首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Benzyloxybenzaldehyde (CCY1a) inhibited the formyl-Met-Leu-Phe (fMLP)-induced elevation of cytosolic [Ca2+] ([Ca2+]i) in rat neutrophils. The late plateau phase, but not the initial Ca2+ spike, of the fMLP-induced [Ca2+]i change was inhibited by CCY1a. In the absence of external Ca2+, CCY1a had no appreciable effect on either the fMLP- or cyclopiazonic acid (CPA)-induced [Ca2+]i elevation. CCY1a failed to inhibit [Ca2+]i changes induced by N-ethylmaleimide, GEA3162, ionomycin or sphingosine, but slightly inhibited the Ca2+ signals elicited by ATP or interleukin-8 (IL-8). In a classical Ca2+ readdition protocol, addition of CCY1a after cell activation strongly inhibited the [Ca2+]i response to fMLP, whilst that to CPA was only slightly reduced. CCY1a nearly abrogated the fMLP-stimulated Mn2+ influx but was less effective on the CPA-induced response. CCY1a attenuated the levels of tyrosine-phosphorylated bands in the 70–85 kDa molecular mass range. CCY1a had no effect on the basal [Ca2+]i level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity or on the mitochondrial membrane potential. Thus, CCY1a blocks fMLP-induced Ca2+ entry into neutrophils probably by blocking the relevant Ca2+ channel directly or, alternatively, indirectly through the attenuation of tyrosine phosphorylation of some cellular proteins.  相似文献   

2.
Summary The modes by which Endothelin-1 (ET) induces Ca2+-influx and the relative functional importance of the different sources of Ca2+ for ET-induced contraction were studied using fura 2-loaded and unloaded rat aortic strips. ET caused an increase in the cytosolic free Ca2+ level ([Ca2+]i) followed by a tonic contraction in Ca2+-containing solution, and produced a transient elevation of [Ca2+]i followed by a small sustained contraction in Ca2+-free medium. ET also stimulated 45Ca influx into La2+-inaccessible fraction significantly. With the same change of [Ca2+]i, ET caused a larger tension than that induced by high K. ET-induced contraction and [Ca2+]i elevation were not significantly inhibited by 0.1–0.3 M nicardipine which nearly abolished the contraction and [Ca+]i elevation produced by high K. During treatment of the strips with high K, addition of ET induced further increases in [Ca2+]i and muscle tension, and vice versa. In Ca2+-free medium, ET-induced contraction was influenced neither by ryanodine-treatment nor by high K-treatment, although the former attenuated and the latter potentiated the [Ca2+]i transient induced by ET. Further, the ET-induced sustained contraction under Ca2+-free conditions began to develop after the [Ca2+]i level returned to the baseline. Thus, it seems that the Ca2+ released from the ryanodine-sensitive and -insensitive Ca2+ stores by ET may provide only a minor or indirect contribution, if any, to the tension development. ET might cause a contraction mainly by stimulating Ca2+-influx through Ca2+ channel(s) other than voltage-dependent Ca2+ channels in character, and by increasing the sensitivity of the contractile filaments to Ca2+ or activating them Ca2+-independently.Visiting from Zun Yi Medical College, China Send offprint requests to I. Takayanagi at the above address  相似文献   

