首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germline mutations in breast cancer susceptibility genes, BRCA1 and BRCA2, are responsible for a substantial proportion of high‐risk breast and breast/ovarian cancer families. To characterize the spectrum of BRCA1 and BRCA2 mutations, we screened Czech families with breast/ovarian cancer using the non‐radioactive protein truncation test, heteroduplex analysis and direct sequencing. In a group of 100 high‐risk breast and breast/ovarian cancer families, four novel frame shift mutations were identified in BRCA1 and BRCA2 genes. In BRCA1, two novel frame shift mutations were identified as 3761‐3762delGA and 2616‐2617ins10; in BRCA2, two novel frame shift mutations were identified as 5073‐5074delCT and 6866delC. Furthermore, a novel missense substitution M18K in BRCA1 gene in a breast/ovarian cancer family was identified which lies adjacent just upstream of the most highly conserved C3HC4 RING zinc finger motif. To examine the tertiary structure of the RING zinc finger domain and possible effects of M18K substitution on its stability, we used threading techniques according to the crystal structure of RAG1 dimerization domain of the DNA‐binding protein. © 2000 Wiley‐Liss, Inc.  相似文献   

2.
The establishment of esophageal cancer cell lines can facilitate the search for molecular mechanisms underlying its pathogenesis. Two novel human esophageal squamous cell carcinoma (ESCC) cell lines, HKESC-2 and HKESC-3, were established from a moderately differentiated ESCC of a 46-year-old Chinese woman and a well-differentiated ESCC of a 74-year-old Chinese man, both from Hong Kong. The pathological characteristics (morphological, immunohistochemical, and electron microscopic studies), tumorigenicity in nude mice, cytogenetic features, and DNA ploidy of the two cell lines were investigated. The two cell lines have been maintained in vitro for more than 17 months and passaged over 85 times for HKESC-2 and 58 times for HKESC-3. Both grew as monolayers, with a doubling time of 24 hours for HKESC-2 and 48 h for HKESC-3. Their squamous epithelial nature was authenticated by their strong immunopositivity with the anti-cytokeratin antibodies and the ultrastructural demonstration of tonofilaments and desmosomes. They are tumorigenic in nude mice and had DNA aneuploidy. G-banding cytogenetic analysis showed hyperdiploidy in HKESC-2 and near-tetraploidy in HKESC-3. Frequent breakpoints were noted at 1p22, 1p32, and 9q34 in HKESC-2 and at 1p31, 3p25, 3p14, 6q16, 6q21, 8p21, 9q34, 13q32, and 17q25 in HKESC-3. Comparative genomic hybridization analysis found that chromosomal gains were at 3q24-qter, 5q21-qter, 8q11-qter, 13q21-q31, 17q11-qter, 19, 22q22 for HKESC-2 and at 3q13-qter, 5p, 6p, 9q21-qter, 10q21-q22, 12q15-pter, 14q24-qter, 16, 17q24-qter, 20 for HKESC-3. Chromosomal losses were at 3p13-pter, 18q12-qter for HKESC-3. These two newly established cell lines will be useful tools in the study of the molecular pathogenesis and biological behavior of ESCC cells and for testing new therapeutic reagents for ESCC in the future.  相似文献   

3.
4.
Germline mutations in the BRCA1 and BRCA2 genes account for the majority of high-risk breast/ovarian cancer families, depending on the population studied. Previously, BRCA1 mutations were described in women from Western Poland. To further characterize the spectrum of BRCA1 mutations and the impact of BRCA2 mutations in Poland, we have analyzed 25 high-risk breast and/or ovarian cancer families from North-Eastern Poland for mutations in all coding exons of the BRCA1 and BRCA2 genes, using combined heteroduplex analysis/SSCP followed by direct DNA sequence analysis. Out of 25 probands a total of five (20%) carried three recurrent BRCA1 mutations (300T>G, 3819del5, 5382insC). The 300T>G mutation accounted for 60% (3/5) of BRCA1 mutations and allelotyping suggested a common founder of this mutation. No unique mutations were found. In addition, we identified three BRCA2 (12%) mutations, one recurrent 4075delGT, and two novel frameshift mutations, 7327ins/dupl19 and 9068delA. We conclude that 30% of high-risk families from North-Eastern Poland may be due to recurrent BRCA1 and unique BRCA2 mutations. Intriguingly, the BRCA1 mutation spectrum seems to be different within subregions of Poland.  相似文献   

