passive thermal steady state without becoming sufficiently cold to trigger vasoconstriction. Thus, active thermoregulation occurs during N2O/fentanyl anesthesia but does not occur until core temperatures are approximately 2.5 degrees C lower than normal. The thermoregulatory threshold during N2O/fentanyl anesthesia is similar to that previously determined during halothane (34.4 +/- 0.2 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effect of amino acid infusion on central thermoregulatory control in humans   总被引:3,自引:0,他引:3  
BACKGROUND: Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point. METHODS: Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ x kg(-1) x h(-1) for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling. RESULTS: Amino acid infusion increased resting core temperature by 0.3 +/- 0.1 degrees C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34 degrees C) for active cutaneous vasodilation by 0.3 +/- 0.3 degrees C, for sweating by 0.2 +/- 0.2 degrees C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3 degrees C, and for thermogenesis by 0.4 +/- 0.5 degrees C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. CONCLUSIONS: Amino acid infusion increased the metabolic rate and the resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the set point increase, even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia seems to result from an increased set point rather than increased metabolic rate per se.  相似文献   

10.
Fritz HG  Hoff H  Hartmann M  Karzai W  Schwarzkopf KR 《Anesthesia and analgesia》2002,94(3):626-30; table of contents
In a previous study we have shown that the antihypertensive drug, urapidil, stops postanesthetic shivering. One possible mechanism in the inhibition of postanesthetic shivering by urapidil may be alterations in thermoregulatory thresholds. We therefore studied the effects of urapidil on vasoconstriction and shivering thresholds during cold-induced shivering in volunteers. Seven healthy male volunteers were cooled by an infusion of saline at 4 degrees C on two study days separated by 48 h. Thermoregulatory vasoconstriction was estimated using forearm minus fingertip skin-temperature gradients, and values exceeding 0 degrees C were considered to represent significant vasoconstriction. The rectal core temperatures at the beginning of shivering and at vasoconstriction were considered the thermoregulatory thresholds. Before cooling, either 25 mg of urapidil or placebo was administered randomly and blindly to each volunteer. When shivering occurred continuously for 10 min, another 25 mg of urapidil was administered IV to completely stop shivering. Urapidil led to a decrease in core temperature at vasoconstriction and shivering threshold by 0.4 degrees C plus/minus 0.2 degrees C (P < 0.001) and 0.5 degrees C plus/minus 0.3 degrees C (P < 0.01), respectively. Oxygen consumption increased during shivering by 70% plus/minus 30% (P < 0.01) in comparison with baseline and decreased levels after shivering stopped, despite the continued low core temperature. Our investigation shows that urapidil stops postanesthetic shivering by decreasing important thermoregulatory thresholds. This means that shivering, not hypothermia, is treated, and hypothermia will need more attention in the postanesthesia care unit. IMPLICATIONS: In this study we show that the antihypertensive drug urapidil stops cold-induced shivering and decreases normal thermoregulatory responses, i.e., the thresholds for vasoconstriction and shivering, in awake volunteers.  相似文献   

11.
Dantrolene is used for treatment of life-threatening hyperthermia, yet its thermoregulatory effects are unknown. We tested the hypothesis that dantrolene reduces the threshold (triggering core temperature) and gain (incremental increase) of shivering. Healthy volunteers were evaluated on 2 random days: control and dantrolene (approximately 2.5 mg/kg plus a continuous infusion). In Study 1, 9 men were warmed until sweating was provoked and then cooled until arteriovenous shunt constriction and shivering occurred. Sweating was quantified on the chest using a ventilated capsule. Absolute right middle fingertip blood flow was quantified using venous-occlusion volume plethysmography. A sustained increase in oxygen consumption identified the shivering threshold. In Study 2, 9 men were given cold lactated Ringer's solution i.v. to reduce core temperature approximately 2 degrees C/h. Cooling was stopped when shivering intensity no longer increased with further core cooling. The gain of shivering was the slope of oxygen consumption versus core temperature regression. In Study 1, sweating and vasoconstriction thresholds were similar on both days. In contrast, shivering threshold decreased 0.3 +/- 0.3 degrees C, P = 0.004, on the dantrolene day. In Study 2, dantrolene decreased the shivering threshold from 36.7 +/- 0.2 to 36.3 +/- 0.3 degrees C, P = 0.01 and systemic gain from 353 +/- 144 to 211 +/- 93 mL.min(-1).degrees C(-1), P = 0.02. Thus, dantrolene substantially decreased the gain of shivering, but produced little central thermoregulatory inhibition. IMPLICATIONS: Dantrolene substantially decreases the gain of shivering but produces relatively little central thermoregulatory inhibition. It thus seems unlikely to prove more effective than conventional muscle relaxants for treatment of life-threatening hyperthermia.  相似文献   