3.
  1. In this study, the underlying mechanism of stimulation of respiratory burst by kazinol B, a natural isoprenylated flavan, in rat neutrophils in vitro was investigated.
  2. Kazinol B concentration-dependently stimulated the superoxide anion (O2[dot over 2]) generation, with a lag but transient activation profile, in neutrophils but not in a cell-free system. The maximum response (13.2±1.4 nmol O2[dot over 2] 10 min−1 per 106 cells) was observed at 10 μM kazinol B.
  3. Pretreatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) or formylmethionyl-leucyl-phenylalanine (fMLP) significantly enhanced the O2[dot over 2] generation following the subsequent stimulation of cells with kazinol B.
  4. Cells pretreated with EGTA or a protein kinase inhibitor staurosporine effectively attenuated the kazinol B-induced O2[dot over 2] generation. However, a p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and a phosphoinositide 3-kinase (PI3K) inhibitor wortmannin had no effect on the kazinol B-induced response.
  5. Kazinol B significantly stimulated [Ca2+]i elevation in neutrophils, with a lag and slow rate of rise activation profile, and this response was attenuated by a phospholipase C (PLC) inhibitor U73122. Kazinol B also stimulated the inositol bis- and trisphosphate (IP2 and IP3) formation with a 1 min lag time.
  6. The membrane-associated PKC-α and PKC-θ but not PKC-ι were increased following the stimulation of neutrophils with kazinol B. It was more rapid and sensitive in the activation of PKC-θ than PKC-α by kazinol B. Kazinol B partially inhibited the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to the neutrophil cytosolic PKC.
  7. Neither the cellular mass of phosphatidic acid (PA) and phosphatidylethanol (PEt), in the presence of ethanol, nor the protein tyrosine phosphorylation were stimulated by kazinol B. In addition, the kazinol B-induced O2[dot over 2] generation remained relatively unchanged in cells pretreated with ethanol or a tyrosine kinase inhibitor genistein.
  8. Collectively, these results indicate that the stimulation of the respiratory burst by kazinol B is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.
  相似文献   

4.
The effects of oxidized low-density lipoprotein (OxLDL) and its major lipid constituent lysophosphatidylcholine (LPC) on Ca2+ entry were investigated in cultured human umbilical endothelial cells (HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular Ca2+ concentration ([Ca2+]i), and the increase of [Ca2+]i by OxLDL or by LPC was inhibited by La3+ or heparin. LPC failed to increase [Ca2+]i in the presence of an antioxidant tempol. In addition, store-operated Ca2+ entry (SOC), which was evoked by intracellular Ca2+ store depletion in Ca2+-free solution using the sarcoplasmic reticulum Ca2+ pump blocker, 2, 5-di-t-butyl-1, 4-benzohydroquinone (BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased [Ca2+]i and simultaneously activated non-selective cation (NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, La3+ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular Ca2+ to 1 µM activated large-conductance Ca2+-activated K+ (BKCa) current spontaneously, and this activated BKCa current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates Ca2+-permeable Ca2+-activated NSC current and BKCa current simultaneously, thereby increasing SOC.  相似文献   

5.
This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic Ca2+ level ([Ca2+]i), and Ca2+ sensitivity in guinea pig ileum. Forskolin (0.1 nM~10 µM) inhibited high K+ (25 mM and 40 mM)- or histamine (3 µM)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high K+-evoked contractions. Spontaneous changes in [Ca2+]i and contractions were inhibited by forskolin (1 µM) without changing the resting [Ca2+]i. Forskoln (10 µM) inhibited muscle tension more strongly than [Ca2+]i stimulated by high K+, and thus shifted the [Ca2+]i-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 µM) inhibited both [Ca2+]i and muscle tension without changing the [Ca2+]i-tension relationship. In α-toxin-permeabilized tissues, forskolin (10 µM) inhibited the 0.3 µM Ca2+-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the Ca2+-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in Ca2+ sensitivity of contractile elements in high K+-stimulated muscle and a decrease in [Ca2+]i in histamine-stimulated muscle.  相似文献   