5.
Familial aggregation is thought to account for 5-10% of all breast cancer cases, and high penetrance breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 explain < or =20% of these. Hundreds of mutations among breast/ovarian cancer families have been found in these two genes. The mutation spectrum and prevalence, however, varies widely among populations. Thirty-six breast/ovarian cancer families were identified from a population sample of breast and ovarian cancer cases among a relatively isolated population in Eastern Finland, and the frequency of BRCA1/BRCA2 germline mutations were screened using heteroduplex analysis, protein truncation test and sequencing. Five different mutations were detected in seven families (19.4%). Two mutations were found in BRCA1 and three in BRCA2. One of the mutations (BRCA2 4088insA) has not been detected elsewhere in Finland while the other four, 4216-2nt A-->G and 5370 C-->T in BRCA1 and 999del5 and 6503delTT in BRCA2, are recurrent Finnish founder mutations. These results add to the evidence of the geographical differences in distribution of Finnish BRCA1/BRCA2 mutations. This screen also provides further evidence for the presumption that the majority of Finnish BRCA1/BRCA2 founder mutations have been found and that the proportion of BRCA1/BRCA2 mutations in Finnish breast/ovarian cancer families is around 20%.  相似文献   

6.
Germline mutations in the BRCA1 and BRCA2 genes are responsible for the predisposition and development of familial breast and/or ovarian cancer. Most mutations of BRCA1 and BRCA2 associated with breast and/or ovarian cancer result in truncated proteins. To investigate the presence of BRCA1 and BRCA2 germline mutations in Korean breast and/or ovarian cancer families, we screened a total of 27 cases from 21 families including two or more affected first- or second-degree relatives with breast and/or ovarian cancer. PTT, PCR-SSCP, and DHPLC analysis, followed by sequencing were used in the screening process. In nine families, we found BRCA1 and BRCA2 germline mutations that comprised four frameshift mutations and five nonsense mutations. All nine mutations led to premature termination producing shortened proteins. Among the nine mutations, three novel BRCA1 mutations (E1114X, Q1299X, 4159delGA) and two novel BRCA2 mutations (K467X, 8945delAA) were identified in this work.  相似文献   

7.
Germline mutations in the BRCA2 gene have been shown to be associated with familial female and male breast cancer. Mutations occur throughout the entire coding region of the gene, and there is considerable ethnic and geographical diversity in the deleterious mutations detected in different populations. No data exist on the role of the BRCA2 gene in the Cypriot population. In this study we present the results of characterizing mutations in the BRCA2 gene, in 26 Cypriot families with multiple cases of breast/ovarian cancer. The entire coding region, including splice sites, of BRCA2 were sequenced using cycle sequencing. In total 29 BRCA2 variants were detected which include 3 truncating mutations, 8 missense mutations, 6 polymorphisms and 12 intronic variants. The 3 truncating mutations are frameshift mutation 8984delG (exon 22), and two nonsense mutations, namely C1913X (exon 11) which is a novel mutation, and K3326X (exon 27). It is of interest that frameshift mutation 8984delG was the most frequent, since it was detected in 5 patients from three different families. Among the 6 polymorphisms detected, polymorphism T77T is novel and similarly 4 of the 12 intronic variants were also novel, namely IVS1+8G>A, IVS1-96insA, IVS4+36A>G and IVS11-51G>T. These results show that deleterious BRCA2 mutations, occur at the same frequency, about 20%, in Cypriot families, as that recorded in other European populations. We conclude that the BRCA2 gene plays a significant role in the familial breast cancer phenotype in the Cypriot population.  相似文献   