12.
Postanaesthetic shivering is one of the leading causes of discomfort for patients recovering from general anesthesia. During EMG records, the distinguishing factor from shivering in fully awake patients is the existence of clonus similar to that recorded in patients with spinal cord transection. They coexist with the classic waxing and waning signals associated with cutaneous vasoconstriction (thermoregulatory shivering). The causes responsible for their appearance primarily include hypothermia, which sets in due to thermoregulation inhibition by anesthetics. However, we also note the existence of shivering associated with cutaneous vasodilatation (non-thermoregulatory shivering) one of the origins of which is postoperative pain. Apart from the discomfort and aggravated pain, postanaesthetic shivering raises metabolic demand proportionally to the solicited muscle mass and the patient's cardiac capacities. No link has been demonstrated between their occurrence and an increase in cardiac morbidity but it is preferable to avoid postanaesthetic shivering since it is oxygen draining. Prevention mainly entails preventing hypothermia by actively rewarming the patient. Postoperative skin surface rewarming is a way of obtaining the threshold shivering temperature while raising the skin temperature and improving the patient's comfort. However, it is less efficient than certain drugs such as meperidine, nefopam or tramadol, which act by reducing the shivering threshold temperature.  相似文献   

13.
Physiologic responses to mild perianesthetic hypothermia in humans   总被引:6,自引:0,他引:6  
To evaluate physiologic responses to mild perianesthetic hypothermia, we measured tympanic membrane and skin-surface temperatures, peripheral vasoconstriction, thermal comfort, and muscular activity in nine healthy male volunteers. Each volunteer participated on three separate days: 1) normothermic isoflurane anesthesia; 2) hypothermic isoflurane anesthesia (1.5 degrees C decrease in central temperature); and 3) hypothermia alone (1.5 degrees C decrease in central temperature) induced by iced saline infusion. Involuntary postanesthetic muscular activity was considered thermoregulatory when preceded by central hypothermia and peripheral cutaneous vasoconstriction. Tremor was considered normal shivering when electromyographic patterns matched those produced by cold exposure in unanesthetized individuals. During postanesthetic recovery, central temperatures in hypothermic volunteers increased rapidly when residual end-tidal isoflurane concentrations were less than or equal to 0.3% but remained 0.5 degree C less than control values throughout 2 h of recovery. All volunteers were vasodilated during isoflurane administration. Peripheral vasoconstriction occurred only during recovery from hypothermic anesthesia, at end-tidal isoflurane concentrations of less than approximately 0.4%. Spontaneous tremor was always preceded by central hypothermia and peripheral vasoconstriction, indicating that muscular activity was thermoregulatory. Maximum tremor intensity during recovery from hypothermic anesthesia occurred when residual end-tidal isoflurane concentrations were less than or equal to 0.4%. Three patterns of postanesthetic muscular activity were identified. The first was a tonic stiffening that occurred in some normothermic and hypothermic volunteers when end-tidal isoflurane concentrations were approximately 0.4-0.2%. This activity appeared to be largely a direct, non-temperature-dependent effect of isoflurane anesthesia. In conjunction with lower residual anesthetic concentrations, stiffening was followed by a synchronous, tonic waxing-and-waning pattern and spontaneous electromyographic clonus, both of which were thermoregulatory. Tonic waxing-and-waning was by far the most common pattern and resembled that produced by cold-induced shivering in unanesthetized volunteers; it appears to be thermoregulatory shivering triggered by hypothermia. Spontaneous clonus resembled flexion-induced clonus and pathologic clonus and did not occur during hypothermia alone; it may represent abnormal shivering or an anesthetic-induced modification of normal shivering. We conclude that among the three patterns of muscular activity, only the synchronous, tonic waxing-and-waning pattern can be attributed to normal thermoregulatory shivering.  相似文献   