6.
Summary The effects of 1-adrenoceptor stimulation by phenylephrine (PE) and -adrenoceptor stimulation by isoprenaline (ISO) on Ca2+ current (ICa) and free intracellular Ca2+ concentration ([Ca2+]i) were studied in isolated atrial myocytes from rat hearts. PE did not significantly affect the magnitude of ICa, whereas large increases of peak ICa were observed in response to ISO. In electrically driven cells, PE evoked a concentration-dependent, gradual increase in diastolic [Ca2+]i and, initially, an increase in the height of peak [Ca2+]i transients. When the diastolic [Ca2+]i was increased to a greater extent, the amplitude of [Ca2+]i transients was decreased. Simultaneous measurements of [Ca2+]i and membrane potential showed that the increase in diastolic [Ca2+]i was associated with a depolarization of the membrane, and the greater amplitude of [Ca2+]i transients with a prolongation of the action potential (AP). The PE-induced increase in diastolic [Ca2+]i was eliminated when the cells were voltage-clamped at the original resting membrane potential (RP); under these conditions, an increase in [Ca2+]i transients was observed in response to PE. ISO usually caused larger increases in the amplitude of [Ca2+]i transients with only minor changes in diastolic [Ca2+]i. These results suggest that PE and ISO increase the amplitude of [Ca2+]i transients in rat atrium in different ways. The increase in [Ca2+]i transients in response to -adrenoceptor stimulation is commonly thought to be mediated by a greater conductance of voltage-dependent Ca2+ channels causing a greater Ca2+ influx and a release of more Ca2+ from the sarcoplasmic reticulum during the AP. The increase in diastolic [Ca2+]i in response to PE is probably a consequence of the depolarization of the membrane, possibly involving the voltage-dependent Na+-Ca2+ exchange mechanism. The increase in the amplitude of the [Ca2+]i transients in response to PE may be ascribed both to the initial increase in diastolic [Ca2+]i and the prolongation of the AP. Send offprint requests to H. Nawrath at the above address  相似文献   

7.
1-[6-[[17a-3-Methoxyestra-1,3,5(10)-trien17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) has been proven to be a useful tool in investigation of phospholipase C (PLC)-coupled signal transduction during cell activation. In the present studies, the inhibition by U-73122 of cytosolic free Ca2+ concentration ([Ca 2+]i) of neutrophils was investigated. U-73122 suppressed the [Ca2+]i elevation of neutrophils suspended in Ca2+-containing medium challenged by N-formyl-Met-Leu-Phe (fMLP), cyclopiazonic acid (CPA) and ionomycin. The concentrations of U-73122 required for inhibition of CPA- and ionomycin-induced changes with IC50 values 4.06 ± 0.27 µM and 4.04 ± 0.44 µM, respectively, is almost 10-times that required for inhibition of the fMLP-induced response (IC50 value 0.62 ± 0.04 µM) U-73122 also reduced the intracellular Ca2+ mobilization of neutrophils suspended in Ca 2+-free medium stimulated by fMLP and CPA, but not by ionomycin, with IC50 values 0.52 ± 0.02 µM and 6.82 ± 0.74 µM, respectively. 1-[6-[[17f3-Methoxyestra-1,3,5(10)-trien-l7-yl]amino]hexyl]2,5-pyrrolidinedione (U-73343), a close analog of U-73122 that does not inhibit PLC activity, suppressed the [Ca2+]i elevation of neutrophils challenged by fMLP in Ca2+-containing medium, but not in Ca2+-free medium, with IC50 value 22.30 ± 1.61 µM. In Mn2+-quench studies, U-73122 suppressed the Mn2+ influx in CPA-activated neutrophils (IC50 value was 7.16 ± 0.28 µM) as well as in resting neutrophils (IC50 value was 6.72 ± 0.30 M). U-73343 also suppressed the Mn2+ influx in resting neutrophils in a concentration-dependent manner. These results suggest that the inhibitory effect of U-73122 on [Ca2+]i of activated neutrophils is attributed partly to the suppression of Ca2+ release from the intracellular Ca2+ stores through PLC inhibition, and partly to the blockade, especially at higher concentrations, of Ca2+ entry from the extracellular space through PLC-independent processes.  相似文献   