8.
Germline mutation analysis of BRCA1 gene has demonstrated significant allelic heterogeneity. These differences represent historical influences of migration, population structure and geographic or cultural isolation. To date, there have been no reports of Indian families with mutations in BRCA1. We have screened for mutations in selected coding exons of BRCA1 and their flanking intron regions in three breast or breast and ovarian cancer families with family history of three or more cases of breast cancer under age 45 and/or ovarian cancer at any age. We have also analyzed 10 female patients with sporadic breast cancer regardless of age and family history, as well as 50 unrelated normal individuals as controls. Thus a total of 90 samples were analyzed for BRCA1 mutations using polymerase chain reaction-mediated site directed mutagenesis (PSM) and single stranded conformation polymorphism (SSCP) analysis for various selected exons followed by sequencing of variant bands. Eight point mutations were identified. Two deleterious pathogenic, protein truncating non-sense mutations were detected in exon 11 (E1250X) and exon 20 (E1754X) and six novel and unique amino acid substitutions (F1734S, D1739Y, V1741G, Q1747H, P1749A, R1753K). One complex missense mutation of exon 20 [V1741G; P1749A] was seen in two out of three families and another complex combination of missense and non-sense mutations of the same exon [V1741G; E1754X] was observed in only one family. These complex mutations exist only in breast cancer families but not in control populations of women. Three splice site variants (IVS20+3A>C, IVS20+4A>T, IVS20+5A>T) and two intronic variants (IVS20+21_22insG, IVS20+21T>G) were also detected. In the group of 10 sporadic female patients no mutations were found.  相似文献   

9.
Germ-line mutations in BRCA1 and BRCA2 genes result in a significantly increased risk of breast and ovarian cancer. Other genes involved in an increased predisposition to breast cancer include the TP53 gene, mutated in Li-Fraumeni syndrome. To estimate the frequency of germ-line mutations in these three genes in Upper Silesia, we have analyzed 47 breast/ovarian cancer families from that region. We found five different disease predisposing mutations in 17 (36%) families. Twelve families (25.5%) carried known BRCA1 mutations (5382insC and C61G), four families (8.5%) carried novel BRCA2 mutations (9631delC and 6886delGAAAA), and one family (2%) harbored novel mutation 1095del8 in the TP53 gene, which is the largest germline deletion in coding sequence of this gene identified thus far. The 5382insC mutation in BRCA1 was found in 11 families and the 9631delC mutation in BRCA2 occurred in three families. These two mutations taken together contribute to 82% of all mutations found in this study, and 30% of the families investigated harbor one of these mutations. The very high frequency of common mutations observed in these families can only be compared to that reported for Ashkenazi Jewish, Icelandic, and Russian high-risk families. This frequency, however, may not be representative for the entire Polish population. The observed distribution of mutations will favor routine pre-screening of predisposed families using a simple and cost-effective test.  相似文献   

10.
11.
12.
The two major hereditary breast/ovarian cancer predisposition tumor suppressor genes, BRCA1 and BRCA2 that perform apparently generic cellular functions nonetheless cause tissue-specific syndromes in the human population when they are altered, or mutated in the germline. However, little is known about the contribution of BRCA1 and BRCA2 mutations to breast and/or ovarian cancers in the Indian population. We have screened for mutations the entire BRCA1 and BRCA2 coding sequences, and intron-exon boundaries, as well as their flanking intronic regions in sixteen breast or breast and ovarian cancer families of Indian origin. We have also analyzed 20 female patients with sporadic breast cancer regardless of age and family history, and 69 unrelated normal individuals as control. Thus a total of 154 samples were screened for BRCA1 and BRCA2 mutations using a combination of polymerase chain reaction-mediated site directed mutagenesis (PSM), polymerase chain reaction-single stranded conformation polymorphism assay (PCR-SSCP) and direct DNA sequencing of PCR products (DS). Twenty-one sequence variants including fifteen point mutations were identified. Five deleterious pathogenic, protein truncating frameshift and non-sense mutations were detected in exon 2 (c.187_188delAG); and exon 11 (c.3672G>T) [p.Glu1185X] of BRCA1 and in exon 11 (c.5227dupT, c.5242dupT, c.6180dupA) of BRCA2 (putative mutations - four novel) as well as fourteen amino acid substitutions were identified. Twelve BRCA1 and BRCA2 missense variants were identified as unique and novel. In the cohort of 20 sporadic female patients no mutations were found.  相似文献   

13.
Heterozygous carriers of ATM (ataxia telangiectasia mutated gene) mutations have increased risk of breast cancer (BC). We have estimated the prevalence of mutations in the ATM gene among Spanish patients with early-onset BC. Forty-three patients diagnosed with BC before the age of 46 years, and negative for BRCA1 and BRCA2 mutations, were analysed for the presence of ATM mutations. A total of 34 ATM sequence variants were detected: 1 deleterious mutation, 10 unclassified variants and 23 polymorphisms. One patient (2.3%) carried the ATM deleterious mutation (3802delG that causes ataxia telangiectasia in the homozygous state) and 13 patients carried the 10 ATM unclassified variants. The truncating mutation 3802delG and eight of the rare variants were not detected in a control group of 150 individuals. Different bioinformatic sequence analysis tools were used to evaluate the effects of the unclassified ATM changes on RNA splicing and function protein. This in silico analysis predicted that the missense variants 7653 T>C and 8156 G>A could alter the splicing by disrupting an exonic splicing enhancer motif and the 3763 T>G, 6314 G>C, and 8156 G>A variants would affect the ATM protein function. These are the initial results concerning the prevalence of germline mutations in the ATM gene among BC cases in a Spanish population, and they suggest that ATM mutations can confer increased susceptibility to early-onset BC.  相似文献   