14.
BACKGROUND: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering. METHODS: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34 degrees C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response. RESULTS: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9 degrees C. microg-1. ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0 degrees C. microg-1. ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3 degrees C. microg-1. ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4 degrees C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds. CONCLUSIONS: Most drugs with thermoregulatory actions-including anesthetics, sedatives, and opioids-synchronously reduce the vasoconstriction and shivering thresholds. However, nefopam reduced only the shivering threshold. This pattern has not previously been reported for a centrally acting drug. That pharmacologic modulations of vasoconstriction and shivering can be separated is of clinical and physiologic interest.  相似文献   

15.
Thirty-three patients undergoing elective myocardial revascularization were prospectively randomized into two study groups (Group S and Group P) to permit evaluation of the effects of shivering on oxygen consumption per minute (VO2), carbon dioxide production per minute (VCO2), and hemodynamic performance. Group S was allowed to shiver during the postoperative rewarming period, and Group P received hourly injections of pancuronium bromide and Metubine (metocurine) sulfate with sedation to block the shivering response. Group S demonstrated significantly higher increases in VO2 and VCO2, lower systolic blood pressure and mixed venous oxygen saturation, and a greater use of inotropic support than the patients in Group P. Suppression of the shivering response minimized increases in VO2 and VCO2, improved hemodynamic stability, and resulted in a decreased need for inotropic support.  相似文献   

16.
Background: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia-although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia.

Methods: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 [degree sign]C. Their cores were subsequently cooled by central-venous administration of fluid at [almost equal to] 3 [degree sign]C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects.

Results: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98 +/- 0.02 for vasoconstriction, and 0.96 +/- 0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21 +/- 8% to vasoconstriction, and 18 +/- 10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20 +/- 6% and 19 +/- 8%, respectively.  相似文献   


17.
Amino acid infusion during general anesthesia induces thermogenesis and prevents postoperative hypothermia and shivering. We propose that amino acid prevention of hypothermia during anesthesia shortens the hospital stay. Core temperatures and pulmonary oxygen uptake were measured in 45 patients, receiving an IV amino acid mixture, 126 mL/h, before and/or during isoflurane anesthesia and 30 control patients receiving acetated Ringer's solution. At awakening, mean core temperature was 36.5 degrees+/-0.1 degrees C in the amino acid group and 35.7 degrees+/-0.1 degrees C (P < 0.001) in the controls. Energy expenditure increased by 54%+/-9% from baseline in amino acid patients in whom shivering was uncommon, but only by 5%+/-4% (P < 0.001) in control patients, of whom the majority developed postoperative shivering. The estimated difference in hospital stay between the two groups was 2.7 days (CI 95%: 1.3-4.0). Multiple regression analysis showed that the variables best predicting hospitalization were duration of surgery, amino acid treatment, and awakening temperatures. Duration of surgery was similar in the two groups and core temperatures at awakening were a result of amino acid infusion, which indicates that amino acid infusion during anesthesia and surgery was the most important factor for the shorter hospitalization. IMPLICATIONS: Amino acid infusion during general anesthesia induces thermogenesis and prevents postoperative hypothermia and shivering. Multiple regression analysis indicated that this resulted in a shorter hospital stay.  相似文献   

18.
Background: Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point.

Methods: Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ [middle dot] kg-1 [middle dot] h-1 for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling.