8.
Summary By measuring the 45Ca2+ movement in saponin-skinned primary cultured rat aortic smooth muscle cells, we examined the specificity of the inhibitory effect of heparin on the IP3-induced Ca2+ release. IP3 (100 mol/l) markedly (98%) decreased the MgATP-dependent 45Ca2+ content in the non-mitochondrial Ca2+ stores in the presence of 1 mol/l free Ca2+. Heparin (1–100 g/ml) dose-dependently inhibited this Ca2+ release by IP3. In Ca2+-free solution, heparin (100 g/ml) inhibited the increases in 45Ca2+ efflux rate evoked by 10 mol/l IP3. De-N-sulfated heparin did not inhibit the IP3-induced Ca2+ release. Hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C and 2,6-disulfated d-glucosamine had no inhibitory effects on the IP3-induced Ca2+ release. High concentrations (over 1 mg/ml) of heparin inhibited the 45Ca2+ influx and decreased the Ca2+ content in skinned cells. These results suggest that heparin (1–100 g/ml) specifically inhibits the IP3-induced increase in Ca2+ permeability of Ca2+ stores and that three sulfate groups at different locations on the molecule of heparin, two at the d-glucosamine and one at the iduronic acid, may be important for this action, in skinned vascular smooth muscle cells, in culture. Send offprint requests to H. Kanaide at the above address  相似文献   

9.
The effect of the environmental contaminant, bisphenol A, on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether bisphenol A changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Bisphenol A, at concentrations between 50 and 300 µM, increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced, partly, by removing extracellular Ca2+. Bisphenol A induced Mn2+ influx, leading to quenching of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid, store-operated Ca2+ channel blockers nifedipine and SK&F96365, and protein kinase C inhibitor GF109203X. In Ca2+-free medium, pretreatment with the mitochondrial uncoupler, carbonylcyanide m-chlorophenylhydrazone (CCCP), and the endoplasmic reticulum Ca2+ pump inhibitors, thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ), inhibited bisphenol A–induced Ca2+ release. Conversely, pretreatment with bisphenol A abolished thapsigargin (or BHQ)- and CCCP-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished bisphenol-induced [Ca2+]i rise. Bisphenol A caused a concentration-dependent decrease in cell viability via apoptosis in a Ca2+-independent manner. Collectively, in MDCK cells, bisphenol A induced [Ca2+]i rises by causing phospholipase C–dependent Ca2+ release from the endoplasmic reticulum and mitochondria and Ca2+ influx via phospholipase A2–, protein kinase C–sensitive, store-operated Ca2+ channels.  相似文献   

10.
Celecoxib has been shown to have an antitumor effect in previous studies, but the mechanisms are unclear. Ca2+ is a key second messenger in most cells. The effect of celecoxib on cytosolic free Ca2+ concentrations ([Ca2+]i) in human suspended PC3 prostate cancer cells was explored by using fura-2 as a fluorescent dye. Celecoxib at concentrations between 5 and 30 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Celecoxib-induced Ca2+ influx was not blocked by L-type Ca2+ entry inhibitors or protein kinase C/A modulators [phorbol 12-myristate 13-acetate (PMA), GF109203X, H-89], but was inhibited by the phospholipase A2 inhibitor, aristolochic acid. In Ca2+-free medium, 30 μM of celecoxib failed to induce a [Ca2+]i rise after pretreatment with thapsigargin (an endoplasmic reticulum [ER] Ca2+ pump inhibitor). Conversely, pretreatment with celecoxib inhibited thapsigargin-induced Ca2+ release. Inhibition of phospholipase C with U73122 did not change celecoxib-induced [Ca2+]i rises. Celecoxib induced slight cell death in a concentration-dependent manner, which was enhanced by chelating cytosolic Ca2+ with BAPTA. Collectively, in PC3 cells, celecoxib induced [Ca2+]i rises by causing phospholipase C–independent Ca2+ release from the ER and Ca2+ influx via non-L-type, phospholipase A2-regulated Ca2+ channels. These data may contribute to the understanding of the effect of celecoxib on prostate cancer cells.  相似文献   

11.

BACKGROUND AND PURPOSE

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca2+ concentration ([Ca2+]i). Although it is well-appreciated that the myocyte Ca2+ signalling system is composed of microdomains, little is known about the structure of the [Ca2+]i responses induced by P2X receptor stimulation in vascular myocytes.