14.
Currently many centers offer testing for three specific mutations, 185delAG, 5382insC, and 6174delT, in the BRCA1 and BRCA2 genes to Ashkenazi Jewish individuals at high risk for breast and ovarian cancer. We recently tested members of a family with multiple cases of breast and ovarian cancer (Family R014). The proband in this family tested positive for the 185delAG mutation. The unaffected sister of the proband tested positive for both the 185delAG and the 6174delT mutations. Further testing and review of the family history suggest that both mutations may have come from a maternal grandfather and passed down for two generations. Counseling of the unaffected double heterozygote individual in this family is complicated by lack of information on the risk of breast, ovarian, and other cancers in such individuals. A better understanding of these risks will depend on the identification and study of more individuals carrying mutations in both the BRCA1 and BRCA2 genes. Our study emphasizes the importance of testing Ashkenazi Jewish individuals from high-risk breast and ovarian cancer families for all three common BRCA1 and BRCA2 mutations identified in this ethnic group.  相似文献   

15.
Germline mutations in the BRCA1 and BRCA2 gene account for the majority of high-risk breast/ovarian cancer families. We have screened such families from Northern Germany by using DHPLC analysis and subsequent direct sequencing techniques. In ten families we identified six novel BRCA1 and 4 novel BRCA2 mutations comprising four frame shift mutations, one nonsense and one splice site mutation in the BRCA1 gene as well as three frameshift mutations and one nonsense mutation in the BRCA2 gene. Our analysis contributes to the further characterisation of the mutational spectrum of BRCA1 and BRCA2.  相似文献   

16.
Germline mutations in BRCA1 gene account for varying proportions of breast/ovarian cancer families, and demonstrate considerable variation in mutational spectra coincident with ethnic and geographical diversity. We have screened for mutations the entire coding sequence of BRCA1 in 30 breast/ovarian cancer women with family history of two or more cases of breast cancer under age 50 and/or ovarian cancer at any age. Genomic DNA from patient was initially analyzed for truncating mutations in exon 11 with PTT followed by DNA sequencing. In the cases where no frameshift mutation was observed in exon 11, all other exons were screened with direct sequencing. Two novel (3099delT, 3277insG) and three already described (3741insA, 1623del5-TTAAA, 5382insC-twice) truncating mutations were identified. In addition, 6 point mutations (L771L, P871L, E1038G, K1183R, S1436S, S1613G) which are already classified as polymorphisms were identified. Three unclassified intronic variants (IVS16-68 G>A, IVS16-92 G>A, IVS18+65G>A) were also detected. These results show that BRCA1 deleterious mutations are present in a fraction (20%) of Greek breast/ovarian cancer families similar to other European countries. Mutations were detected in high- (>/=3 members) as well as in moderate-risk (2 members) families. This is the first report of BRCA1 mutation analysis in Greece.  相似文献   

17.
Mutations in BRCA1 and BRCA2 account for a significant proportion of hereditary breast and ovarian cancer cases. In this study, we sought to determine the frequency of BRCA1- and BRCA2-mutation carrier families in a hospital-based cancer family registry. The frequency of families with germline truncating mutations in BRCA1 and BRCA2 was 17.3% (18/104) and 1.9% (2/104), respectively. Two novel truncating mutations, BRCA1 1848delGA and BRCA2 5694insT, were identified. We also sought to determine the carrier frequency of other affected family members for which the mutation lineage could be established within these families. Not including the probands, 72% (18/25) of the affected family members within the BRCA1 mutation-associated families were carriers, and all four affected members of the BRCA2 families were carriers. These data imply that risk evaluation based on cancer family history alone may result in inaccurate estimates, and where possible, mutation testing should be considered in other affected family members to verify carrier status.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号