Results: Amino acid infusion increased resting core temperature by 0.3 +/- 0.1[degrees]C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34[degrees]C) for active cutaneous vasodilation by 0.3 +/- 0.3[degrees]C, for sweating by 0.2 +/- 0.2[degrees]C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3[degrees]C, and for thermogenesis by 0.4 +/- 0.5[degrees]C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses.  相似文献   


19.
Deaths from uncontrollable hemorrhage might be prevented by arresting the circulation under protective hypothermia to allow resuscitative surgery to repair these injuries in a bloodless field. We have shown previously that in hemorrhagic shock, circulatory arrest of 60 minutes under deep hypothermia (tympanic membrane temperature, Ttm = 15 degrees C) was the maximum duration of arrest that allowed normal brain recovery. We hypothesize that profound cerebral hypothermia (Ttm less than 10 degrees C) could extend the duration of safe circulatory arrest. In pilot experiments, we found that the cardiopulmonary system did not tolerate arrest at a core (esophageal) temperature (Tes) of less than 10 degrees C. Twenty-two dogs underwent 30-minute hemorrhagic shock (mean arterial pressure 40 mm Hg), rapid cooling by cardiopulmonary bypass (CPB), blood washout to a hematocrit of less than 10%, and circulatory arrest of 2 hours. In deep hypothermia group 1 (n = 10), Ttm was maintained at 15 degrees C during arrest. In profound hypothermia group 2 (n = 12), during cooling with CPB, the head was immersed in ice water, which decreased Ttm to 4 degrees-7 degrees C. The Tes was 10 degrees C in all dogs during arrest. Reperfusion and rewarming were by CPB for 2 hours. Controlled ventilation was to 24 hours, intensive care to 72 hours. In the 20 dogs that followed protocol, best neurologic deficit scores (0% = normal, 100% = brain death) at 24-72 hours were 23% +/- 19% in group 1 and 12% +/- 8% in group 2 (p = 0.15). Overall performance categories and histologic damage scores were significantly better in group 2 (p = 0.04 and p less than 0.001, respectively). We conclude that profound cerebral hypothermia with CPB plus ice water immersion of the head can extend the brain's tolerance of therapeutic circulatory arrest beyond that achieved with deep hypothermia.  相似文献   

20.
Meperidine has potent antishivering properties. The underlying mechanisms are not fully elucidated, but recent investigations suggest that alpha2-adrenoceptors are likely to be involved. We performed the current study to investigate the effects of meperidine on nonshivering thermogenesis in a model of thermoregulation in mice. After injection (0.1 mL/kg intraperitoneally) of saline, meperidine (20 mg/kg), the specific alpha2-adrenoceptor antagonist atipamezole (2 mg/kg), plus saline or atipamezole plus meperidine, respectively, mice were positioned in a Plexiglas chamber. Rectal temperature and mixed expired carbon dioxide were measured after provoking thermoregulatory effects by whole body cooling. Maximum response intensity of nonshivering thermogenesis and the thermoregulatory threshold for nonshivering thermogenesis, which was defined as the temperature at which a sustained increase in expiratory carbon dioxide can be measured, were investigated. Meperidine significantly decreased the threshold of nonshivering thermogenesis (36.6 degrees C +/- 0.7 degrees C) versus saline (37.9 degrees C +/- 0.6 degrees C) and versus atipamezole plus saline (37.8 degrees C +/- 0.4 degrees C; P <0.01). This effect was abolished after administration of meperidine combined with atipamezole (37.7 degrees C +/- 0.6 degrees C; P <0.05). Meperidine did not decrease the maximum intensity of nonshivering thermogenesis. The results suggest a major role of alpha2-adrenoceptors in the inhibition of thermoregulation by meperidine in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号