EXPERIMENTAL APPROACHES

Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca2+ signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP).

KEY RESULTS

RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP3R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca2+]i transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L−1αβ-meATP triggered an abrupt Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum enriched with IP3Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca2+ channels (VGCCs) or IP3Rs suppressed the sub-plasmalemmal [Ca2+]i upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP3R inhibition on the sub-plasmalemmal [Ca2+]i upstroke was attenuated following block of VGCCs.

CONCLUSIONS AND IMPLICATIONS

Depolarization of RVSMCs following P2X receptor activation induces IP3R-mediated Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum, which is activated mainly by Ca2+ influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.  相似文献   

12.
Timolol is a medication used widely to treat glaucoma. Regarding Ca2+ signaling, timolol was shown to modulate Ca2+-related physiology in various cell types, however, the effect of timolol on Ca2+ homeostasis and cell viability has not been explored in human prostate cancer cells. The aim of this study was to explore the effect of timolol on intracellular Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells. Timolol at concentrations of 100–1000?μM induced [Ca2+]i rises. The Ca2+ signal in Ca2+-containing medium was reduced by removal of extracellular Ca2+ by approximately 75%. Timolol (1000?μM) induced Mn2+ influx suggesting of Ca2+ entry. Timolol-induced Ca2+ entry was partially inhibited by three inhibitors of store-operated Ca2+ channels: nifedipine, econoazole and SKF96365, and by a protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate [PMA]) or an inhibitor (GF109203X). In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished timolol-evoked [Ca2+]i rises. Conversely, treatment with timolol abolished thapsigargin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished timolol-induced [Ca2+]i rises. Timolol at concentrations between 200 and 600?μM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not reverse cytotoxicity of timolol. Together, in PC3 cells, timolol induced [Ca2+]i rises by evoking Ca2+release from the endoplasmic reticulum in a PLC-dependent manner, and Ca2+ influx via PKC-regulated store-operated Ca2+ entry. Timolol also caused cell death that was not linked to preceding [Ca2+]i rises.  相似文献   

13.
Summary The pharmacological and binding properties of the novel enantiomerically pure benzothiazinone (R)-(+)-3, 4-dihydro-2-isopropyl-4-methyl-2-[2-[4-[4-[2-(3,4,5-trimethoxyphenyl)-ethyl]-piperazinyl]-butoxyl-phenyl]-2H-1, 4-benzothiazine-3-one dihydrochloride (HOE 166), are described. HOE 166 stereoselectively inhibited KCl but not noradrenaline-induced contractions of guinea-pig pulmonary arteries, rabbit aorta, rat mesenteric artery preparations and k-strophantin-induced enhancement of guinea-pig papillary muscle contraction in a dose-dependent manner. KCl-induced smooth muscle contraction was inhibited by HOE 166 with IC50-values of 70 nM (5–11 times less potent than nifedipine, 2–16 times more potent than verapamil), the respective S-(–)-enantiomer being 10-fold less potent. HOE 166 decreased the upstroke velocity of the slow action potential in partially depolarized guinea-pig papillary muscle at similar concentrations than nifedipine. To investigate possible interactions with the calcium channel, HOE 166 and its S-(–)-enantiomer were characterized by radioligand binding studies in heart, brain and skeletal muscle transverse-tubule membranes. HOE 166 was a 4–15 times more potent inhibitor of reversible (+)-[3H]PN200-110, (–)-[3H]desmethoxyverapamil and d-cis [3H]diltiazem binding compared to its pharmacologically less active (S)-(–)-enantiomer, with IC50 values in the low nanomolar range. Extensive equilibrium and kinetic studies suggest that HOE 166 exerts its Ca2+-antagonistic effect by binding to a Ca2+-channel-associated drug receptor which is distinct from the 1,4-dihydropyridine, phenylalkylamine or benzothiazepine-selective domain. This HOE 166-selective site is, however, allosterically linked to the other sites of the Ca2+ antagonist receptor complex. We conclude that HOE 166 is a novel calcium antagonist.Send offprint requests to H. Glossmann  相似文献   

14.

Aim:

To investigate the reverse mode function of Na+/Ca2+ exchangers NCX1.1 and NCX1.5 expressed in CHO cells as well as their modulations by PKC and PKA.

Methods:

CHO-K1 cells were transfected with pcDNA3.1 (+) plasmid carrying cDNA of rat cardiac NCX1.1 and brain NCX1.5. The expression of NCX1.1 and NCX1.5 was examined using Western blot analysis. The intracellular Ca2+ level ([Ca2+]i) was measured using Ca2+ imaging. Whole-cell NCX currents were recorded using patch-clamp technique. Reverse mode NCX activity was elicited by perfusion with Na+-free medium. Ca2+ paradox was induced by Ca2+-free EBSS medium, followed by Ca2+-containing solution (1.8 or 3.8 mmol/L CaCl2).

Results:

The protein levels of NCX1.1 and NCX1.5 expressed in CHO cells had no significant difference. The reverse modes of NCX1.1 and NCX1.5 in CHO cells exhibited a transient increase of [Ca2+]i, which was followed by a Ca2+ level plateau at higher external Ca2+ concentrations. In contrast, the wild type CHO cells showed a steady increase of [Ca2+]i at higher external Ca2+ concentrations. The PKC activator PMA (0.3-10 μmol/L) and PKA activator 8-Br-cAMP (10-100 μmol/L) significantly enhanced the reverse mode activity of NCX1.1 and NCX1.5 in CHO cells. NCX1.1 was 2.4-fold more sensitive to PKC activation than NCX1.5, whereas the sensitivity of the two NCX isoforms to PKA activation had no difference. Both PKC- and PKA-enhanced NCX reverse mode activities in CHO cells were suppressed by NCX inhibitor KB-R7943 (30 μmol/L).

Conclusion:

Both NCX1.1 and NCX1.5 are functional in regulating and maintaining stable [Ca2+]i in CHO cells and differentially regulated by PKA and PKC. The two NCX isoforms might be useful drug targets for heart and brain protection.  相似文献   

15.
Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Gö6976, a specific inhibitor of PKCα had no effect on the tolerance, both the PKCε translocation inhibitor and the PKCζ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCε and PKCξ, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.  相似文献   

16.

Aim:

Hydrogen peroxide (H2O2) is produced during liver transplantation. Ischemia/reperfusion induces oxidation and causes intracellular Ca2+ overload, which harms liver cells. Our goal was to determine the precise mechanisms of these processes.

Methods:

Hepatocytes were extracted from rats. Intracellular Ca2+ concentrations ([Ca2+]i), inner mitochondrial membrane potentials and NAD(P)H levels were measured using fluorescence imaging. Phospholipase C (PLC) activity was detected using exogenous PIP2. ATP concentrations were measured using the luciferin-luciferase method. Patch-clamp recordings were performed to evaluate membrane currents.

Results:

H2O2 increased intracellular Ca2+ concentrations ([Ca2+]i) across two kinetic phases. A low concentration (400 μmol/L) of H2O2 induced a sustained elevation of [Ca2+]i that was reversed by removing extracellular Ca2+. H2O2 increased membrane currents consistent with intracellular ATP concentrations. The non-selective ATP-sensitive cation channel blocker amiloride inhibited H2O2-induced membrane current increases and [Ca2+]i elevation. A high concentration (1 mmol/L) of H2O2 induced an additional transient elevation of [Ca2+]i, which was abolished by the specific PLC blocker U73122 but was not eliminated by removal of extracellular Ca2+. PLC activity was increased by 1 mmol/L H2O2 but not by 400 μmol/L H2O2.

Conclusion:

H2O2 mobilizes Ca2+ through two distinct mechanisms. In one, 400 μmol/L H2O2-induced sustained [Ca2+]i elevation is mediated via a Ca2+ influx mechanism, under which H2O2 impairs mitochondrial function via oxidative stress, reduces intracellular ATP production, and in turn opens ATP-sensitive, non-specific cation channels, leading to Ca2+ influx. In contrast, 1 mmol/L H2O2-induced transient elevation of [Ca2+]i is mediated via activation of the PLC signaling pathway and subsequently, by mobilization of Ca2+ from intracellular Ca2+ stores.  相似文献   

17.
The effects of honokiol and magnolol extracted from the Magnolia officinalis on muscular contractile responses and intracellular Ca2+ mobilization were investigated in the non-pregnant rat uterus. Honokiol and magnolol (1–100 mol/l) were observed to inhibit spontaneous and uterotonic agonists (carbachol, PGF2, and oxytocin)-, high K+-, and Ca2+ channel activator (Bay K 8644)-induced uterine contractions in a concentration-dependent manner. The inhibition rate of honokiol on spontaneous contractions appeared to be slower than that of magnolol-induced response. The time periods that were required for honokiol and magnolol, at 100 mol/l, to abolish 50% spontaneous contractions were approximately 6 min. Furthermore, honokiol and magnolol at 10 mol/l also blocked the Ca2+-dependent oscillatory contractions. Consistently, the increases in intracellular Ca2+ concentrations ([Ca2+]i) induced by PGF2 and high K+ were suppressed by both honokiol and magnolol at 10 mol/l. After washout of these treatments, the rise in [Ca2+]i induced by PGF2 and high K+ was still partially abolished. In conclusion, the inhibitory effects of honokiol and magnolol on uterine contraction may be mediated by blockade of external Ca2+ influx, leading to a decrease in [Ca2+]i. Honokiol and magnolol may be considered as putative Ca2+ channel blockers and be of potential value in the treatment of gynecological dysfunctions associated with uterine muscular spasm and dysmenorrhea.  相似文献   

18.
N,N-dimethyl-D-erythro-sphingosine (DMS), an N-methyl derivative of sphingosine, is an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In previous reports, DMS-induced intracellular Ca2+ increase concentration ([Ca2+]i) was studied in T lymphocytes, monocytes, astrocytes and neuronal cells. In the present study, we studied DMS-induced increase of [Ca2+]i in HCT116 human colon cancer cells. We found that the DMS-induced increase of [Ca2+]i in colon cancer cells is composed of Ca2+ release from intracellular Ca2+ stores and subsequent Ca2+ influx. The Ca2+ release is not related to modulation of inositol 1,4,5-trisphosphate (IP3) receptor or ryanodine receptor. On the other hand, the Ca2+ influx is mediated largely through Ca2+ channels sensitive to verapamil, nifedipine, Ga3+, and La3+. Furthermore, we found that the response is inhibited by bepridil and Ni2+, specific inhibitors of Na+-Ca2+-exchanger, suggesting involvement of Na+-Ca2+ exchanger in the DMS-induced [Ca2+]i increase in colon cancer cells. This inhibition was also observed in U937 monocytes, but not in 1321N1 astrocytes.  相似文献   

19.

Aim:

Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.

Methods:

Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.

Results:

Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).

Conclusion:

Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.  相似文献   

20.

Background and Purpose

Ca2+ imaging reveals subcellular Ca2+ sparks and global Ca2+ waves/oscillations in vascular smooth muscle. It is well established that Ca2+ sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca2+ waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca2+ sparks in the generation of myogenic tone in pressurized arterioles.

Experimental Approach

Isolated retinal arterioles (25–40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca2+ signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.

Key Results

Tone development was associated with an increased frequency of Ca2+ sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca2+ oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca2+ sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca2+, resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca2+ sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca2+] ([Ca2+]c), as measured using Fura2 and microfluorimetry.

Conclusions and Implications

This study provides direct evidence that Ca2+ sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca2+]c, underlining the importance of frequency-modulated signalling in vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号